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ABSTRACT
Although modern baleen whales (Mysticeti) retain a functional olfactory system that
includes olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory
capabilities have been reduced to a great degree. This reduction likely occurred as
a selective response to their fully aquatic lifestyle. The glomeruli that occur in the
olfactory bulb can be divided into two non-overlapping domains, a dorsal domain
and a ventral domain. Recent molecular studies revealed that all modern whales
have lost olfactory receptor genes and marker genes that are specific to the dorsal
domain. Here we show that olfactory bulbs of bowhead whales (Balaena mysticetus)
lack glomeruli on the dorsal side, consistent with the molecular data. In addition, we
estimate that there are more than 4,000 glomeruli elsewhere in the bowhead whale
olfactory bulb, which is surprising given that bowhead whales possess only 80 intact
olfactory receptor genes. Olfactory sensory neurons that express the same olfactory
receptors in rodents generally project to two specific glomeruli in an olfactory
bulb, implying an approximate 1:2 ratio of the number of olfactory receptors to
the number of glomeruli. Here we show that this ratio does not apply to bowhead
whales, reiterating the conceptual limits of using rodents as model organisms for
understanding the initial coding of odor information among mammals.
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INTRODUCTION
Terrestrial mammals generally have a well-developed sense of smell that can discriminate

millions of odors using hundreds or thousands of olfactory receptors (ORs) (Nei, Niimura

& Nozawa, 2008). Odorants are detected by ORs expressed in the cell membrance of the

olfactory sensory neurons (OSNs), which project to the glomeruli of the olfactory bulbs

(OBs). Each OSN expresses only one OR gene (Serizawa, Miyamichi & Sakano, 2004), and

OSNs expressing the same OR converge their axons to a specific set of glomeruli in the

olfactory bulb (Mombaerts et al., 1996). Using mice and rats as model organisms, it has

been reported that any one OR is typically represented by two glomeruli (Mombaerts et al.,

1996; Ressler, Sullivan & Buck, 1994; Vassar et al., 1994), which indicates that the number of
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glomeruli in the OB is approximately twice that of the number of OR genes in its genome.

However, it is still unclear whether these findings can be extended to other mammals.

The glomerular layer of the OB can be classified into two domains, the dorsal (D)

domain and the ventral (V) domain, based on the expression patterns of domain-specific

marker genes (Imai & Sakano, 2007). The D domain is defined by the expression of the

OMACS gene (Imai & Sakano, 2007; Oka et al., 2003), and the V domain is defined

by the expression of the OCAM gene (Imai & Sakano, 2007; Yoshihara et al., 1997). All

mammalian OR genes can be classified into two subfamilies, class I and class II, based on

sequence similarities (Niimura & Nei, 2006). The OSNs expressing class I ORs are projected

to the D domain of the OB, while OSNs expressing class II ORs are projected to both D and

V domains (Imai & Sakano, 2007; Tsuboi et al., 2006).

Cetaceans are an order of mammals that originated in the early Eocene epoch and

they derive from terrestrial artiodactyls (Thewissen et al., 2009). Extant cetaceans are

classified into two monophyletic suborders, Odontoceti (toothed whales) and Mysticeti

(baleen whales). Modern cetaceans are known to have reduced the olfactory capabilities

profoundly during their evolution, and living odontocetes have no nervous system

structures that mediate olfaction (Oelschläger, Ridgway & Knauth, 2010). On the other

hand, at least some species of mysticetes have a fully equipped olfactory system and OB

(Thewissen et al., 2011), but the number of functional OR genes is remarkably reduced.

Terrestrial mammals, including cows, which are terrestrial relatives of whales, possess

approximately 1,000 intact OR genes (Niimura, Matsui & Touhara, in press; Niimura &

Nei, 2007). By contrast, minke and Antarctic minke whales (Balaenoptera acutorostrata

and B. bonaerensis) possess only 60 intact OR genes (Kishida et al., 2015; Yim et al., 2014),

and 56 of these are included in the class II OR subfamily (Kishida et al., 2015). In addition,

genomic analyses have revealed that all modern mysticetes lack functional OMACS genes

(Kishida et al., 2015). Based on these findings, it appears that, although mysticetes have

fully equipped olfactory systems, their OB lacks the D domain (Kishida et al., 2015).

These molecular data suggest that mysticetes lack glomeruli on the dorsal side of their

OB. In addition, because mysticetes possess a very small number of OR genes, it is expected

that the number of glomeruli in their OB is also very small. However, no detailed study

of the distribution and organization of glomeruli in mysticete OB has been reported to

date. In this study, we provide the distribution of glomeruli in bowhead whales (Balaena

mysticetus) and present data that test whether the mysticete OR:glomeruli ratio compares

with the 1:2 ratio observed in mice and rats.

MATERIALS AND METHODS
Tissues of bowhead whales, details of which are shown in Table 1, were sampled from

subsistence hunts in northern Alaska, USA, under NOAA/NMFS permit 814-1899. Whale

OBs were fixed in 10% buffered formalin and processed using standard histological

techniques. Section thickness was 6 µm. Details regarding laboratory procedures are

described by Thewissen et al. (2011).
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Table 1 Specimens studied.

Specimen no. Species Sex Length (m) Sampling date Sectional plane No. of stained
sections

09B11 Balaena mysticetus Female 7.2 Sep. 11, 2009 Coronal 5

09B14 Balaena mysticetus Female 10.2 Sep. 14, 2009 Horizontal 1

Glomeruli are labeled by the expression of olfactory marker protein (OMP) (Danciger et

al., 1989; Smith et al., 1991). The ImmunoCruz goat ABC staining system (catalog number

sc-2023; Santa Cruz Biotechnology, Inc., Dallas, Texas, USA) and a rabbit polyclonal

anti-OMP antibody (catalog number sc-67219; Santa Cruz Biotechnology, Inc., Dallas,

Texas, USA) were used for immunohistochemistry, following the standard protocol

attached to the ABC staining system kit. Antibody dilution was 1:150. The DAB-stained

sections were counterstained with thionin, and then mounted on permanent slides. The

number of glomeruli on each slide was counted manually, as shown in Figs. S1–S5. The

numbers of glomeruli between these slides were estimated by the following formula:

[f (n − m + 1) + rm]/(n + 1)

where, n is the number of estimated slides between counted slides (slide A and slide B), f is

the number of glomeruli in slide A, r is the number of glomeruli in slide B, and the number

of glomeruli on the m-th slide among n slides is estimated (m = 1,2...,n).

In order to reconstruct a three-dimensional (3D) image of the OB, horizontal sections

of the whole OB of a bowhead whale (specimen number 09B14) were prepared and every

5th slice was stained with thionin, mounted on permanent slides and photographed. Using

AMIRA software (FEI Visualization Sciences Group, Burlington, Massachusetts, USA)

ver. 5.4.1, these images were aligned with manual adjustments, and 3D reconstructed. A

STL-formatted image of the 3D bowhead whale OB can be obtained under the following

link (http://dx.doi.org/10.6084/m9.figshare.1295197).

We downloaded the bowhead whale genome assembly (Keane et al., 2015), and the OR

genes were identified using TBLASTN program ver. 2.2.29 (Altschul et al., 1997). For details

of OR gene identification and class I/II classification, we followed the methods used for

identifying minke whale OR genes by Kishida et al. (2015).

RESULTS AND DISCUSSION
Figure 1 shows OB glomeruli distribution patterns of bowhead whales. The shape of

cetacean OB is not similar to that of terrestrial mammals, such as mice, in having a

olfactory ventricle that is wide open dorsally, and with few glomeruli on the dorsal side of

the OB. This finding is consistent with our genomic data showing that modern mysticetes

lack receptors and marker proteins that are specific to the D domain of the OB (Kishida

et al., 2015). We conclude that, from both genomic and morphological points of view,

mysticete OB lacks the D domain. D domain-ablated mice fail to show innate avoidance
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Figure 1 Olfactory bulb of the bowhead whale brain. (A) Diagram of the location of olfactory bulb in a sagittal section through the balaenid
skull (modified after Thewissen et al. (2011)) (B) Dorsal view of the left and right OBs of bowhead whale (specimen 09B14). Scale bar, 10 mm.
(C) Diagram of the dorsal and ventral view of the bowhead whale right OB. Coronal section (D) was cut at approximately the red dashed line.
(D) Coronal section of the right olfactory bulb of bowhead whale specimen no. 09B11 (section195c). Glomeruli were stained with DAB using
anti-OMP antibody, and the whole tissue was counterstained with thionin. D, dorsal; L, lateral; M, medial; V, ventral. Scale bar, 1 mm. (E) Details
of glomeruli, enlarged the boxed region in (D). Scale bar, 240 µm. (F) A schematic view of the distribution of glomeruli of the coronal section of the
bowhead whale OB.

behavior against odors of predators and spoiled foods (Kobayakawa et al., 2007), and it

is possible that bowhead whales lack olfactory capabilities related to innate avoidance

behaviors against such odors.

To test the OR: glomeruli ratio in mysticetes, we counted the number of glomeruli on

five coronal sections, as shown in Fig. 2. We observed that the numbers of glomeruli shown

in Fig. 2 is likely to be an underestimate of the actual number because some glomeruli

cannot be discriminated clearly and were not counted. Generally, four coronal sections

were mounted in one slide, and the thickness of each section was 6 µm. It is estimated

that 10 slides, containing 40 sections, correspond to 240 µm. Because glomeruli are

generally less than 240 µm in diameter (Fig. 1E, Figs. S1–S5 (coronal sections) and S6

(a horizontal section)), we expected that new glomeruli should appear at most every

10th slide. Therefore, we roughly estimated the number of glomeruli in approximately

every 10th slide (Table S1). Surprisingly, this calculation for bowhead whale OB results in

approximately 4,000 glomeruli, a number much higher than that of mice (1,600–1,800)

(Royet et al., 1988; Taniguchi et al., 2003). We nonetheless consider this value to be an

underestimate as explained above, and because the slides posterior of slide 518 were not

examined (most of the glomeruli are located anterior of this slide).

Whole genome sequence data are required to obtain the repertoire of OR genes.

Recently, a bowhead whale genome assembly was published (Keane et al., 2015) and we

identified the OR gene repertoire in this genome assembly. Eighty intact and 11 truncated

(i.e., lacking of 3′ and/or 5′ sequence(s) due to the fragmented scaffolds and/or contig

gaps) OR gene sequences were identified (Table S2). Among these 91 OR sequences, only
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Figure 2 Nos. of glomeruli in five coronal sections investigated in this study. Sections were cut at
approximately the red dashed lines. Detail pictures of the sections are available as Figs. S1 (slide no.
32), S2 (slide no. 143), S3 (slide no. 195), S4 (slide no. 391) and S5 (slide no. 518).

four genes were classified into class I (Table S2), including OR51E1 and OR51E2, which are

not involved in olfaction (Kishida et al., 2015; Niimura, Matsui & Touhara, in press; Weng et

al., 2006; Xu et al., 2000), supporting our view that bowhead whales OB lack the D domain.

The number of OR genes in the bowhead whale genome is much fewer than the number

of glomeruli in their OB, and thus we conclude that the OR: glomeruli ratio is not 1:2 in

bowhead whales.

Humans are also reported to possess higher numbers of glomeruli (3,000–9,000) than

the number of OR genes (350) (Maresh et al., 2008), similar to bowhead whales. Both

humans and whales are known to have reduced their OR gene repertoires profoundly

in their evolutionary pathways (Kishida et al., 2015; Matsui, Go & Niimura, 2010). It is

possible that, in whales and humans, the evolutionary decline in glomerulus numbers

proceeds at a slower rate than the decline of OR genes, which causes the aberrant ratio.

Following this explanation, the ancestors of both whales and humans are expected to have

a ratio of numbers of OR genes to glomeruli that is greater than 0.5. However, cows,

a terrestrial relatives of whales for whom whole genome sequence data are available,

possess approximately 1,000 OR genes (Niimura, 2009; Niimura & Nei, 2007), and

other boreoeutherian mammals, including the last common ancestors of all modern

boreoeutherians, also possess approximately 1,000 OR genes or less (Niimura, 2009).

Therefore, we predict that whale ancestors would be expected to possess at most ∼1,000

OR genes, a much lower number than the number of glomeruli in whale OB. Similarly,

the last common ancestors of all modern primates have been estimated to possess 585
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OR genes (Matsui, Go & Niimura, 2010), a much lower number than the number of

glomeruli in human OB. We speculate that the OR:glomeruli ratios are not fixed to 1:2

among mammals.

CONCLUSION
Our results show that bowhead whale OB lacks glomeruli on the dorsal side, in accordance

with molecular data showing that all modern mysticetes lack receptors and marker

proteins specific to the D domain of the OB.

There is a much larger number of glomeruli in the bowhead whale OB than expected

from the number of OR genes, indicating that the OR:glomeruli ratios are not always 1:2

among mammals.
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