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Development of mobile sensors brings new opportunities to medical research. In
particular, mobile electroencephalography (EEG) devices can be potentially used in low
cost screening for epilepsy and other neurological and psychiatric disorders. The necessary
condition for such applications is thoughtful validation in the specific medical context. As
part of validation and quality assurance, we develop a computer-based analysis pipeline,
which aims to compare the EEG signal acquired by a mobile EEG device to the one
collected by a medically approved clinical-grade EEG device. Both signals are recorded
simultaneously during 30 minutes long sessions in resting state. The data are collected
from 22 patients with epileptiform abnormalities in EEG. In order to compare two
multichannel EEG signals with differently placed references and electrodes, a novel data
processing pipeline is proposed. It allows deriving matching pairs of time series which are
suitable for similarity assessment through Pearson correlation. The average correlation of
0.64 is achieved on a test dataset, which can be considered a promising result, taking the
positions shift due to the simultaneous electrode placement into account.
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40

41

42

43 Abstract: Development of mobile sensors brings new opportunities to medical research. In 

44 particular, mobile electroencephalography (EEG) devices can be potentially used in low cost 

45 screening for epilepsy and other neurological and psychiatric disorders. The necessary condition 

46 for such applications is thoughtful validation in the specific medical context. As part of 

47 validation and quality assurance, we develop a computer-based analysis pipeline, which aims to 

48 compare the EEG signal acquired by a mobile EEG device to the one collected by a medically 

49 approved clinical-grade EEG device. Both signals are recorded simultaneously during 30 

50 minutes long sessions in resting state. The data are collected from 22 patients with epileptiform 

51 abnormalities in EEG. In order to compare two multichannel EEG signals with differently placed 

52 references and electrodes, a novel data processing pipeline is proposed. It allows deriving 

53 matching pairs of time series which are suitable for similarity assessment through Pearson 

54 correlation. The average correlation of 0.64 is achieved on a test dataset, which can be 

55 considered a promising result, taking the positions shift due to the simultaneous electrode 

56 placement into account. 

57

58

59

60 Introduction

61 Fast development of mobile and wearable sensors introduces new opportunities for field-trials 

62 and long-term monitoring in many research and clinical areas. However, these novel sensors 

63 require a rigorous validation, particularly when being used in clinical applications. The methods 

64 of validation can differ greatly depending on the type of the sensor and the purpose of the 

65 collected data. In this manuscript we focus on the comparison of a novel, wearable 

66 electroencephalography (EEG) device to a clinical equivalent with the aim of sensor validation. 

67

68 In principle, two main approaches to quantitative EEG validation can be found in the literature:

69

70 Technical validation includes an assessment of electrical characteristics of the device or just the 

71 electrodes. This approach is often chosen by sensor developers or researchers as an initial 

72 validation. For example, Liao et al. (1) report the comparison of dry electrodes impedances to 

73 impedances of standard clinical wet electrodes. Generated signals of fixed frequency (2) can be 

74 used for a spectral analysis of the record. Play-back (1,3) is a technique where brain signal is 

75 recorded with the gold standard device and then re-played and recorded by the device in 

76 question. In vivo experiments are challenging, as the signal cannot be recorded at the same time 

77 and place with multiple devices. There are two possible solutions (3): “same time different 
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78 place”, where several sensors are placed as close to each other as possible and data collected 

79 simultaneously; and “same place different time”, where the recordings are being performed 

80 subsequently at the exact same positions. These methods are also referred to as parallel and serial 

81 (4). In the first case, the recorded signals can be compared through visual analysis (4,5), cross 

82 correlation (1,2,4–6), spectral features (7), mutual information (8,9) or other numerical features. 

83 In case of serial recordings, the options for quality assessment are more limited due to time-

84 dependent changes in brain activity.

85

86 Another possibility is a validation in a given experimental context. It can be done to answer 

87 the question if the new device is suitable for a certain type of research or medical purposes. Here, 

88 the choice of possible tests is highly dependent on the application area, but typically the data are 

89 collected under well controlled conditions. Both parallel and serial setups can be used.

90 For instance, the Emotiv Epoc mobile EEG has been investigated by Badcock et al. (10). The 

91 authors compare statistical features of auditory Event Related Potentials (ERP) captured in 

92 parallel experiments by the mobile and a research-grade device. Melnik et al. (2017) (11) used 

93 six different ERP paradigms and serial approach to study the variances caused by multiple 

94 sessions, subjects and devices. Another common option is an experiment when the subjects are 

95 instructed to have their eyes open and closed for a certain time interval. This allows comparing 

96 the EEG alpha band powers (2).

97

98 While all the above approaches are necessary and valid in a research and industrial environment, 

99 further validation is required prior to clinical use. Clinical validation proves that a device is 

100 capable of performing similar or better than an existing clinical gold standard under real-world 

101 conditions. Unfortunately, all described methods require performing the data collection under 

102 carefully controlled conditions, which is not always possible in a clinical environment. Some 

103 earlier publications (12,20) proposed a solution based on professional human assessment, 

104 however this approach brings a number of  problems, such as subjective judgement and high 

105 variation of the scores (12). Therefore, an objective, computer-based way of comparison is 

106 needed.

107 The present work aims to answer the following research question:

108 How to compare two  multichannel EEG system using a fully computer-based data analysis 

109 pipeline and simultaneously recorded data under the following limitations:

110

111 - No hardware modification can be done. In particular, the referencing electrodes are 

112 placed according to the respective design of the devices.

113 - No special external stimuli can be introduced, which limits statistical analysis of the 

114 signal responses.

115

116 The developed pipeline is investigated using simultaneously acquired data from a mobile and 

117 clinical EEG during a clinical study at the RWTH Aachen University Hospital.
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118 Methods

119 Study design 

120 Resting state EEG signals were collected simultaneously with a clinical and mobile EEG devices 

121 from a gender-balanced group of 22 patients admitted to the hospital for epilepsy diagnostics. 

122 Average age of the patients was 40.2 ± 15 years and the more detailed demographics can be 

123 found in Tab 1.  All patients were fluent in German language and signed the informed consent. 

124 The study was approved by the Ethical Board of Uniklinik RWTH Aachen (EK150-17 3.7.2017) 

125 and registered prospectively (DRKS-ID: DRKS00012424). Written consent was obtained from 

126 each participant. The primary goal of the study was to assess the quality of the mobile EEG 

127 device for epileptiform abnormality detection and the results of the human-based evaluation can 

128 be found in (12).

129

130 The clinical grade data were collected with Brain Quick Plus Evolution by Micromed, which is 

131 currently used as a standard device at Epileptology Section at Uniklinik RWTH (Aachen, 

132 Germany) where the recordings were conducted. This model has 21 EEG electrodes, ground 

133 electrode G1 (positioned between Fz and Cz on the left side) and reference electrode G2 

134 (positioned  between Fz and Cz on the right side). 

135

136  The electrodes are placed according to the 10-20 system (13) (see also Fig. 1a). The data are 

137 sampled at 256 Hz. 0.18 Hz high-pass filtering is performed in the amplifier. During patients’ 

138 hospital stay they were undergoing continuous EEG monitoring for several days, with 

139 simultaneous collection of video data. Therefore we use the abbreviation vEEG for the clinical 

140 EEG further on. The video data were not used in our study. Approximately every 3 hours of EEG 

141 records are saved in a separate file and exported in the European Data Format (.EDF files). 

142

143 For the mobile data collection, the Epoc Emotiv device was used (mEEG). This device was 

144 originally marketed as a mobile brain-computer interface (BCI) sensor, but gained a lot of 

145 interest from the research community. Previous works showed that this particular device is able 

146 to capture EEG potentials and is promising in research context (10,11). Despite a somewhat 

147 limited coverage of the cerebral cortex, the price range and number of electrodes (14, CMS/DRL 

148 references) made it a potentially useful tool for clinicians and researchers. The electrode 

149 positions are fixed due to a rigid plastic frame and approximate the 10-20 system (see Fig. 1a). 

150 Sampling rate of the device used in the study is 128 Hz.

151

152 In the experiment Epoc Emotiv was mounted while the clinical EEG device was already in use. 

153 mEEG was recorded for approximately 30 minutes within a single recording session. During 

154 these 30 minutes the patients were asked to limit their movements, as Emotiv Epoc device is 

155 highly prone to movement artifacts. At the beginning of the mobile data collection, the 
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156 participants were asked to blink strongly several times in a row. This was done to facilitate the 

157 later data alignment.

158 The electrodes were placed as close as possible to the vEEG electrodes, at the same time 

159 minding the distance enforced by the glue used to attach vEEG electrodes.

160 The stiff frame of mEEG presented an additional challenge. After the mounting of mEEG a 

161 sketch of the placement was made (see Fig. 1a for an example).

162 Fig. 2 shows an illustrative fragment of the same EEG fragment, recorded on both video (a)  and 

163 mobile (b) devices. An epileptiform abnormalities (spike-slow waves) are visible in both 

164 versions.

165 Before any further processing, the data were pseudonymized and only the session’s number was 

166 used to keep track of the files.

167 Three patients’ data were discarded from the trial. One set because of the mobile recording 

168 software failure, one because of the failure of reference electrode in the clinical EEG, and the last 

169 one because of cell phone usage by the patient resulting in strong artifacts.

170 Software 

171 Data collection was performed with BrainLab (14). Data analysis was done with MATLAB 

172 R2017b (The Mathworks, Natick, MA, USA) and EEGLAB v.14 (15).

173 Data preprocessing

174 The raw EEG data files have different length, sampling rates and electrode placements and, 

175 therefore, require several preparation steps before the comparison between mobile and clinical 

176 signals can be done. The pipeline presented below allows for constructing aligned pairs of signal 

177 vectors, ready for further statistical analysis.

178

179 Initial pruning of clinical EEG data

180 The duration of the vEEG and mEEG signal is 3 hours and 30 minutes respectively. Based on the 

181 blinking and the marked time of the mEEG data collection, approximately 30 minutes of vEEG 

182 is cut (see Fig. 3). It is not yet perfectly aligned with the mEEG data, but the shift is within 15 

183 sec. 

184 Selection of  corresponding electrodes between vEEG and mEEG. 

185

186 The two considered EEG systems are differently referenced. Therefore, in order to be able to 

187 compare the data, we propose a shift to bipolar referencing, defined individually for each patient 

188 based on the specific relative electrode positions (see Fig. 1a). The couples of mobile and video 

189 electrodes placed directly next to each other (as close as the glue circle allows) are listed. For 
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190 example, the following couples are chosen (Fig. 1b): mF3-vF3 and mT8-vT4. The set of two 

191 corresponding pairs of electrodes will be called a quadruple. The list of all possible electrode 

192 quadruples (e.g. [mF3, mT8, vF3, vT4], with m* and v* being electrodes from the mEEG and 

193 vEEG respectively) is created individually for each patient (Fig. 3).  Some quadruples will later 

194 correspond to a pair of EEG vectors which we expect to present similarities.

195

196 Choose well-aligned data vectors

197 The initial choice of quadruples does not guarantee the spatial alignment. In order to assure such 

198 alignment, only the pairs which lie far enough from each other will be considered. For example, 

199 if we take a signal described by mFC5-mF3 difference and vC3-vF3 (Fig.1), we can see that the 

200 two vectors are far from being well aligned and it is a direct consequence of the spatial proximity 

201 of two matched pairs. In order to avoid arbitrary decisions regarding the good or bad alignment 

202 we have introduced a decision rule as follows.

203 a) The video electrodes are put on a grid (see Fig.4, the sides of the squares are assumed to 

204 have unit length) and then the Manhattan distance between each pair of electrodes is 

205 computed. The distances can take values from zero (from a given electrode to itself), up 

206 to six. Electrodes positioned from four to six steps from each other are considered to be 

207 sufficiently distant. The reference electrode is assumed to be placed exactly in the middle 

208 of the Fz-F4-C4-Cz square, and Manhattan distance from Cz to G2 equals to 0.5+0.5=1.

209 b) For each participant the quadruples with video electrodes separated by Manhattan 

210 distance of 4 and higher are taken. Ultimately, 361 quadruples out of 876 possible are 

211 chosen.

212

213 Data cleaning and extraction of quadruples 

214

215 Due to the relatively low signal-to-noise ratio, it is essential to reduce the noise before any 

216 comparison is made. Additionally, the data need to be synchronized in time and pruned to the 

217 same vector size. Therefore, the following data cleaning pipeline was implemented (see Fig. 5 

218 for the visualisation):

219 1) The EEGLAB function pop_rejchan is used to detect corrupted channels in all files. The 

220 quadruples containing such channels are removed from the list. 

221 2) Low pass filtering at fq_lowpass Hz (the parameter fq_lowpass depends on the chosen 

222 frequency band).

223 3) Downsampling vEEG to a sampling rate of 128 Hz, to match the lower mEEG sampling 

224 rate.

225 4) High pass filtering at fq_highpass Hz (similarly to fq_lowpass, the parameter fq_highpass 

226 depends on the chosen frequency band).
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227 5) For each patient, the perc-th percentiles of absolute values of the amplitudes are 

228 computed for mEEG and vEEG separately, and the corresponding raw data are divided 

229 by the resulting value. This normalization allows to avoid the problem of different scales 

230 of mEEG and vEEG.

231 As an output of the described process, we obtain filtered, normalized and roughly time-aligned 

232 mobile and clinical EEG data sets for each patient. Additionally the corrupted channels are 

233 eliminated and an individual list of channel quadruples to be used for further re-referencing is 

234 stored.

235 Processing of single quadruples

236 More precise time alignment and artifact removal is done for individual quadruples (e.g. [mF3, 

237 mT8, vF3, vT4] as illustrated on Fig. 1b) of specific patients. The resulting vectors can be 

238 compared through Pearson correlation.

239 Artifact detection for a single channel

240 In order to capture short-term signal disturbances, we construct an adjusted procedure for artifact 

241 detection:

242 1) First, threshold AmThresh is fixed and all data with absolute value exceeding AmThresh 

243 is marked as NaN (not a number). The data points are not removed to allow later time 

244 synchronization. It should be noted, that previous data normalization makes it possible to 

245 choose for a common single threshold for both mEEG and vEEG records. 

246 2) Next, non-overlapping intervals of length WinLength are taken, average of amplitudes’ 

247 absolute values is computed and the whole window is marked as NaN if this average 

248 exceeds the parameter AmThreshWin.

249 3) Artifact index is computed by dividing the length of the “corrupted” data (marked as 

250 NaN by the total data vector length.

251 4) If Artifact index exceeds 70%, all quadruples including this channel are removed from 

252 the list.

253 The described procedure is subsequently applied for all four time series involved in the 

254 quadruple.

255

256 Remark 1. One of the most common procedures for EEG analysis is the removal of eye blinking 

257 artifacts. Here, it was decided against this removal, because the locations typically known for 

258 strong eye artifacts usually are not involved in the analysis. Additionally, such artifacts are a 

259 normal part of the EEG signal, and as such should manifest similarly in mEEG and vEEG 

260 signals. One may argue, that high amplitude of such signals may unproportionally influence the 

261 linear correlation, but since they are not very prominent in this particular data they were 

262 neglected. Similarly, ECG artifacts were not significant in the considered data.
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263 Re-reference of quadruples. 

264 We mathematically re-reference the electrodes within each quadruple (through pairwise 

265 subtraction) to eliminate the effect of the global reference (e.g. quadruple [mF3, mT8, vF3, vT4] 

266 equivalent to [mF3-mRef, mT8-mRef, vF3-vRef, vT4-vRef] after re-referencing results in a pair 

267 [mF3-vF3, mT8-vT4]). This subtraction can be thought of as bipolar (BP) re-referencing. 

268 Proximity between corresponding video and mobile electrodes in combination with well-aligned 

269 bipolar vectors should result in similarity of  those vectors. Therefore, the time series mF3-mT8 

270 is expected to show strong similarities with time series vF3-vT4. Note, that both time series may 

271 contain NaN terms propagated from the artifact removal procedure and that the bipolar 

272 referencing is different for each patient and is based on patient-specific relative electrode 

273 placement. Similarly, the number of quadruples may vary.

274 Fine aligning 

275 At this stage, MATLAB function lag can be used to find a time shift between the video and 

276 mobile data. In order to check how the signal shifts progress in time and capture possible 

277 (non)linear drift all signals were divided into 4 equal parts. The lags between mobile and video 

278 signals were computed for each quadruplet and the resulting median per patient. The results are 

279 presented in table A1, and suggest, that the drift in this particular experiment can be neglected. 

280 What is important to account for, is the fact, that finding the correct lag is only possible if the 

281 data has a certain minimal signal-to-noise ratio, otherwise all correlations are close to zero and 

282 the time shift is set to a completely wrong value by the algorithm. For one recording session it is 

283 possible that the lags slightly vary between quadruples, but typically the differences are within 1-

284 2 data points. Therefore the lags are first computed for all quadruples of a given patient, then the 

285 majority vote is used to set the same time shift to all combinations, allowing a fluctuation of ± 5 

286 data points to compensate for differences in device-specific recording order of the channels.

287

288 Remark 2. If the frequency band chosen for filtering is too narrow, errors might occur in the lag 

289 computation. Therefore it is recommended to pre-compute and save lags for a wider band. 

290

291 Finally, the longer vEEG vectors are pruned to match the length of the mEEG vectors and the 

292 time stamps from the mEEG data are added. NaN data points from each single time series in the 

293 quadruple propagated to the bipolar re-referencing. After the aligning, all data segments where 

294 either of the two bipolar time series contained NaN were removed (see Fig. 6).

295 Finally, Pearson linear correlation for the given quadruple is computed and stored.

296 Aggregating data for multiple patients

297 For each patient and fixed set of the parameters, the table containing all quadruples and their 

298 corresponding correlation coefficients is built. The patient average and the grand average across 

299 all patients can be reported. Due to the skewed data distribution, Fisher z-transform is used to 
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300 normalize the data before computing the average. Afterwards the inverse transform is performed 

301 to return to the original scale. Additionally, the data loss resulting from all processing steps is 

302 tracked.

303 Optimization and parameters choice

304 Let us notice that there are 6 parameters which we can choose in the above described procedure: 

305 fq_lowpass, fq_highpass, perc, AmThresh, WinLength and AmThreshWin. A procedure for 

306 establishing parameters values consists of several steps. The parameters are optimized for all 

307 patients at once resulting in only one set of parameters that is used for all further calculations on 

308 all patients. Except for the lag between vEEG and mEEG, no patient-specific parameter is 

309 necessary.

310 First, we fix the default filtering parameters fq_lowpass and fq_highpass based on the estimation 

311 of the usable spectrum of the data. In principle the frequency parameters can be chosen freely, 

312 depending on which part of the spectrum the correlation is of interest. For instance, we will argue 

313 later, that alpha band (7.5-12.5 Hz) shows the best correlation. Nevertheless, in order to find the 

314 broadest default frequency band reasonable for our research, the average cross-spectrum of the 

315 data is computed and thresholding is made to fix the initial fq_lowpass and fq_highpass values 

316 (Fig. 7). This cross-spectrum is computed in a procedure similar to the above described 

317 correlation computation, with only the initial high-pass filtering of mEEG at 0.5 Hz. Other 

318 filtering, normalization and artifact removal are skipped for the estimation of the filter values.

319 Second, a set of discrete values for perc, AmThresh, WinLength, AmThreshWin is chosen. For 

320 each parameter combination and patient, the correlation tables are computed.

321 Third, the data are randomly divided into two subsets of 14 training and 5 test records. These 

322 subsets are fixed and no cross-validation is performed. The parameter set with the best resulting 

323 grand average correlation coefficient is established based on the first set and quasi-independently 

324 evaluated based on the second set.

325 Correlations between vEEG electrodes (vEEG to vEEG correlation)

326 As direct performance comparison, we also investigate the similarities within the vEEG signal 

327 and calculate the correlations. In this case, all neighbouring pairs of vEEG electrodes were 

328 defined (e.g. [vP4, vT6]), and underwent analogous artifact removal procedures. Instead of 

329 quadruples that are re-referenced between two electrodes from both vEEG and mEEG each, we 

330 use two vEEG electrodes and their reference electrode. Since both electrodes are referenced to 

331 the same reference electrode, this constructs a virtual quadruple (e.g., [G2-vP4, G2- vT6] with 

332 G2 being the reference electrode) and correlation between the two signals can be calculated. 

333 Similarly to the mobile-to-video case, too “short” quadruplets were rejected. Since here the 

334 centrally positioned electrode G2 is always involved, the distances may vary from 1 to 4, and the 

335 step is now equals to 0.5, as G2 is located between the regular electrodes. 3 was taken as a soft 

336 threshold here.
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337

338 In case of vEEG-mEEG, the difference between the computed correlation and perfect linear 

339 correlation value (1) is due to the following factors: a) devices quality differences, b) noise, c) 

340 spatial distances between two pairs within one quadruple (e.g. vF3 to mF3 and vT4 to mT8). In 

341 case of vEEG-vEEG correlation, the differences are due to a) noise and b) spatial distances 

342 between the two vEEG electrodes (e.g. vP4 to vT6). These distances are larger than in vEEG to 

343 mEEG pairs, but there is no spatial distance influencing the correlation for the reference 

344 electrode. If we assume that these differences give a comparable error and the noises are on the 

345 same level, then the differences in average correlation should reflect the differences in the 

346 devices quality.

347 An additional step is performed to make the comparison more sensible: since the distances 

348 chosen for mobile-video quadruples were [4,5,6] and for video-video quadruples [3,4], we have 

349 computed additionally an average correlation for “medium” mobile-video quadruples of the 

350 length 3 and 4.

351 Results

352 Establishing frequency interval for preprocessing

353 In the first step the frequency band with the boundaries fq_highpass and fq_lowpass for the 

354 preprocessing is chosen for the analysis. The lower boundary (fq_highpass) is set to 1Hz, which 

355 is sufficient to remove the drift from the EEG data. In order to set fq_lowpass, the magnitude-

356 squared coherence was calculated to assess which frequencies are useful for comparison (Fig. 7). 

357 The magnitude-squared coherence indicates the shared information between mEEG and vEEG in 

358 distinct frequency bands. A cut-off value of 0.1 was chosen, resulting in upper frequency band 

359 limit of 38Hz. This is in line with the commonly used frequency bands in EEG analysis 

360 (following (21), delta up to 3.5Hz, theta 3.5-7.5Hz, alpha 7.5-12.5Hz, beta 12.5-30Hz and 

361 gamma > 30Hz). Recent research also shows the importance of   higher gamma (> 50Hz) in 

362 certain application contexts (16,17), but the chosen interval of 1-38Hz is sufficient for the basic 

363 neurologic assessment.

364 Parameter optimization

365 For the chosen frequency band (1-38Hz), we consider the following discrete values of the 

366 parameters:

367

368 perc={80%, 85%, 90%, 95%, 97%, 99%}, 

369 AmThresh={1, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8, 9, 10}, 

370 AmThreshWin={0.5, 1.0, 1.2, 1.5, 2, 2.5},

371 WinLength={15, 50, 75, 100, 200, 250}.
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372

373 For all possible parameter combinations, the average correlation was computed on the randomly 

374 chosen train set. The following optimal set of parameters, resulting in mean correlation of 0.57 

375 was obtained through exhaustive search:

376

377 perc= 85%,

378 AmThresh=8.0,

379 WinLength=100,

380 AmThreshWin=1.5.

381

382 As a boundary condition, the amount of data retained needed to be 70% on the train data. 

383 Correlation between vEEG and mEEG

384 The optimal parameters determined on the train set resulted in a mean correlation of 0.57 and 

385 were fixed for evaluation on the test set. When applying the processing chain with the fixed 

386 parameters to the test set, the resulting mean correlation is 0.64. The volume of data left for the 

387 analysis after artifact removal equals 73% of the original data volume.

388 In order to better understand the distribution of correlations, each patient was analyzed 

389 individually (Fig. 8). While most patients produce similar results, some patients have much 

390 lower overall correlation coefficients.

391 The results are highly sensitive to the choice of the frequency band. Considering the fact that the 

392 bands of interest might differ depending on the application, the correlations were examined 

393 independently for each frequency band (Tab. 2). The alpha band shows the highest correlation 

394 (0.74 on the test set). 

395

396 Correlations between vEEG electrodes

397 In order to obtain the comparison correlation values, the correlation between neighboring video 

398 electrodes, positioned at the distance larger or equal to 3 from G2 were computed and averaged 

399 on the full data set. The received grand average was 0.78 (see Fig. 9 for details). The 

400 corresponding average on full data set for similarly distant (3 to 4) mobile-to-video quadruples 

401 was 0.57. To compare the quality of the mEEG and vEEG, we report the percentage of data 

402 retained during cleaning for both mEEG to vEEG and vEEG to vEEG correlations (Tab. 3). The 

403 vEEG to vEEG comparison retains approx. 89-96% of the data, which means that 4-11% are 

404 discarded. In the mEEG to vEEG comparison, approx. 26-28% of the data are discarded, which 

405 indicates that the mEEG is responsible for  15-24% or two thirds of the total discarded data.
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406 Discussion

407 Main Findings

408 The main goal of this work was to find a way to objectively (quantitatively) validate a mobile 

409 EEG device in a situation when only resting state brain waves can be collected and no hardware 

410 manipulations can be performed (e.g., due to regulations). In particular, the positions of the 

411 individual electrodes are fixed and no common referencing is available. To overcome these 

412 limitations, we have developed an advanced and multi-parametric data processing procedure, 

413 which allows obtaining illustrative and robust results in the form of a grand average correlation 

414 coefficient. 

415 The resulting average correlation is dependent on the chosen frequency range. In case of EEG 

416 data it is informative to consider standard brain wave frequency bands (delta, theta, alpha and 

417 beta). The average correlation varies from 0.62 on the delta band of the test set to 0.74 on alpha 

418 band (on the test set). The average across the overall considered frequency band (1-38Hz) is 

419 0.64. While this number may look moderate, it can be percepted as quite high if we take into 

420 account that as much as 73% of all data are preserved and that we compute a grand average over 

421 multiple (on average 19 per patient) quadruples of 30 min long data vectors.

422 For the illustrational purposes we refer to Fig. 10, where two bipolar signals from one quadruple 

423 are visibly similar, the quality of the data looks good, but the correlation coefficient is still 

424 “only” 0.72.

425 Due to chance, the average correlation on the test set is higher than on the train set. One of the 

426 main reasons is a consistency in signal quality within one record and relatively small (n=19) 

427 number of records, resulting in only 5 test records. Nevertheless, both train and test sets show 

428 similarity in the results and have similar dynamics across the bands, with alpha band showing the 

429 highest correlation.

430

431 Although the overall data quality was not optimal, only three out of 22 sessions were rejected 

432 because of recording failures, but none during the processing pipeline execution. For the 

433 remaining 19 sessions, on average, 19 quadruples of electrodes were selected based on strictly 

434 formulated criteria. Furthermore, only 27-28% of data were lost due to rejection of full channels 

435 or signal segments (train and test sets). The rejection was performed only based on computer 

436 algorithms. Thereby, the reported correlation averages across multiple session and quadruples, 

437 and covers most of the recorded data. With respect to the high amount of data and potential 

438 variation, the low standard deviation of 0.14  (on test set) points towards high robustness. 

439

440 Due to the uniqueness of the data it is a difficult task to evaluate the results. Therefore we have 

441 performed a test to relate the grand average correlation. The average correlation was computed 

442 for neighbouring pairs of vEEG electrodes and resulted in a value of 0.78, which lies half way 

443 between vEEG-mEEG correlation on “medium” quadruples (0.57) and perfect correlation of 1. 
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444 The assumptions regarding possible deviations from a perfect correlation listed above are 

445 difficult to verify, so we can only hypothesize that these values suggest lower signal quality of 

446 mEEG comparing to the clinical device, but the differences seem to be moderate.

447 Comparison to the state of the art

448 Analyzing other works on electrodes quality comparison, where experiments were performed in 

449 a more controlled environment, may bring a better understanding of how much of the signal 

450 differences are caused by spatial shift of the electrodes and how much by the lower quality of the 

451 mobile hardware. Only experiments of “same-time-different-place” type with resting state or 

452 similar conditions were chosen for the comparison. In some papers, the authors compare the 

453 same type of electrodes in order to estimate the spatial shift-related signal change.

454

455 In Fiedler et al. (6)  the authors place 3 types of dry electrodes at Fp1, Fp2, O1 and O2 sites, with 

456 standard wet electrodes adjacent. Additionally two sets of wet electrodes was tested to provide a 

457 baseline. In resting state the resulting average correlations were: 0.24, 0.59, and 0.25 for three 

458 dry-to-wet comparisons respectively and 0.58 for wet-to-wet combination.

459

460 Estepp et al. (5) under the open eyes condition reported 0.84, 0.61 and 0.32 for dry-to-wet 

461 comparison at Fz, C4 and Pz positions respectively. Similarly, wet-to-wet combinations resulted 

462 in 0.97, 0.95 and 0.80. 

463

464 In Wyckoff et al. (2)  the measurements with dry and wet electrodes were done at Fz, C3, Cz, C4 

465 and Pz. For the open eyes condition the average correlation varied from 0.28 on delta band to 

466 0.99 on alpha, beta 1 (13-16Hz) and beta 2 (13-21Hz) bands.

467

468 Liao et al. (1) reported respectively 0.95 and 0.91 correlation at F10 and POz for two different 

469 electrode types.

470

471 More references can be found in a review paper of Lopez-Gordon et al. (3). The results in the 

472 above referenced papers are characterized by high variability. The reported correlations vary 

473 from 0.25 to 0.97 on time-domain signal, which can be explained by different quality of the 

474 tested electrodes, but also by differences in the placement, experimental details and data 

475 processing. All the experiments were carefully controlled, electrode number limited to a 

476 maximum of 5, subjects movement could be minimized and sometimes the segments of data 

477 rejected after visual examination (4). 

478

479 In contrast, in our research, the data were collected under minimal control, multiple electrode 

480 sites were used (including the ones known for high artifact presence) and no human examination 

481 was used for data processing. Yet, the results are revealing a correlation level comparable to 

482 other comparisons with a similar setup.
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483 Limitations

484 In the described work Pearson correlation was used as a straightforward similarity measurement. 

485 It seems to be a reasonable choice in the given context, as linear relationship is exactly what we 

486 are expecting from our experiments if the spatial shift is neglected. On the other hand, this spatial 

487 shift may introduce significant nonlinear effects. In the further work it might be beneficial to 

488 consider different measurements of similarity, such as mutual information (9). Nonlinear 

489 relationships in EEG have been deeply studied in the context of epileptic seizures where 

490 synchronisation of different brain areas often occurs. In Quiroga et al. (8) a number of nonlinear 

491 measurements is discussed, however the same paper also suggests ultimate resulting similarity of 

492 the different types of measurements, including linear correlation.

493 Another limitation is the restriction of the comparison bandwidth from 1 to 38Hz. The maximum 

494 available frequency of our setup is 64, however only little mutual information was detectable in 

495 the higher frequencies. This indicates both a limitation in the hardware, as well as in the 

496 proposed algorithm, as the parts with potentially worse correlation are excluded. While this is 

497 reasonable as long as the values chosen are still clinically relevant, it requires special care when 

498 choosing the fq_lowpass value.

499 Conclusion

500 In this work we have developed a data analysis procedure designed to deal with two sources of 

501 EEG data recorded simultaneously during resting state. This procedure aims to provide an 

502 objective measurement of the data quality.

503 It is not uncommon that in the procedure of EEG comparison visual assessment by the trained 

504 specialists is used as a part of data pre-processing (4). While professional opinion may provide a 

505 unique insight, it is also very costly to obtain. In the particular case of our study, more than 20 

506 hours of multichannel data need to be analyzed. Moreover, multiple studies have shown that 

507 human assessment is not fully reproducible and high intra- and inter-rater variances are 

508 consistently reported (18,19), which could be reproduced on our data in a previous publication 

509 (12). In contrast, automated analysis pipeline provides an objective, fast and low-cost way to 

510 perform the data comparison.

511 The presented procedure deals with the challenges of different referencing, spatial shifting of the 

512 electrodes and lack of controlled stimuli (such as in ERP experiments). Using automatically 

513 optimized parameters for the pre-processing, a grand average linear correlation of 0.64 between 

514 mobile and clinical EEG devices was obtained. It was compared to several baseline correlations, 

515 such as clinical-to-clinical EEG correlation, to conclude that the overall quality of the considered 

516 mobile device is good, since similar correlations can be seen when only electrode types are 

517 changed (e.g. when comparing wet and dry electrodes). This result agrees with our previous 

518 study, where trained neurologists were clinically investigating the data (12), and with a number 

519 of other studies done on Epoc Emotiv in different contexts (11,20). However, to our best 
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520 knowledge, a fully automated approach in combination with the resting state data was not 

521 previously reported. 

522 The presented pipeline might benefit in the future from including more sophisticated signal 

523 processing methods, such as mutual information. Nevertheless, in the current form it already 

524 shows high efficiency and might be potentially generalizable to different multi-channel sensors, 

525 such as EMG or ECG.
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595 Appendix

596 Table A1 presents the median time lags between mobile and video bipolar signals. The signals 

597 were divided into 4 approximately equal length vectors in order to track the possible drift of the 

598 delay in time. The median is chosen to avoid the influence of the outliers, which are present due 

599 to bad quality of the data in some channels. In this case the lags computed based on 

600 autocorrelation are not informative.
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Figure 1
Example of the vEEG (green) and mEEG (blue) electrode placement.

(A) The placements differ slightly from patient to patient, therefore a sketch is made for each
session to track the relative electrode positioning. (B) Zoom to an example electrode
quadruple.
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Figure 2
Fragment of EEG record with spike-slow wave abnormalities.

(a) vEEG. (b) mEEG.
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Figure 3
Initial pruning and quadruplet list creation.

Using timestamps and blinking artifacts approximately simultaneous vEEG and mEEG files
are obtained. Personal sketch of electrode positions allows to detect spatially close electrode
pairs and generate reference-free quadruples.
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Figure 4
vEEG electrodes put on an approximate grid.

The grid allows to compute Manhattan distances between different electrodes. Reference
electrode G2 is placed in the middle of the unit square to reflect the realistic placement.
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Figure 5
Data cleaning.

Data cleaning involves removal of corrupted channels (followed by the update of the
quadruple list), filtering, resampling and normalization of the data.
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Figure 6
Pipeline for creating matching data vectors to compare through linear correlation.

For each quadruple artifact detection is performed in each electrode’s data, then time
aligned reference free vectors are constructed and the artifacts are removed without
breaking the time synchronisation. Vectors with low signal-to-noise ratio are removed from
the list. Linear correlation is computed for the remaining matching vectors.
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Figure 7
Magnitude-squared coherence between mEEG and vEEG averaged across electrodes
and patients.

Red lines indicate thresholds for fq_highpass and fq_lowpass.
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Figure 8
Distribution of correlations for single quadruples per individual patient.

Results on the test set are shown in red and on the train set in blue.
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Figure 9
Distribution of correlations between pairs of vEEG electrodes over individual patients.
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Figure 10
Fragment of two bipolar signals from one quadruple.

The signals are processed according to the described pipeline and therefore well aligned. The
correlation between the illustrated fragments equals 0.72.
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Table 1(on next page)

Demographic data of the participants.
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1

Count %

Sex

Male 11 50%

Female 11 50%

Age

<30 6 27,2%

30-40 5 22,7%

40-50 5 22,7%

>50 6 27,2%

2
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Table 2(on next page)

Average correlation by frequency band for the test set group.

Gamma is not analyzed individually as only part of the band is present in the signal.
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1

Average 

correlation

Delta 

(1-3.5Hz)

Theta

(3.5-7.5Hz)

Alpha 

(7.5-12.5Hz)

Beta 

(12.5-30Hz)

Full band

(1-38Hz)

Train set 0.51 0.62 0.68 0.54 0.57

Test set 0.62 0.73 0.74 0.64 0.64

Full data set 0.55 0.66 0.70 0.57 0.60

2

3
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Table 3(on next page)

Percentage of data left after channel rejection and artifact removal.
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1

Data left in total (in %) Test set Train set Full data set

mEEG – vEEG („long 

distances“)

72.83 71.67 71.98

mEEG – vEEG 

(„medium distances“)

73.21 73.60 73.31

vEEG - vEEG 95.71 89.17 90.89

2

3
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Table 4(on next page)

Median (computed across quadruples) lag between video and mobile EEG signals.

The signal length is divided into 4 equal in time parts to track possible drifts.
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Patient Median lag 1st quarter Median lag 2st quarter Median lag 3st quarter Median lag 4st quarter

1 739 739 739 739

2 584 584 584 583

3 587 587 614 614

4 780 780 780 780

5 1046 1045 1045 1045

6 493 492 492 492

7 1136 1136 1136 1135

9 1185 1185 1185 1176

10 1106 1106 1106 1105

11 1286 1286 1286 1286

13 1218 1218 1218 1218

14 1240 1240 1239 1239

15 1260 1260 1260 1259

16 1245 1245 1245 1245

17 1275 1275 1275 1275

18 1404 1404 1403 1403

19 1330 1331 1330 1330

20 1350 1350 1350 1350

21 1252 1252 1252 1252

1

2
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