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ABSTRACT

The characterisation of changes in coral communities depends heavily on systematic
monitoring programs and the collection of necessary metrics to assess reef health. Coral
cover is the most used metric to determine reef health. The current organizational shift
in coral requires the evaluation of complementary metrics, such as colony size and
frequency distributions, which help to infer the responses of the coral populations to
local stress or larger scale environmental changes. In this study, underwater digital
photogrammetry techniques were used to assess the live cover of all coral colonies
>3 cm? and determine the size-frequency distribution of the dominant species in the
shallow reefs of the Cozumel Reefs National Park (CRNP). In addition, the minimum
sampling area (m?) needed to obtain a representative sample of the local species
pool was estimated. Areas between 550 and 825 m? per reef were photographed
to generate high-resolution digital ortho-mosaics. The live area of the colonies was
digitised to generate community matrices of species and abundance. EstimateS software
was used to generate accumulation curves and diversity (Shannon H’) at increasing
area intervals. Chi-Square tests (x2, p=0.05) were used to compare the observed vs
estimated species richness. Spearman’s coefficients (r;), were calculated to correlate the
increase in sampling area (m?) vs H', and the Clench’s function was used to validate
the observed richness (R?> =1 and R > 90%). SIMPER analysis was performed to
identify dominant species. Comparisons in terms of abundance, coral cover and size-
frequencies were performed with Kruskal-Wallis (H test, p=0.05), and paired Mann-
Whitney (U test, p=0.05). In order to obtain 90% of the species richness, a minimum
sampling area of 374 m?is needed. This sampling area could be used in shallow
Caribbean reefs with similar characteristics. Twelve (mainly non-massive) species:
Agaricia agaricites, A humilis, A. tenuifolia, Eusmilia fastigiata, Meandrina meandrites,
Montastrea cavernosa, Orbicella annularis, Porites astreoides, P. porites, Pseudodiploria
strigosa, Siderastrea radians andsS. siderea, were dominant in terms of abundance and
coral cover. A significant increase (p < 0.05) in the number of colonies and live
coral (m?) was observed from north to south of the study area. Furthermore, a wide
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intraspecific variation of size-frequency, even between adjacent reefs, was also observed.
The size-frequency distributions presented positive skewness and negative kurtosis,
which are related to stable populations, with a greater number of young colonies and
a constant input of recruits. Considering the increase in disturbances in the Caribbean
and the appearance of a new coral disease, digital photogrammetry techniques allow
coral community characteristics to be assessed at high spatial resolutions and over large
scales, which would be complementary to conventional monitoring programs.

Subjects Biodiversity, Marine Biology

Keywords Digital photogrammetry, Coral reefs, Spatial analysis, Minimum sampling area,
Size-frequency distribution, Shallow reefs

INTRODUCTION

Coral reefs are among the most ecologically and economically productive marine
ecosystems. However, over the last four decades the condition of reefs around the
world has declined severely (Raeaka-Kudla, 1997; Mumby ¢ Harborne, 2010). Coral reefs
are locally and regionally subjected to a wide range of natural and human stressors,
including overfishing, coastal development, algal blooms, disease outbreaks, invasive
species, hurricanes and the effects of climate change, which have generated dramatic
shifts in the community structure and composition (Glynn, 1984; Hoegh-Guldberg, 1999;
Gardner et al., 2003; Bellwood et al., 2004; Carpenter et al., 2008; Obura & Grimsdith, 2009).
The environmental goods and services obtained from coral reef ecosystems (e.g., coastal
protection against hurricanes, food and income for local communities) are seriously
threatened (Moberg & Folke, 1999; Hoegh-Guldberg et al., 2007; Franklin et al., 2018). The
synergy of multiple stress factors has driven a phase shift that has altered the balance between
corals and algae, which is characterised by the loss of coral cover and a substantial increase
in macroalgae (Jackson et al., 2014). In addition, other shifts in the hierarchical dominance
of coral species have occurred in the Caribbean. The previously dominant reef-builders,
such as the branching species, Acropora cervicornis and A. palmata, or massive corals such
as the Orbicella complex, have been disproportionately susceptible to several disturbances
(e.g., bleaching events, disease outbreaks, among others) (Bruckner ¢ Bruckner, 2006; Weil,
Croquer & Urreiztieta, 2009), and opportunistic, small-sized coral species, such as Agaricia
agaricites and Porites astreoides, have increased in abundance, dominating the current coral
assemblages throughout the Caribbean (Alvarez-Filip et al., 2013; Estrada-Saldivar et al.,
2019).

Recently, new stress factors have appeared in the Caribbean region, including the
atypical massive arrival of Sargassum spp, observed over the last few years (Rioja-Nieto &
Alvarez Filip, 2018; Cabanillas-Terdn et al., 2019), and the emergence of a new coral disease
observed for the first time in Florida’s coral reefs (Florida Department of Environmental
Protection, 2019), locally known as “White syndrome” in the Mesoamerican Reef System
(MAR) (Sociedad Mexicana de Arrecifes Coralinos, 2015). White syndrome has expanded
rapidly, affecting a wide number of scleractinian corals species, among them important
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reef-building species (e.g., Orbicella sp, Colpophyllia natans, Pseudodiploria sp, among
others). The rapid expansion of this disease threatens the marine biodiversity and socio-
economic activities of the region (Precht et al., 2016; Van Woesik ¢ Randall, 2017; Healthy
reefs, 2019) and could lead to new shifts in the condition and structure of coral assemblages.
Conservation strategies are critical to maintain the health and environmental services of
coral reefs. These strategies depend heavily on the different methods employed to obtain
metrics which are used to assess the condition of the coral reef communities (Hughes et
al., 20105 Turner et al., 2015), and are collected as part of monitoring programs and local
action plans.

Most monitoring programs have focused on the trajectory of coral cover loss (Jackson,
1997; Gardner et al., 2003), on the partial or total mortality of key coral species (Aronson ¢
Precht, 2001), or on the coral-macroalgae balance (Knowlton, 2001; Kramer, 2003). In the
majority of these studies, coral cover is the most used metric to assess coral communities and
determine the health of a reef (Gardner et al., 2003; Hodgson et al., 2006; Hill ¢ Wilkinson,
2004). However, coral cover by itself, does not provide information on other important
aspects of the community structure and dynamics, or the ecological mechanisms that lead
to changes in the coral assemblages (Smith et al., 2005; Grimsditch et al., 2017). Several
studies have highlighted the ecological value of complementary metrics to coral cover,
such as colony size and their size frequency distribution, to evaluate the condition of
the coral communities and reef health (Meesters et al., 2001; Harris et al., 2014; Mumby
& Harborne, 2010). In corals, life-history processes, such as reproduction and mortality,
are related to size (Meesters et al., 2001) and seem to be affected by subtle environmental
changes. Consequently, the size structure of corals is an important driver of the population
dynamics (Bak ¢ Meesters, 1998). Size-frequency distributions can help to understand the
responses of the population to conditions of local stress or larger scale environmental
changes (Hughes & Jackson, 1980; Hughes, 1984). Furthermore, size-frequency data make
it possible to analyse ecological processes such as recruitment, fecundity and mortality, in
retrospect as well as the potential community responses to disturbances (Meesters et al.,
2001; Vermeij ¢ Bak, 2003; Adjeroud, Penin ¢ Carroll, 2007; McClanahan, Ateweberhan &
Omukoto, 2008; Gilmour et al., 2013; Turner et al., 2015; Grimsditch et al., 2017).

The conventional methods for recording coral cover are based on collecting the
information directly in situ, using line transect replicas (Loya, 1972; Porter, 1972; English,
Wilkinson ¢ Baker, 1997; Hill & Wilkinson, 2004). Along each transect, systematically
distributed points are used to record and count each colony of the coral species and the
data are subsequently transformed to obtain cover percentages (e.g., Lang et al., 2010).
The standard method to assess size-frequency distributions, is to measure each colony in
situ with a ruler or a measuring tape (Burgess et al., 2010; Victor et al., 2009; Richardson &
Voss, 20055 Smith et al., 2005). Recently, underwater digital photogrammetric techniques
and Structure-from-Motion (SfM) algorithms (Longuet-Higgins, 1981; Smith, Carrivick
& Quincey, 2015; Carravick, Smith ¢ Quincey, 2016), have been increasingly used for the
assessment of coral reef communities across several spatial and temporal scales (Burns et
al., 2015a; Burns et al., 2016; Edwards et al., 2017; Rossi et al., 2019). These techniques allow
the construction of accurate two (2D) and/or three-dimensional (3D) ortho-mosaics at a
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very high spatial resolution (few centimetres), which make it possible to characterise the
structure of the coral community at scales as small as the size of a coral polyp (Burns et al.,
2015a; Burns et al., 2015b; Royer et al., 2018).

In this study we used underwater digital photogrammetry, SfM algorithms and spatial
analysis, henceforth referred to as photogrammetry techniques, to assess the live coral
cover (m?) and to describe the size-frequency distribution of the coral species of six
assemblages in shallow reefs of the Cozumel Reefs National Park (CRNP). These reefs are
distributed along a north to south gradient of decreasing urban growth and increasing
reef development. In addition, we explored the size of the minimum sampling area (m?)
required to obtain a representative sample of the local species pool (maximum species
richness in a minimum area). Cozumel’s reefs are some of the most important reef systems
in the Mexican Caribbean and are among the healthiest of the MAR (McField et al., 2018).
Our results could provide support to the current monitoring programs in the Mexican
Caribbean (and elsewhere in the region) and establish a baseline for long-term surveys
based on digital photogrammetry, facilitating the ongoing assessment of local and regional
coral reef condition.

MATERIALS & METHODS

Study area

The Cozumel Reefs National Park (CRNP) is administered by the National Commission of
Natural Protected Areas (CONANP), which is the main government institution responsible
for the management and conservation of protected areas in Mexico. With an extension of
c.a. 12,000 ha, most reefs are located around the south east, south and south west coast
of Cozumel Island, in the Mexican Caribbean (Fig. 1). The fringing reefs follow a marked
north-south gradient of increasing reef structural complexity and habitat diversity, where
larger massive coral structures, mainly of the Orbicella complex, can rise several metres
above the seafloor (Fenner, 1988; Muckelbauer, 1990; Jorddn, 1988; Jorddn-Dahlgren ¢
Rodriguez-Martinez, 2003; Rioja-Nieto, Chiappa-Carrara & Sheppard, 2012). The seascape
consists of a mixture of sandy beds, fringing reefs, patch reefs, coral colonies on hard
substrate, seagrasses and macroalgae (Rioja-Nieto & Sheppard, 2008). The reefs of the
CRNP are considered to have the highest coral cover of all the reefs of the MAR (McField
et al., 2018). Urban development is concentrated in San Miguel town (Fig. 1), and a few
hotels and beach clubs distributed along the southwest of the island. The main economic
activities are mostly related to tourism. Local authorities reported that in 2017 c.a. 5 million
tourists visited the island, making Cozumel one the most visited islands in the Caribbean
(Cruz-Vizquez, Rioja-Nieto ¢ Enriquez, 2019). Cozumel is considered one of the best areas
for SCUBA diving, and the marine protected area is heavily visited by people who engage
in a variety of recreational activities (Rioja-Nieto ¢ Alvarez Filip, 2018).

Data collection and construction of ortho-mosaics

Between February and March 2018, six reefs distributed across the western area of the CRNP
were visited: Paraiso (PA), Chankanaab (CH), Yucab (YU), Cardona (CA), Francesa (FR)
and Colombia (CO) (Fig. 1). The reefs are distributed c.a. 30 kms along the southwest
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Figure 1 Study area. Cozumel Reefs National Park (CRNP). Reefs sampled from north to south were:
Paraiso (PA), Chankanaab (CH), Yucab (YU), Cardona (CA), Francesa (FR) and Colombia (CO).
Full-size Gal DOI: 10.7717/peerj.8957/fig-1

coast of the protected area and were chosen considering their location and their relative

proximity to the main urban area (San Miguel Cozumel town). The reefs closest to the town
were Paraiso and Chankanaab, while the reefs furthest from the town were Francesa and

Colombia. The reefs selected in the central region of the study area were Yucab and Cardona.
The sites selected for this study corresponded to the shallow reef front habitat, whose average
depth varies from 7.3 m (Cardona and Paraiso) to 14.1 m (Yucab). For each site, transects
(n=3) of 30 m in length separated by 20 to 30 m, were placed parallel to the coast following
the reef’s development. Along each transect, marks made of polyvinyl (0.6 x 0.6 m), four at
the corners and one at the centre of the transect, were placed to delineate a rectangular plot
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c.a. five m wide (at least 150 m?). The plot was divided at the middle mark and photographed
by two divers (each focusing on one half of the plot), swimming in a gridded pattern at
a constant speed of c.a. 5 m/min. Photographs were taken two metres above the average
depth of the reef bottom (Edwards et al., 2017). The depth at the beginning and at the end
of each transect was recorded using a standard dive computer. To obtain the photographs,
two Canon G12 10-megapixel cameras (Canon WP-DC34) in waterproof housing were
used. The settings used were: 4:3 frame size, at a 28 mm default focal length. We set
the camera options to self-timer to automatically shoot ten times continuously (1 fps),
before taking a new series of images. This ensured a high overlap (>80%) across and along
images, which is necessary to construct ortho-mosaics via StM algorithms (Pix4D, 2019b.
https://support.pix4d.com/hc/en-us/sections/200591059-Manual). Pix4Dmapper (4.3.x)
software was used to process images and to construct ortho-mosaics from photographs.
This software follows three basic steps: (1) initial processing (internal/external camera
orientation and sparse cloud creation), (2) point cloud and mesh generation, and (3)
Digital Surface Model (DSM) and ortho-mosaic construction. Considering that the
images obtained have no geolocation, and it is difficult to obtain accurate ground control
points underwater, the marks (or quadrants of 0.60 x 0.60 m) were used as a contrast
measurement of length to transform the model to absolute measurements (Pix4D, 2019a.
https://support.pix4d.com/hc/en-us/articles/205360375- How- to-scale-a-project). The
precision of the ortho-mosaic constructed was between 0.0015 and 0.0067 m of the
computed length error. Ortho-mosaics were exported to ArcGIS 10.6 (Environmental
Systems Research Institute ESRI, 2017) for analysis. The sections for each plot were joined
along the central mark, using the spatial adjustment extension. This resulted in one
ortho-mosaic for each plot (total n =3 plots per reef). A great effort was made to maintain
the width of the plots. However, this varied due to local current conditions and the lack of a
visual reference to delimit the sides of the plots. CONANP, Direccién del Parque Nacional
“Arrecifes de Cozumel” provided permits (F00.9/DPNAC/360/18) for this study.

Data analysis

Shapefiles associated with each of the ortho-mosaics were constructed by digitising the
area covered with live coral tissue of all the colonies recorded > 3 cm?. Data matrices were
generated from the identification of species to obtain the colonies’ abundance, species
richness (S) and cover (cm?) of each site. The species were identified following the criteria
of the AGRRA protocol (Lang et al., 2010; Kramer, 2003) and the Human ¢ Deloach (2002)
keys. In accordance with Loya (1972), a coral colony was considered as a set of polyps
interconnected by live tissue, detached and growing regardless of neighbouring colonies.
When coral colonies presented portions clearly separated without live tissue and/or the
calcareous skeleton was visibly eroded or overgrown by another benthic group (e.g.,
macroalgae), every living portion was considered as an independent colony. In the cases
where corals showed growth in patches or large clumps (e.g., Porites porites and/or Agaricia
tenuifolia), extreme care was taken to digitise the living tissue, avoiding the dead areas of
the colony in order to consider these clumps as one single colony.
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To assess whether the areas sampled at each reef were large enough to register a
representative local species pool, accumulation curves were estimated (Moreno & Halffter,
2000; Moreno & Halffter, 2001; Ma, Tarmi & Helenius, 2002; Chittaro et al., 2010). For
each plot, the number of colonies per cell on a 1 x 1 m mesh was obtained by using
scripts written in Matlab and an envelope procedure known as Convex Hull (Jarvis’s
or Wrapping Algorithm, see Graham, 1972; Andrew, 1979; Kirkpatrick & Seidel, 1986).
Community matrices of species richness and abundance were then constructed. Estimate$S
V9.10 (Colwell, 2013), was used to generate species accumulation curves and to obtain the
corresponding Shannon diversity values (H'), based on 100 randomised iterations without
replacement (Gotelli ¢ Colwell, 2011; Gotelli ¢ Chao, 2013). The curves were subjected to
increases of 25 m? (up to the maximum area sampled in each site), using a non-parametric
Bootstrap procedure. A Bootstrap estimator was chosen as it proved to be the most precise
of the seven estimators given by default in the Estimate software during previous tests. The
Bootstrap estimator was the least biased (low mean error -ME-), with the highest precision
(low variance -VAR-) and accuracy (low mean standard error -MSE-). The performance
of the estimators was evaluated following the criteria of Hellmann ¢ Fowler (1999) and
Walther ¢ Moore (2005). A Chi-Square goodness-of-fit test (x2, p = 0.05) was used to
compare the observed richness against the richness estimated by Bootstrap for each reef.
Spearman’s rank coefficients (r;), were calculated to correlate (p =0.05) the sampling
effort (area in m?) and diversity values.

To model the relationship between the sampling effort and the number of species
observed, the data were fitted to the asymptotic Clench model (Jiménez-Valverde ¢» Hortal,
2003; Gomez-Anaya et al., 2014). The model equation used to estimate the number of
predicted coral species for each reef was: S(x) = ax/(1+ bx), where x is a measure of
sampling effort, S(x) is the predicted number of species at effort x, a represents the rate
of increase at the beginning of sampling, b is a parameter related to the form of the
accumulation curve and a/b is the asymptote. To fit the model, the mean number of
species per sample was used from community matrices (Colwell, 2013). The model fit
was obtained using the non-linear estimation module in STATISTICA V10 (StatSoft,
2011), applying the Simplex and Quasi-Newton methods for parameter estimation. The
theoretical effort required (nq) for each inventory was then calculated with the equation:
nq=q/[b-(1—¢q)], where q is the relative proportion of the list of species to be detected
(Jiménez-Valverde & Hortal, 2003). The first approach to the curve asymptote or the total
number of species predicted (calculated as a/b) and the coefficient of determination (R?),
which is a descriptive measure of the proportion of explained variance, were also obtained
for each reef.

The distribution of the abundance of colonies and live coral cover (m?) per reef was
analysed and statistically compared by means of similarity analyses (One-way ANOSIM,
9999 permutations, p = 0.05). For both parameters, similarity matrices based on the
Bray-Curtis coefficient were generated and transformed with the square root (Clarke
& Warwick, 1994). Subsequently, the size-frequency percentages (%) of each reef were
distributed in 12 size-classes with ranges of 200 cm?. The largest size class corresponded
to colonies >3,800 cm?. Non-parametric Mann—Whitney U test analyses (p = 0.05, 95%
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of confidence, STATISTICA V10, StatSoft, 2011) were performed to compare the size-
frequency distributions between reefs. The data were logarithmically transformed prior to
analysis.

SIMPER analyses (Clarke ¢ Warwick, 1994) were performed to identify the coral species
that together contributed 90% of the abundance and total live coral cover. A group of twelve
species was identified, which in combination formed the dominant species assemblages of
each reef. The analyses were performed in PRIMER 6.1.13 and PERMANOVA+ (Clarke
& Gorley, 2006). The size-frequencies of the dominant species were subsequently plotted
in 12 size classes (cm2) (see Fig. S1 for the size-class ranges for each species). Colony size
data were logarithmically transformed, analysed graphically and compared statistically.
In accordance with Bak ¢» Meesters (1997) and Bak ¢» Meesters (1998), the logarithmic
transformation of coral-size data produces a clear representation of population structure
in scleractinian corals. Size distributions of transformed data have a better resolution
and reflect an approximate size-frequency distribution more closely than distributions of
non-transformed data. Size-distributions were statistically contrasted via one-way non-
parametric Kruskal-Wallis analyses (H test, p=10.05, 95% of confidence) and subsequently
significant differences in the size frequency distribution between reefs were obtained from
post-hoc tests based on pairwise comparisons using Mann—Whitney (p = 0.05, 95% of
confidence). A set of parameters related to the shape of the size-frequency distributions
was analysed. Mainly the Skewness (g1) and the Kurtosis (g2), among other distribution
parameters (such as, maximum size, 95th percentile and central tendency measures), were
explored to describe the colony-size distributions of the dominant species population
(Sokal & Rohlf, 1995; Zar, 1999).

RESULTS

There were no significant differences (X? test, p > 0.05) between the observed and estimated
species obtained from the Bootstrap estimator (Figs. 2A, 2C, 2E, 2G, 21 and 2K). The
diversity (H' index values) (Figs. 2B, 2D, 2F, 2H, 2] and 2L), was also positively correlated
to the increase in the area sampled (Spearman coefficient, r; > 85%, p < 0.05). Both the
curves of richness and diversity values increased rapidly from 25 to 150 m?. In all cases,
the asymptotic phases began c.a. 300 m?, until stabilizing almost entirely around 400 m?
(Fig. 2). The only exception was Cardona (Fig. 2G), where the curve began to stabilize
after 450 m?2, which seems to be related to the presence of a few rare species, such as
Scolymia sp., which was only observed in this reef and A. palmata, which was only recorded
in Cardona and Colombia. The maximum value of diversity varied from 1.83 (£0.03)
to 2.2 (£0.04), between Chankanaab and Colombia, respectively (Table 1). The values
of the determination coefficients (R? close to 1) and the high predicted species richness
(R >90%) indicate a good model fit, which suggests that sampling an area of 300-400 m?
is sufficient to obtain a representative and highly reliable record of coral species richness
(Table 1). The number of predicted species (a/b) was very close to the total species richness
observed at each reef (with a difference of less than one species). Using photogrammetry
techniques, an average area of 374 m? (standard deviation SD = 48.1 m?) is necessary to
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Table 1 Values obtained from the species accumulation curves according to Clench’s function.

Reef Sobs H' a b R? R (%) (a/b) (nq)
Paraiso 22 1.87 0.7056 0.0290 0. 994 98.8 22.8 309
Chankanaab 20 1.83 0.3980 0.0181 0.992 98.4 21.9 495
Yucab 25 2.10 0.8092 0.0249 0.995 99.1 25.9 361
Cardona 24 1.93 0.6113 0.0248 0.974 94.9 24.6 362
Francesa 21 2.10 1.1001 0.0300 0.995 99.1 21.6 299
Colombia 27 2.20 0.9639 0.0351 0.983 96.6 27.3 256
Notes.

Site sampled (Reef), species observed (Sobs), diversity values (H'), a and b values, determination coefficient (R?), explained
model variance R (%), number of predicted species (a/b), and the theoretical sampling (19) to capture 90% of the predicted
species richness. The theoretical effort (ng), was calculated according to the equation: ng = q/[b(1 — q)], where q = the relative
proportion of the list of species to be detected (Jiménez-Valverde ¢ Hortal, 2003).

)
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Figure 3 (A) Mean colony abundance and (B) Mean live coral cover. One-way similarity analyses
(ANOSIM, 9999 permutations, P value = 0.05). Bars represent the Standard Error (£SE). The significant
differences between reefs are indicated on the upper left side (p < 0.05). Paraiso (PA), Chankanaab (CH),
Yucab (YU), Cardona (CA), Francesa (FR) and Colombia (CO).

Full-size Gal DOI: 10.7717/peerj.8957/fig-3

Mean abundance coloni

2
Mean live cc

record 90% of the coral species in the shallow reefs of Cozumel. This is also supported
by the accumulation curves of richness and diversity (Figs. 2B, 2D, 2F, 2H, 2] and 2L). In
general, the area recommended to record a high percentage of species (e.g., ng = 90%),
proved to be less than the total area sampled in the surveyed reefs.

Coral assemblages
A total of 3,775 m? (0.38 ha) of reef development was characterised from ortho-mosaics, of
which 260 m? (or 6.8% of the total sampled area) was covered by live coral. The precision
of the obtained ortho-mosaics was between 0.0015 and 0.0066 m of the computed length
error. In total, 18,661 colonies and 32 species of scleractinian corals were recorded (Table 2).
The sampling area for each reef ranged from c.a. 550 m? at Chankanaab and Cardona to
825 m? at Colombia reef. The lowest species richness (20) was observed at Chankannab
and the highest (27) at Colombia. Colombia also showed the highest abundance of colonies
and live coral cover (p < 0.05). Chankanaab had the lowest abundance of all the sampled
sites (Fig. 3A, p < 0.05). The lowest live coral cover was observed at Paraiso, Chankanaab
and Cardona (Fig. 3B, p < 0.05). In general, a significant increase (p < 0.05) in the number
of coral colonies and live coral cover is observed from north to south of the study area.
The size-frequency distribution (Figs. 4A—4F) showed that >80% of the colonies in all
reefs were distributed in small size-classes (<200—400 cm?). Significant differences in size
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Table 2 List of coral species recorded on six reefs of the CRNP. List of coral species recorded on six reefs of the CRNP. Sampling area (m?),
Species richness (S), Colonies abundance (1), Standardised live coral cover (% of total area). The code used is in accordance with the AGGRA
protocol (see https://www.agrra.org/training-tools/coral- training/).

Paraiso Chankanaab Yucab Cardona Francesa Colombia
Sampling area (m?) 575 550 625 550 650 825
Species richness (S) 22 20 25 24 21 27
Colonies abundance (1) 2,572 1,390 1,620 2,867 3,446 6,766
Standardised live coral cover 2.9 2.5 3.8 5.4 5.7 17.2
(% of total area)
Spp name/code n m? n m? n m? n m? n m? n m?
Agaricia agaricites AAGA 635 3.14 428 4.53 280 2.92 1,422 9.69 1,218 7.56 1,702 14.6
Agaricia fragilis AFRA 1 0.0024 14 0.15 7 0.07 25 0.13
Agaricia humilis AHUM 168 0.62 11 0.11 13 0.08 55 0.2 96 0.52 96 0.65
Agaricia lamarcki ALAM 6 0.02 13 0.21
Acropora palmata APAL 1 0.0021 1 0.01
Agaricia tenuifoila ATEN 12 0.23 6 0.34 20 0.37 21 1.24 191 3.35 877 50.88
Colpophyllia natans CNAT 1 0.08 3 0.05
Dendrogyra cylindrus DCYL 8 0.44
Diploria labyrinthiformis 21 0.25 6 0.17 2 0.07 8 0.18 5 0.04 9 0.2
DLAB
Dichocoenia stokesii DSTO 3 0.01 2 0.01 3 0.03
Eusmilia fastigiata EFAS 63 0.26 97 0.35 58 0.27 99 0.59 255 1.28 98 0.38
Favia fragum FFRA 12 0.01 3 0.0048 4 0.0042 42 0.04 30 0.03 26 0.04
Isophyllia rigida IRIG 9 0.09 1 0.01 4 0.06 5 0.08
Mancina areolata MARE 8 0.03 1 0.0035
Montastraea cavernosa 80 1.23 77 1.57 104 1.94 104 2.64 58 1.36 127 3.57
MCAV
Madracis decactis MDEC 2 0.0041 1 0.0034 13 0.07 12 0.04 12 0.07 43 0.17
Meandrina jacksoni MJAC 2 0.08 2 0.02
Meandrina meandrites 16 0.31 8 0.17 14 0.4 2 0.04 7 0.05 6 0.07
MMEA
Mycetophyllia sp MYCE 4 0.01 2 0.02 6 0.05
Orbicella annularis OANN 47 0.28 31 0.45 28 0.59 195 3.5 215 3.65 716 13.9
Orbicella faveolata OFAV 8 0.21 11 0.18 2 0.27 12 1.34 9 0.63 66 4.25
Orbicella franksi OFRA 4 0.08 1 0.0031 1 0.02 1 0.03 15 0.76
Porites astreoides PAST 713 2.66 245 1.81 317 2.35 295 2.21 102 0.53 1,090 10.47
Pseudodiploria clivosa PCLI 3 0.11 9 0.37 5 0.04 7 0.05
Porites furcata PFUR 12 0.24 9 0.03 41 0.51 68 1.12
Porites porites PPOR 18 0.07 6 0.05 436 9.21 233 2.18 794 13.37 1430 33.31
Pseudodiploria strigosa PSTR 26 0.83 4 0.22 15 0.61 16 0.43 17 0.38 25 0.43
Solenastrea bournoni SBOU 5 0.0047 2 0.05
Scolymia sp SCOL 1 0.00025
Isophyllia sinuosa SINT 1 0.01 1 0.13
Siderastrea radians SRAD 72 0.31 136 0.48 54 0.17 34 0.12 122 0.39 81 0.51
Siderastrea siderea SSID 655 5.63 309 4.07 208 2.77 295 4.43 258 2.48 222 3.96
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Figure 4 Coral colony size frequency distribution (%) by reef (A-F). Significant differences were found
between Chankanaab (B) and Colombia (F) (W = 87.0, p < 0.05) and between Yucab (C) and Colombia
(F) (W = 8.15, p < 0.05).
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distribution were observed between Colombia and Chankannab (W = 87.0, p < 0.05),
and Yucab (W =8.15, p < 0.05). A group of twelve species proved to be dominant in
terms of abundance (Figs. 5A, 5C, 5E, 5G, 51 and 5K) and live coral cover (Figs. 5B,
5D, 5F, 5H, 5] and 5L). In alphabetical order these were: Agaricia agarites, A humilis,

A. tenuifolia, Eusmilia fastigiata, Meandrina meandrites, Montastrea cavernosa, Orbicella
annularis, Porites astreoides, P. porites, Pseudodiploria strigosa, Siderastrea radians and

S. siderea. The largest contributions, in terms of abundance, corresponded to sub-massive
species, with small and medium sizes, such as A. agaricites, P. astreoides and S. siderea.
In terms of coral cover the greatest contributors were A. tenuifolia and P. porites, whose
foliose and digitiform morphologies tend to form large colony clumps. This dominant
coral group represented 34% of the total species richness recorded. A. agaricites, was the
only species within this group that contributed to both abundance and coral cover at all
reefs. S. siderastrea and P. astreoides contributed in terms of abundance at all reefs, but not
in terms of coral cover for Colombia and Francesa. M. meandrites and P. strigosa were only
present in the dominant group of live coral cover at Paraiso. O. annularis, an important
reef-building coral species for Caribbean reefs, was only present in the dominant species
group in terms of abundance and/or coral cover at Cardona, Francesa and Colombia.
Species considered as important reef-building corals (e.g., O. faveolata or A. palmata), in
general showed very low contributions (<5%).

The number of colonies recorded by species and size-frequency distribution (non-
transformed size data) in twelve independent size-classes for each species are shown in
Fig. S1. A wide intraspecific variation between reefs was observed. In general, the colonies
were concentrated in the smallest size-classes and declined markedly towards the largest
size-classes. Abundant living colonies >3 cm? (viable fragments or small recruits) were
recorded for several species such as, A. tenuifolia, E. fastigiata, P. porites, S radians and S.
siderea. The largest colonies recorded corresponded to P. strigosa (2,135 cm?), M. cavernosa
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Figure 5 SIMPER analysis. Dominant species assemblages that contributed with 90% of the abundance
of colonies (A-K) and live coral cover (m?) (B-L) of each reef. Agaricia agaricites (AAGA), A. humilis
(AHUM), A. tenuifolia (ATEN), Eusmilia fastigiata (EFAS), Montastrea cavernosa (MCAV), Meandrina
meandrites (MMEA), Orbicella annularis (OANN), Porites astreoides (PAST), P. porites (PPOR), Pseu-
dodiploria strigosa (PSTR), Siderastrea radians (SRAD) and S. siderea (SSID).
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(3,176 cm?), O. annularis (4,670 cm?), P. astreoides (8,478 m?), P. porites (14,378 cm?) and
A. tenuifolia (17,106 cm?) (see Table S1).

The 95th-percentile size was used as a distribution parameter to determine the maximum
colony size of the coral population (see Soong, 1993; Meesters et al., 2001). In this study,
the colony size at the 95th-percentile varied considerably for the same species between
sites, even for adjacent reefs (Table S1). For example, in the case of A. agaricites, the
maximum colony size at the 95th percentile was twice as large at Chankanaab as in Paraiso
(326.2 cm? and 141.5 cm?, respectively). For other species, such as A. tenuifolia, the
maximum colony size at the 95th percentile varied up to an order of magnitude, with
393.9 cm? at Yucab and almost 3,000 cm? at Colombia (see Table S1). The size data were
logarithmically transformed (Soong, 1993; Bak ¢» Meesters, 1997; Bak ¢ Meesters, 1998),
analysed graphically and compared statistically. The distribution of the size-frequency
of the dominant species is shown in Figs. 6A—6M, and the probability of the data being
normally distributed (Kolmogorov—Smirnov normal test using -KS-, p =0.05), is shown
in Table S1. The frequency distribution parameters indicated that the size-distribution of
the species was not symmetrical around the mean. The species of the dominant group,
A. humilis, E. fastigiata, P. astreoides, P. strigosa and S. radians showed mainly a negative
skewness for most reefs. Those that presented mainly positive skewness were A. tenuifolia,
O. annularis, P. porites and S. siderea. Others, such as E. fastigiata, P strigosa, S. radians,
and M. meandrites presented distributions with skewness that were highly variable between
reefs (Figs. 6A—6M and Table S1). A unidirectional tendency to shift from negative to
positive skewness from north to south across the study area was observed for P. astreoides.
Predominantly negative or platykurtic kurtosis was observed in the size-distributions of A.
agaricites, E. fastigiata, M. cavernosa and P. strigosa across all reefs (Table S1). The colonies’
size range (Figs. 6N—6Y) increased in a north-south direction (p < 0.05) for A. agaricites,
A. humunis, A. tenuifolia, O. annularis, P. astreoides and P. porites (Figs. 6N, 60, 6P, 6T, 6U
and 6V, respectively). Significant differences (H test, p < 0.05) were also observed in M.
meandrites, E. fastigiata, and S. radians. However, these species showed no size distribution
pattern on a latitudinal gradient. M. cavernosa, P. strigosa and S. siderea did not present
significant differences between reefs. These species were more homogenously distributed
among reefs in terms of the median size range (Figs. 6R, 6X and 6Y, respectively).

DISCUSSION

The colony coral cover (m?) and the structure and pattern of the corals’ size-frequency
distribution revealed important characteristics of the structure and composition of the
coral assemblages in the shallow reefs of Cozumel. The live coral cover (m?) quantified
from using underwater photogrammetry techniques, resulted in lower percentages when
compared to those estimated by the most used conventional methods of observation in
situ in the Caribbean region. Twelve coral species were significantly dominant in terms of
abundance and live cover (in alphabetical order): Agaricia agarites, A humilis, A. tenuifolia,
E. fastigiata, M. meandrites, M.cavernosa, O. annularis, P. astreoides, P. porites, P. strigosa,
S. radians and S. siderea. Both the abundance and live coral cover increased along a
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Figure 6 Frequency-distribution. Log size-frequency distribution of the twelve dominant species (A—
M) and intraspecific contrast between of the colonies-size distribution by reefs (N-Y). Different letters
indicate significant differences (Kruskal-Wallis H test, p = 0.05, 95% confidence). Sites: Paraiso (PA),
Chankanaab (CH), Yucab (YU), Cardona (CA), Francesa (FR) and Colombia (CO). The size classes (1—
12), correspond to the class ranges of Fig. S1. Agaricia agaricites (AAGA), A. humilis (AHUM), A. tenuifo-
lia (ATEN), Eusmilia fastigiata (EFAS), Montastrea cavernosa (MCAV), Meandrina meandrites (MMEA),
Orbicella annularis (OANN), Porites astreoides (PAST), P. porites (PPOR), Pseudodiploria strigosa (PSTR),
Siderastrea radians (SRAD) and S. siderea (SSID).
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north-south gradient for some species. Species with the highest number of colonies do not
always contribute the largest live coral cover. For example, A. tenuifolia was not among
the most abundant species on the reefs located to the north of the study area. However,
this species was dominant on the reefs located in the south of the protected area, with the
highest abundance in Francesa, and highest coral cover in Colombia. In Colombia reef,
A. tenuifolia and P. porites were also determinant in the significant differences observed in
live coral, with low abundance but high cover. Unlike other coral reefs, at Colombia, large
colonies of these species were recorded forming extensive clumps. For most colonies, the
size-frequency of the species ranged from > 3 to around 400 cm?, corresponding to the
first size-class respectively for each dominant species. A minimum sampling area of c.a.
380 m? is suggested in order to facilitate the use of digital photogrammetry techniques to
characterise coral reefs in the Caribbean.

Underwater digital photogrammetry techniques, have recently been applied to map and
assess several attributes of coral assemblages, such as cover, condition, growth and structure
(Lirman et al., 2007; Westoby et al., 2012; Gintert et al., 2012; Burns et al., 2015b; Edwards
et al., 2017; Gonzdlez-Rivero et al., 2017; Gintert et al., 2018). Here, the high resolution of
the obtained ortho-mosaics allowed a high number of colonies to be quantified, and the
real area covered by live coral in colonies from 3 cm? to be estimated. The coral reefs of
the CRNP have been well characterised and monitored since the early 1990’s (e.g., Jordin,
1988; Fenner, 1988; Fenner, 1991; Fenner, 1999; Alvarez-Filip et al., 2009; Alvarez-Filip et al.,
2011; Reyes-Bonilla, Millet-Encalada & Alvarez Filip, 2014; McField et al., 2018). The species
richness recorded, corresponded to >80% (32) of the species previously reported. When
comparing the percentage of live coral cover estimated in this study to recent assessments in
the CRNP (see Reyes-Bonilla, Millet-Encalada & Alvarez Filip, 2014; Barranco et al., 2016;
Loreto-Viruel et al., 2017; McField et al., 2018), the results were considerably lower. Coral
cover ranged between 2.5 and 17.2%, with a mean live cover of 6.2% (£+SE = 1.8), where
previous studies establish a coral cover between 11 and 25% (average 20%). Considering
that no major disturbances (e.g., hurricanes, disease) were observed during sample times
and that the characterised reefs are the same used in previous studies, the difference in coral
cover seems to be related to the sampling method used. Registering information in situ is
possibly the most widely used technique to monitor reefs in the Mexican Caribbean (e.g.,
AGRRA protocol, Healthy Reefs Initiative -HRI, Lang et al., 2010; McField et al., 2018). In
comparison, the high-resolution of the ortho-mosaics, allows a more precise quantification
of the area covered by living coral tissue (cm?). Although substantial post-processing time
was required for the analysis of each colony, the live tissue can be estimated from colonies
of a few centimetres in size (e.g., fragmented colonies or small recruits) to large adult
colonies, thus encompassing a wide range of spatial scales (e.g., a few centimetres to tens or
hundreds of metres). The difference observed between the coral cover reported in previous
studies from in situ estimates (mentioned above), against those obtained here, may suggest
an overestimation by the traditional methods. However, it is not easy to determine whether
one method or the other results in an underestimation or overestimation of coral cover.
This needs to be carefully evaluated through the contrast of cover data acquired from the
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most commonly used evaluation methods (e.g., transect line), against those obtained by
digital photogrammetry, which until now has not been explored.

Locally the species richness and diversity values obtained were representative of each
reef studied. This was supported by the observed and estimated species richness obtained
via the Bootstrap procedure for each reef. The Bootstrap curves did not differ significantly
(X3, p > 0.05) and showed strong and positive correlations (Spearman r;) between the
diversity (H' > 1.80) and increase in sampling area. The data fit to the Clench model and
the subsequent estimated theoretical effort required (nq), suggested that an average area of
c.a 380 m? is appropriate to record at least 90% of the local coral species pool in the shallow
reefs of Cozumel, using underwater digital photogrammetry. The area sampled at each reef
was larger than the average suggested. Therefore, the observations are reliable to assess the
species richness, live coral cover and the colony size structure of the coral assemblages of
the shallow reefs in the CRNP. Considering that in recent years, the use of photogrammetry
techniques (from digital photography and video) in underwater monitoring has increased,
the estimation of an average sampling area to record a representative sample of the local
coral richness, is relevant. This should help to improve the efficiency of future ecological
sampling (e.g., significantly reduce work in the field, permit more sites to be surveyed, save
time collecting data, reduce bottom-time underwater, save money, among others) (Lirman
et al., 2007; Burns et al., 2015a; Burns et al., 2015b). The average minimum sampled area
(m?) estimated in this study, could be applied to reefs of similar characteristics in the
Caribbean, for example in terms of the depth range and reef-development.

A complementary monitoring program based on digital photogrammetry could allow
changes in live coral cover area, colony growth, mortality, and recruitment of coral
species and other important benthic groups to be described at a resolution of centimetres
over extensive areas. In this study, the assessments were performed on six shallow reefs
at different depths (between 6 and 14 m). Fringing shallow reefs border most of the
continental and insular shores of the Mexican Caribbean and are common in other
areas of the Caribbean Sea (Jorddn-Dahlgren ¢ Rodriguez-Martinez, 2003). Therefore, our
results could be considered as representative of fringing shallow reefs in the region. In
the CRNP, high species richness, a large number of colonies, and a wide range of coral
colony sizes were obtained using photogrammetry. These are key components for coral
populations demographic studies and the determination of general reef health (Meesters
et al., 2001; Lang et al., 2010; Mumby & Harborne, 2010; McField et al., 2018). The results
highlighted that the minimum and maximum size recorded for a single species varied
substantially even when the reefs were located next to one another. In general, the greatest
size-frequencies (>80%), were distributed among small size classes >3 to <400 cm?. Most
of the frequency distribution of the species between reefs had a positive skewness, which is
considered as proxy of greater abundance of young colonies and a constant input of coral
recruits (Bythell, Bythell ¢ Gladfelter, 1993; Soong, 1993; Lewis, 1997; Meesters et al., 2001;
Kenyon et al., 2006). The predominance of negative kurtosis or platykurtic (non-peaked
distribution) and wide standard deviations observed in the dominant species of this study,
are also indicative of a high variation in colony size and suggest stable coral populations
in demographic terms. In contrast, the shape of the size-distributions of a similar group

Hernandez-Landa et al. (2020), PeerJ, DOI 10.7717/peerj.8957 17/30


https://peerj.com
http://dx.doi.org/10.7717/peerj.8957

Peer

of species in degraded reefs, were negatively skewed, with extremely positive kurtosis,
suggesting limited recruitment and a low frequency of large adult colonies (see Meesters et
al., 2001).

Other parameters used to describe the size-frequency distribution, such as the mean
colony size, provide information about coral life-history strategies, such as growth
and reproduction (Soong ¢ Lang, 1992). The wide intraspecific variation between reefs
observed, was in accordance with other studies where variations in the mean size between
species and reef sites were up to an order of magnitude. The maximum colony size
(based on the 95th percentile), has been correlated with reproductive traits such as the
size at reproductive maturity of many conspicuous coral species of the Caribbean region
(Soong, 1993). Previous studies have demonstrated that different species reach maturity
at different sizes (Szmant-Froelich, Reutter & Riggs, 1985; Szmant, 1986; Rinkevich & Loya,
19865 Babcock, 1984; Babcock, 1991; Pareja-Ortega ¢ Quan-Young, 2016). In small species
such as S. radians, puberty starts c.a. 10 cm?, and in medium size species, such as M.
cavernosa, it starts at 20 cm? and for P. astreoides and S. siderea between 70—-100 cm?
(Soong, 1993; Meesters et al., 2001).

Here, the mean colony size of the species mentioned above comparatively exceeds the
estimated size of reproductive maturity, which suggests that populations are in a healthy
state of development. The reproductive strategies of corals and the habitat characteristics
with respect to colony size, are decisive in the structuring of coral populations (Szmant,
19865 Hall & Hughes, 1996). The reproductive stage of small and medium size species starts
early, they brood larvae and have relatively high rates of recruitment, whereas the large
species are reproductively mature much later. When large sizes are reached, then these
species release gametes during spawning events (Szmant, 1986; Richmond ¢» Hunter, 1990,
Hall ¢ Hughes, 1996). Likewise, colony mortality rates have been inversely related to colony
size (e.g., Hughes & Jackson, 1980; Hughes & Jackson, 1985; Hughes ¢» Connell, 1987). The
larger colonies are more susceptible to partial mortality than smaller colonies (Soong &
Lang, 1992; Soong, 1993; Meesters, Wesseling ¢~ Bak, 1997). High partial colony mortality of
large colonies has a negative effect on the larger size classes by decreasing their proportions
and simultaneously increasing the proportion of colonies in the medium-sized classes.
In addition, the fission or fragmentation of large colonies due to high physical stress can
substantially increase the number of colonies in small-sized classes (Hughes ¢ Jackson,
19805 Jaramillo-Gonzilez ¢ Acosta, 2009). The implications of these processes on the
demographic dynamics of coral populations have been difficult to determine and have not
yet been quantified in detail, primarily because of their complicated modular construction
and growth. The partial mortality, fission and colony fusion can confuse any simple
relationship between the size and age of the corals and mask the origin of individuals in
size distribution analysis (Hughes & Jackson, 1980).

The ecological features found in this study, that relate to the size-frequency distribution
of the dominant species of the shallow reefs in the CRNP, agree with the distributions
described above for small and medium species. Most of these species (e.g., A. agaricites,
P. astreoides, M. cavernosa, O. annularis and S. siderea) lead the current hierarchical shifts
in species dominance in the coral assemblages of the Caribbean reefs (Reyes-Bonilla,
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Millet-Encalada & Alvarez Filip, 2014; Barranco et al., 2016; Gonzdlez-Barrios & Alvarez-
Filip, 2018; Estrada-Saldivar et al., 2019), and are considered to have a limited capacity to
substantially contribute to the reef framework (Alvarez-Filip et al., 2011; Graham & Nash,
2013; Gonzidlez-Barrios ¢ Alvarez-Filip, 2018). Nevertheless, the population characteristics
of the dominant species in terms of their contribution to abundance, live coral cover
and size-frequency distributions, imply healthy, stable and potentially resilient coral
populations (Loya, 1976; Connell, 1978; Soong, 1993; Bak ¢ Meesters, 1998; Meesters et al.,
2001; Richardson & Voss, 2005; Grimsditch et al., 2017).

A wide intraspecific variation among reefs was identified in terms of the size-frequency
distribution. However, mean abundance and live coral cover and colony size distribution,
increased from north to south for most of the dominant species, which might be related
to anthropogenic disturbance. Numerous studies have documented the presence of fewer
colonies of small size classes in reefs closer to heavily urbanized coastal areas, with high levels
of pollution, sediment load and fishing pressure (Meesters et al., 2001; Vermeij ¢ Bak, 2003;
Adjeroud, Penin & Carroll, 2007; McClanahan, Ateweberhan & Omukoto, 2008; Crabee,
2009). Colonies of smaller species which grow faster and have shorter generation times,
apparently find relatively acceptable conditions for their development and persistence
in unstable environments (Meesters, Wesseling ¢ Bak, 1997). On the other hand, some
species, such as S. siderea and P. strigosa, and particularly M. cavernosa, showed similar
patterns of size-frequency distribution in all reefs. These species seem to be less sensitive
and /or better adapted than other species to local stress factors, which could be related to
the pressure level and proximity to urban development sources that potentially influence
the intraspecific variation observed (Rogers, 1990; Guzman ¢ Holst, 1993; Guzmdn, Burns
& Jackson, 19945 Meesters et al., 2001). These species could play an important role as wide
scale indicators in tracking changes in current coral communities.

CONCLUSIONS

The size frequency distribution of coral species has rarely been studied in the field due to
the underwater technical requirements and huge effort required to collect colony size data
in large areas. The ortho-mosaics obtained from photogrammetry provide repeatable, high
resolution measurements that can be used to track coral assemblages in the short term at
very fine (cm) scales. We conclude that new complementary tools and simple metrics need
to be included in current evaluation programs in order to detect short-term changes in coral
assemblages. The suggested average sampling area of c.a 380 m? can help in terms of logistic
resources in future evaluations of coral communities using photogrammetry techniques.
Likewise, it is suggested that this minimum sampling area is applicable to shallow reefs in
the Caribbean region with similar environmental characteristics (depth range and reef-
development). However, the minimum area suggested for shallows reefs must be flexible
when a deeper, speciose or complex reef is the target. The underwater photogrammetric
techniques applied here, revealed important features of the coral assemblages of the shallow
reefs in the CRNP. Small, non-reef-building coral species dominate and a wide range of
intraspecific variation between reefs with respect to the abundance, live coral and in
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particular the size-frequency distributions was observed. Local environmental factors seem
to act differentially from north to south of the study area, with respect to their proximity
to the main urban development. The shape and parameters of the frequency distributions
of most dominant species exhibited positive skewness and negative kurtosis, which in
addition to the coral cover and colony abundance suggest that the coral populations are
stable. However, the frequency of the colonies was mainly limited to small size classes
with few large colonies, and reef building species were very scarce. Potential changes in
the organization of current coral species can be expected in the short term, related to a
relatively new outbreak of a coral disease locally known as “White syndrome”. When this
study was carried out, coral diseases were not observed. In the CRNP, White syndrome
disease was reported for the first time late in the summer of the same year. This disease
has rapidly caused the death of a wide variety of coral species. It has been estimated that
main reef-building species have been affected (more than 20 coral species), with live coral
cover decreasing dramatically (up to c.a. 40% less live coral in some coastal reefs in the
Mexican Caribbean) (Technical report, Cozumel reefs situation, Parque Nacional Arrecifes
de Cozumel, CONANP, 2019). In order to obtain robust estimates of community change
in terms of live coral cover (m?) and size-structure over time, digital photogrammetry
techniques should be used as complementary tools to traditional methods.
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