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ABSTRACT
Comparing inferences among datasets generated using short read sequencing may
provide insight into the concerted impacts of divergence, gene flow and selection
across organisms, but comparisons are complicated by biases introduced during
dataset assembly. Sequence similarity thresholds allow the de novo assembly of short
reads into clusters of alleles representing different loci, but the resulting datasets are
sensitive to both the similarity threshold used and to the variation naturally present
in the organism under study. Thresholds that require high sequence similarity
among reads for assembly (stringent thresholds) as well as highly variable species
may result in datasets in which divergent alleles are lost or divided into separate
loci (‘over-splitting’), whereas liberal thresholds increase the risk of paralogous
loci being combined into a single locus (‘under-splitting’). Comparisons among
datasets or species are therefore potentially biased if different similarity thresholds
are applied or if the species differ in levels of within-lineage genetic variation. We
examine the impact of a range of similarity thresholds on assembly of empirical
short read datasets from populations of four different non-model bird lineages
(species or species pairs) with different levels of genetic divergence. We find that, in
all species, stringent similarity thresholds result in fewer alleles per locus than more
liberal thresholds, which appears to be the result of high levels of over-splitting.
The frequency of putative under-splitting, conversely, is low at all thresholds.
Inferred genetic distances between individuals, gene tree depths, and estimates of
the ancestral mutation-scaled effective population size (θ) differ depending upon the
similarity threshold applied. Relative differences in inferences across species differ
even when the same threshold is applied, but may be dramatically different when
datasets assembled under different thresholds are compared. These differences not
only complicate comparisons across species, but also preclude the application of
standard mutation rates for parameter calibration. We suggest some best practices
for assembling short read data to maximize comparability, such as using more liberal
thresholds and examining the impact of different thresholds on each dataset.
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INTRODUCTION
With the proliferation of population-level datasets obtained using massively parallel

sequencing technologies, there is increasing interest in studies that compare inferences

from genomic datasets obtained from different species (e.g., Leaché et al., 2013; Smith et al.,

2013) or from different genomic regions (e.g., Evans et al., 2014; Harvey et al., 2013; Leaché

et al., 2015). Assembly of short sequence reads into orthologous loci is a key component of

post-sequence processing, and commonly used methods can lead to biases in population

genetic parameter estimation (Ilut, Nydam & Hare, 2014). Here, we explore the effect of

one major source of bias on the comparability of datasets and inferences.

Sequence similarity provides the information necessary for assembling reads into

orthologous loci (Pop & Salzberg, 2008; Chaisson, Brinza & Pevzner, 2009). By setting

a sequence similarity threshold, researchers attempt to assemble similar, presumably

orthologous reads into loci while separating or removing dissimilar, presumably

non-orthologous reads (e.g., Etter et al., 2011; Catchen et al., 2011). Selecting the most

appropriate similarity threshold is challenging, primarily because the amount of genetic

(allelic) variation can vary greatly among orthologous loci within a species (Ilut, Nydam

& Hare, 2014). Because the amount of genetic variation also varies among species and

genomic regions, a particular similarity threshold may impact each dataset differently,

potentially influencing inferences in comparative studies.

Many methods default to a stringent similarity threshold, often requiring 98–99%

sequence similarity among reads for assembly (e.g., Catchen et al., 2011; Lu et al., 2013).

However, stringent similarity thresholds may split orthologous reads into multiple

loci if the reads come from alleles that are more different than the threshold permits

(hereafter “over-splitting”; Fig. 1A). More liberal similarity thresholds permit the assembly

of more dissimilar orthologous reads into loci, but are more susceptible to including

paralogous reads in the assembly (hereafter “under-splitting”; Fig. 1B). Using simulations,

Rubin, Ree & Moreau (2012) found that under-splitting was frequent at more liberal

similarity thresholds in phylogenetic datasets, but did not strongly bias inference. Catchen

et al. (2013) examined RAD-Seq data from three-spined sticklebacks, and found that

over-splitting was an issue when datasets were processed with similarity thresholds more

stringent than 96%. Ilut, Nydam & Hare (2014) tested the impact of similarity threshold

selection on both over- and under-splitting in three simulated and one empirical RAD-Seq

dataset. They found that under-splitting was minimal and that affected loci were easily

identified due to the presence of individuals with more alleles than expected given their

ploidy, but that over-splitting was significant at more stringent similarity thresholds.

Comparative phylogeographic and population genetics studies are particularly

susceptible to biases resulting from similarity thresholds, particularly over-splitting.

Different species often exhibit different levels of genetic diversity (Lewontin, 1974; Taberlet
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Figure 1 Two ways in which similarity thresholds can result in spurious assemblies. (A) over-splitting
occurs when reads from different alleles from the same genomic position are spuriously split into multiple
loci due to lower similarity than the similarity threshold parameter, and (B) under-splitting occurs when
reads from different genomic positions are clustered into a single locus due to higher similarity than
the similarity threshold parameter. Gray bars represent identical sequence across reads, whereas colored
squares represent alternate alleles at SNPs.

et al., 1998; Smith et al., 2014; Romiguier et al., 2014), and this variation across species

may interact with the application of similarity thresholds to differentially bias datasets.

Huang & Knowles (in press), for example, found that mutational spectra of datasets

simulated under deeper species trees were biased downwardly relative to those simulated

under shallow species trees when processed with the same similarity threshold (both

98% and 95% similarity were examined). The effects of similarity thresholds have not

been examined, however, using empirical data from species that vary in their levels

of genetic diversity. Although diverse parameters required for short read assembly are

worthy of scrutiny, we focus on similarity thresholds as they are particularly important for

maintaining comparability across species with different levels of variation.

In this study, we examine the effect of similarity thresholds on dataset assembly and

phylogeographic inferences across four non-model bird lineages that vary in divergence.

We sample two populations or species within each lineage and assemble a RAD-Seq

dataset for each lineage at a series of similarity thresholds to assess the impact of different

thresholds on the number of unique alleles observed within assembled loci. We investigate

the effect of different similarity thresholds on estimates of standard population genetic and

phylogeographic parameters within species and in comparisons across species.

MATERIALS AND METHODS
Study species and sampling
We sampled four individuals from each of two populations, as determined based on

taxonomy and prior genetic data, in four lineages (Table S1). The first lineage includes

Clapper (Rallus crepitans JF Gmelin, 1788) and King (R. elegans JJ Audubon, 1834) rails,

sister species of medium-sized water birds that interbreed in a narrow hybrid zone centered

on a salinity gradient (Maley, 2012; Maley & Brumfield, 2013). We also examined the

Streamertail (Trochilus polytmus C Linnaeus, 1758), a hummingbird endemic to Jamaica

that comprises two subspecies (T. p. polytmus and T. p. scitulus) that differ primarily in
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bill coloration and interbreed in a narrow hybrid zone (Gill & Stokes, 1973; Coyne & Price,

2000). Line-cheeked (Cranioleuca antisiensis PL Sclater, 1859) and Baron’s (Cranioleuca

baroni O Salvin, 1895) Spinetails are closely related, small insectivorous birds distributed

along the Andes Mountains (Remsen, 2003). Finally, we sampled two populations of Plain

Xenops (Xenops minutus AE Sparrman, 1788), a widespread insectivorous bird of lowland

Neotropical forests that are separated by the Andes and differ in plumage, voice, and

genetic markers (Remsen, 2003; Burney, 2009; Harvey & Brumfield, 2015).

Laboratory methods
For each individual examined, we extracted total DNA from vouchered tissue samples

using DNeasy tissue kits (Qiagen, Valencia, California, USA) following the manufacturer’s

protocol. We sent DNA extracts to the Cornell Institute of Genomic Diversity (IGD) to

collect data using Genotyping by Sequencing, a RAD-Seq method (Elshire et al., 2011).

Briefly, the IGD digested DNA using PstI (CTGCAG) and ligated a sample-specific indexed

adapter and common adapter to resulting fragments. The IGD pooled and cleaned ligated

samples using a QIAquick PCR purification kit (Qiagen, Valencia, CA, USA), amplified

the pool using an 18-cycle PCR, purified the PCR product using QIAquick columns, and

quantified the amplified libraries using a PicoGreen assay (Molecular Probes, Carlsbad,

California, USA). Based on the PicoGreen concentrations, the IGD then combined the

samples for this project with unrelated samples and ran plates of 96 samples on a 100-base

pair, single-end Illumina HiSeq 2000 lane (Illumina, San Diego, California, USA).

Bioinformatics processing
We processed the raw GBS reads using the Stacks pipeline (Catchen et al., 2011; Catchen

et al., 2013) due to its popularity in prior studies assembling RAD-Seq datasets within

species. Although other dataset assembly programs are available (e.g., Eaton, 2014; Sovic,

Fries & Lisle Gibbs, in press), all rely on similarity thresholds and should yield similar

results with respect to the analyses presented here. Datasets were assembled on compute

nodes (2.93 GHz Quad Core Nehalem Xeon 64-bt processors with 24 GB 1,333 MHz

RAM or 96 GB 1,066 MHz RAM) maintained by LSU High Performance Computing. We

demultiplexed raw reads, cleaned reads, and removed barcode and adapter sequences using

the program process radtags.pl. We assembled alleles and loci de novo using the program

denovo map.pl. We used custom Python (Python Software Foundation, 2007) scripts

(available at https://github.com/mgharvey/misc Python) to obtain sequence alignments of

both alleles for each individual from the Stacks output files. Detailed settings are provided

in the supplement (Table S2).

To investigate the impact of similarity thresholds on dataset attributes and downstream

analyses, we assembled seven datasets for each of the four lineages under similarity

thresholds (Stacks settings -M and -n) at all integer values from 93% (7 mismatches

allowed) to 99% (1 mismatch allowed), reflecting the range of settings typically used for

assembling intraspecific datasets. Assembly with similarity thresholds less stringent than

93% failed due to high computational demand in Stacks, but should not be necessary

for the divergences examined here or for most other population-level studies. Reads
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with similarity values above the selected threshold clustered into assemblies, which we

treated as independently segregating loci in downstream analyses. We disabled the use

of secondary, more divergent reads for calling genotypes (Stacks setting -H) to prevent

the assembly of reads that are less similar than the similarity threshold used for primary

stacks. We set minimum depth per allele (Stacks setting -m) to ten, which provides a

balance between the inclusion of singleton alleles (potential errors) and the total size of

the data matrix (Fig. S1). We set the maximum number of alleles per individual (Stacks

setting –max locus stacks) to three, one above the ploidy level of the study organisms.

In the resulting datasets, this setting will result in three called alleles for any individuals

containing three or more alleles, allowing the identification of alignments containing reads

from paralogous loci. We used custom Python scripts to format files and calculate basic

statistics and used COMPUTE (Thornton, 2003) to estimate standard population genetic

summary statistics. Monomorphic loci as well as those with variable sites were retained in

all subsequent analyses unless otherwise specified.

Number of alleles
We examined the number of unique alleles per locus across treatments to determine

how different similarity thresholds affected each dataset. As an index of the frequency

of under-splitting in each dataset, we calculated the number of loci containing individuals

with more than two alleles. These loci were presumed to contain paralogous reads and were

removed from further analysis. To assess the proportion of loci with putative over-split

alleles, we mapped loci assembled under the more stringent thresholds (94–99%) to

the set of loci assembled under the most liberal threshold (93%). This allowed us to

detect instances in which multiple loci from the more stringent threshold mapped to

the same locus from the liberal threshold. We used LASTZ (Harris, 2007) for mapping with

minimum identity set at 93% for all comparisons and no gaps permitted. We subtracted

from each total the number of loci from the liberal threshold (93%) that mapped to other

loci assembled with the same threshold using LASTZ.

Genetic distances and Fst

Over-splitting may reduce estimates of genetic distance between individuals or populations

if they contain dissimilar alleles. Conversely, if over-splitting reduces the number of alleles

within populations, this may reduce estimates of distance between populations. We calcu-

lated pairwise p-distances and Jukes-Cantor corrected distances per unit sequence length at

each locus. We measured distances between individuals by measuring the average distance

between alleles in the first individual and those in the second individual. For loci contain-

ing variable sites, we also estimated Fst between the two populations within each lineage

using formula (3) of Hudson, Slatkin & Maddison (1992), which is based on the ratio of the

mean number of differences between different sequences sampled within populations to

the mean number of differences between sequences sampled between populations.
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Gene trees
Over-splitting may also reduce average gene tree depth due to the loss of more variable

loci owing to them being subdivided into two or more less variable loci. To reduce

computation, we selected a random subsample of 1,000 loci for each lineage at each

threshold for gene tree estimation. We selected the best-fit finite sites substitution model

for each locus using mrAIC.pl (Nylander, 2004) and conducted MrBayes (Ronquist

& Huelsenbeck, 2003) runs with a random starting tree, four Markov chains, and a

100,000-iteration burn-in followed by 1,000,000 sampling iterations. We measured the

depth of gene trees as mean depth of the deepest node in number of expected substitutions

using the R (R Core Team, 2014) package ape (Paradis, Claude & Strimmer, 2004).

Demographic parameter estimation
We used the 1,000 locus subsets from gene tree estimation to estimate ancestral and con-

temporary population sizes in each lineage at each similarity threshold using the coalescent

model implemented in BP&P (Yang & Rannala, 2010). Although this method assumes

no gene flow between populations, which may be violated in some of our study lineages,

simulations have demonstrated that BP&P performance is robust to limited gene flow

(Zhang et al., 2011). We used a speciation model containing two contemporary popula-

tions and a divergence time parameter (τ ) as well as population standardized mutation rate

parameters (θ = 4Neµ, where Ne is the effective population size and µ is the substitution

rate per site per generation) for both daughter populations and an ancestral population.

We set prior values using gamma distributions determined by a shape parameter (α)

and scale parameter (β). Priors for both divergence time and population standardized

mutation rate were set to α = 1 and β = 300. We ran analyses for a burn-in of 50,000

iterations and then sampled every other iteration for an additional 500,000 iterations.

RESULTS
After removing loci containing putative paralogous reads (see below), we recovered

between 96,776 and 158,328 loci for the four lineages across the range of similarity

thresholds examined (Table 1). The similarity threshold used had an effect on the

number of unique alleles per locus in all four lineages (Kruskal Wallis test p < 2.20−16;

Table S3). The number of alleles was low using the 99% similarity threshold, but increased

and plateaued as the threshold approached 93% (Fig. 2A). The number of alleles was more

similar across lineages at stringent thresholds relative to liberal thresholds. For example,

Xenops contained, on average, 1.4 times as many alleles as Rallus when processed with

a 99% similarity threshold, but 1.66 times as many alleles when processed with a 93%

similarity threshold.

The proportion of loci containing putative paralogous reads (under-split loci) increased

slightly with increasing similarity thresholds, but was less than 0.4% at all thresholds for

all lineages (Fig. 2B). At all thresholds, Trochilus exhibited roughly half the level of putative

paralogy displayed in the other lineages (Table S4). Depending on the lineage, 5–61% of

loci represented putative over-split alleles based on LASTZ mapping at the most stringent
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Table 1 Attributes and summary statistics (standard deviation across loci) of datasets assembled
under the similarity thresholds examined.

Threshold Loci Individuals
represented
per locus

Segregating
sites per
locus

99 147,123 4.14 (1.82) 0.20 (0.44)

98 145,423 4.2 (1.82) 0.30 (0.63)

97 144,475 4.21 (1.82) 0.34 (0.74)

96 143,780 4.22 (1.82) 0.38 (0.86)

95 142,897 4.23 (1.82) 0.41 (0.98)

94 141,880 4.23 (1.82) 0.44 (1.11)

Cranioleuca

93 140,801 4.24 (1.81) 0.48 (1.26)

99 100,086 3.3 (1.31) 0.17 (0.41)

98 99,300 3.31 (1.31) 0.24 (0.60)

97 98,680 3.31 (1.31) 0.28 (0.73)

96 98,206 3.31 (1.3) 0.30 (0.83)

95 97,808 3.31 (1.3) 0.33 (0.93)

94 97,321 3.31 (1.3) 0.36 (1.07)

Rallus

93 96,776 3.32 (1.3) 0.40 (1.22)

99 125,594 3.83 (1.67) 0.32 (0.56)

98 125,966 3.87 (1.7) 0.46 (0.77)

97 125,697 3.88 (1.7) 0.51 (0.87)

96 125,437 3.88 (1.7) 0.54 (0.95)

95 125,118 3.89 (1.7) 0.56 (1.02)

94 124,669 3.89 (1.7) 0.59 (1.13)

Trochilus

93 123,926 3.9 (1.7) 0.62 (1.25)

99 155,933 3.77 (1.71) 0.65 (0.79)

98 158,496 3.94 (1.74) 1.05 (1.17)

97 158,281 4 (1.74) 1.25 (1.41)

96 158,328 4.01 (1.74) 1.35 (1.56)

95 158,078 4.02 (1.74) 1.40 (1.66)

94 157,534 4.02 (1.74) 1.45 (1.76)

Xenops

93 156,640 4.03 (1.74) 1.50 (1.87)

similarity threshold of 99%, but putative over-split alleles decreased as thresholds became

more liberal (Fig. 2B).

Both uncorrected p and Jukes-Cantor corrected genetic distances between individuals

were reduced at more stringent similarity thresholds (Fig. 3A). Variance across lineages

in mean genetic distance increased as similarity thresholds became more liberal (Fig. S2),

although relative values between lineages were similar across thresholds. Fst estimates

between populations did not differ across thresholds (Fig. 3B).

Mean gene tree depth, based on the depth of the deepest node, increased as more

liberal similarity thresholds were applied in each lineage (Fig. 3C). Variance in mean

gene tree depths across lineages was inversely related to threshold stringency (Fig. S2) and

relative values across lineages were contingent on the threshold applied. For example, the

Harvey et al. (2015), PeerJ, DOI 10.7717/peerj.895 7/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.895/supp-2
http://dx.doi.org/10.7717/peerj.895/supp-2
http://dx.doi.org/10.7717/peerj.895/supp-2
http://dx.doi.org/10.7717/peerj.895/supp-2
http://dx.doi.org/10.7717/peerj.895


Figure 2 The impact of similarity thresholds on empirical datasets from four bird lineages. (A) Strin-
gent similarity thresholds resulted in fewer unique alleles per locus relative to more liberal thresholds.
(B) Putative over-split loci (connected by dashed lines) were more frequent in datasets assembled at
stringent similarity thresholds, whereas loci containing under-split reads (solid lines) occurred at low
frequency across all similarity thresholds (lines are overlapping).

mean gene tree depth for Xenops was 1.48× greater than for Rallus at 99% similarity, but

1.91× greater at 93% similarity.

Ancestral θ estimates were higher at more liberal similarity thresholds for all four

lineages (Fig. 3D), but contemporary θ estimates and population divergence times (τ )

showed no association with similarity thresholds (Figs. S3 and S4). Ancestral θ estimates,

as with genetic distance and gene tree depth, displayed lower variance across lineages at

stringent relative to liberal thresholds (Fig. S2). Relative values across lineages also differed

across thresholds. The ancestral θ for Xenops was 1.89× greater than for Rallus at 99%

similarity, for example, but 2.95× greater at 93% similarity.

DISCUSSION
Comparability of parameter estimates is essential for comparative studies of phylogeo-

graphic structure and genetic diversity across species or among genomic regions (Nybom,

2004). Our results reveal, however, that inferences differ not only among lineages with

different population histories, but also according to the similarity threshold applied

during dataset assembly. Differences in the impact of similarity thresholds across datasets

not only reduce the utility of those datasets for comparative studies, but also preclude

the application of standardized mutation rate estimates that would allow demographic

parameters in non-model species to be converted to absolute values (DaCosta & Sorenson,

2014). The issues discussed here are not restricted to RAD-Seq datasets, but are of

concern for all short read datasets requiring similarity-based de novo assembly, including

those from sequence capture and transcriptomic approaches. Mapping reads to existing

reference sequences also requires the application of similarity thresholds and, although
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Figure 3 The impact of similarity thresholds on population genetic parameter estimates. The sim-
ilarity threshold applied impacts (A) mean pairwise Jukes-Cantor corrected genetic distance between
individuals, (B) mean FST between populations, (C) mean gene tree depth and (D) ancestral theta (θ)

based on a coalescent model.

identifying under-splitting is more straightforward with a reference genome, divergent

alleles may still be lost if the threshold used for mapping is too stringent (Trapnell &

Salzberg, 2009; Lunter & Goodson, 2011). In such cases, over-splitting results in the loss of

alleles divergent from the reference, rather than the splitting of alleles into separate loci.

Careful selection of similarity thresholds for assembly is an important issue for diverse

sequencing projects, particularly if comparisons are to be made across datasets.

We found that datasets assembled under stringent similarity thresholds included fewer

unique alleles per locus than those assembled under more liberal thresholds. Similarly,

Ilut, Nydam & Hare (2014) found heterozygosity was reduced when stringent similarity
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thresholds were applied, but increased with more liberal thresholds across three simulated

and one empirical dataset. The reduced number of alleles per locus in datasets assembled

with stringent thresholds is likely due to the higher frequency of putative over-splitting in

those datasets. Prior studies also demonstrated that over-splitting is frequent when datasets

are processed at stringent similarity thresholds, and that this leads to allele loss (Catchen

et al., 2013; Ilut, Nydam & Hare, 2014). Our results suggest that under-splitting occurs at

low frequencies across similarity thresholds and has little impact on datasets. The impact of

under-splitting may be more severe in species with highly repetitive genomes or in studies

across deep phylogenetic timescales that require more liberal similarity thresholds for

assembly (e.g., Rubin, Ree & Moreau, 2012; Eaton & Ree, 2013).

Variation in datasets resulting from the similarity threshold applied has important

effects on downstream parameter estimation. In addition to the biases in population

genetic and phylogeographic estimates that we found, Huang & Knowles (in press) found

that mutational spectra are downward-biased as a result of the loss of the most divergent

alleles, and some studies have found that phylogenetic estimates are more accurate when

more liberal similarity thresholds are applied to simulated data (Rubin, Ree & Moreau,

2012; Huang & Knowles, in press). Unlike other parameters, our Fst estimates were not

strongly impacted by variation in similarity thresholds, perhaps because Fst is calculated

using the ratio of between- and within-population divergence, both of which are impacted

by allele loss. In addition, θ values from contemporary populations were similar across

thresholds, while ancestral θ values were lower at more stringent thresholds. This may

result if stringent thresholds result in the loss of alleles that are fixed between the two diver-

gent populations at a higher rate than those that are variable within populations. Despite

these exceptions, it seems likely that observed biases in datasets across similarity thresholds

would impact diverse population genetic and phylogeographic parameter estimates.

Stringent similarity thresholds (98–99%) are widely applied currently to population-

level studies (e.g., Emerson et al., 2010; Reitzel et al., 2013; Chu et al., 2014), perhaps under

the supposition that they are more conservative and less likely to permit the assembly of

non-orthologous reads or as an attempt to reduce dataset size and computation times

(Ilut, Nydam & Hare, 2014). We concur with Ilut, Nydam & Hare (2014) and Huang &

Knowles (in press) that defaulting to stringent thresholds is generally not appropriate.

Over-splitting decreases at more liberal similarity thresholds and the number of alleles

per locus asymptotes near the 96% threshold, suggesting that datasets assembled under

similarity thresholds of 96% or less stringency are relatively less biased by over-splitting.

Although this asymptote will vary depending on the divergence within a dataset, other

studies have found asymptotes at similar threshold values, for example at roughly 95–96%

in empirical data from sticklebacks (Catchen et al., 2013) or between roughly 88% and

96% in simulated tunicate, stickleback, and soybean datasets and an empirical tunicate

dataset (Ilut, Nydam & Hare, 2014). The approach suggested by Ilut, Nydam & Hare (2014)

in which datasets are assembled at a series of similarity thresholds, the location of the

asymptote in over-splitting is identified, and that threshold is used for final assembly is

preferable to defaulting to stringent thresholds.
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We were unable to directly investigate the frequency of under-splitting and over-

splitting in our datasets because we lack genome sequences for the non-model organisms

examined. Our indirect measure of over-splitting may detect not just over-split loci,

but also loci that are under-split in the assembly from the most liberal threshold but

correctly separated in the assembly from the more stringent thresholds. This would be

particularly likely if paralogy was common in the genomes under investigation or if very

liberal similarity thresholds were examined. The frequency of under-splitting appears to be

low enough in our datasets, however, that this effect would be minimal. Broad concordance

between our results and prior investigations into over-splitting in systems with a genome

for reference (Catchen et al., 2013; Ilut, Nydam & Hare, 2014) suggest that our metric of

over-split alleles is a reasonable proxy for use in non-model organisms.

Results from our indirect measure of under-splitting are also broadly consistent with

the low levels of under-splitting observed in prior work using reference genomes (Ilut,

Nydam & Hare, 2014) and were expected given the low level of paralogy in avian genomes

(e.g., chicken; Hillier et al., 2004). Our measure of under-splitting, the number of loci

containing individuals with more alleles than expected, has been used previously to filter

out loci with paralogous data from RAD-Seq datasets (Parchman et al., 2012; Peterson et al.,

2012). Some loci may contain reads from paralogous loci but may not contain sufficient

numbers of alleles to trip this filter, potentially inflating estimates of variation. Prior work,

however, suggests that paralogous reads lack strong signal conflicting with that from

entirely orthologous loci and have relatively minor effects on inferences (Rubin, Ree &

Moreau, 2012). Other indicators such as extreme heterozygosity or other deviations from

Hardy–Weinberg or linkage equilibrium in presumed panmictic populations (Catchen et

al., 2011; White et al., 2013), violations of Mendelian inheritance in pedigreed individuals,

or gene tree topologies suggesting a history of duplication might also be used to detect

additional loci containing paralogous reads. These metrics deserve consideration in

situations where under-splitting is a concern, including in species with high levels of het-

erozygosity or deep divergences (e.g., phylogenetic studies) necessitating the application of

very liberal similarity thresholds or in species with highly repetitive genomes.

We uncovered differences in allelic diversity and parameter estimates across the four

study lineages examined. Xenops minutus generally displayed the greatest allelic diversity

and also the largest genetic distances between individuals, deepest gene trees, and highest θ

values, which was perhaps not surprising given prior evidence of deep genetic divergences

within this species (Smith et al., 2014; Harvey & Brumfield, 2015). The other lineages

were more similar by most measures, although Trochilus polytmus was slightly higher

than Cranioleuca and Rallus in allelic diversity, genetic distance, and gene tree depths.

Interestingly, Trochilus polytmus also exhibited roughly half the frequency of putative

paralogous loci of the other three species, which may be related to the small genome size of

hummingbirds (Gregory et al., 2009).

Our results suggest that the similarity threshold used for assembly impacts the level

of variation in a dataset as well as downstream population genetic and phylogeographic

estimates. Comparisons across datasets are also biased by the impact of similarity
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thresholds, appearing more similar across datasets when stringent thresholds are used or in

some cases more different if species are assembled with different thresholds. These biases

further preclude the estimation of standardized mutation rates for parameter calibration.

Methods for threshold selection exist that limit these biases, such as the use of liberal

thresholds and examination of the impact of a range of thresholds on a given dataset, but

they need to be further developed and applied more widely if we are to be able to compare

datasets and integrate inferences across studies, genomic regions, and organisms.
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