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ABSTRACT

Background: A central tenet of the evolutionary theory of communities is that
competition impacts evolutionary processes such as local adaptation. Species in a
community exert a selection pressure on other species and may drive them to
extinction. We know, however, very little about the influence of unsuccessful or ghost
species on the evolutionary dynamics within the community.

Methods: Here we report the long-term influence of a ghost competitor on

the performance of a more successful species using experimental evolution.

We transferred the spider mite Tetranychus urticae onto a novel host plant

under initial presence or absence of a competing species, the congeneric mite

T. ludeni.

Results: The competitor species, T. ludeni, unintentionally went extinct soon after
the start of the experiment, but we nevertheless completed the experiment and found
that the early competitive pressure of this ghost competitor positively affected the
performance (i.e., fecundity) of the surviving species, T. urticae. This effect on

T. urticae lasted for at least 25 generations.

Discussion: Our study suggests that early experienced selection pressures can exert a
persistent evolutionary signal on species’ performance in novel environments.

Subjects Ecology, Evolutionary Studies
Keywords Interspecific competition, Intraspecific competition, Experimental evolution,
Local adaptation, Spider mites, Tetranychus urticae

INTRODUCTION

Populations are facing a continuously changing world that they can possibly cope with in
various ways, such as through phenotypic plasticity or by tracking their favoured habitat.
If these solutions are not possible, evolutionary rescue by genetic adaptation may
eventually allow persistence (Lindsey et al., 2013). One factor influencing this local
adaptation is competition.

Interspecific competition is known to influence local adaptation in many different ways,
but the effect is still largely unpredictable (Rice & Knapp, 2008; Alzate et al., 2017;
Zhao et al., 2018). First, heterospecific competitors might modify the selection pressure
exerted by the abiotic environment, enhancing or limiting genetic adaptation to the novel
environment (Osmond ¢ De Mazancourt, 2013). Classical examples of enhanced genetic
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adaptation are seen in adaptive radiations of three-spined sticklebacks or fast character
displacements in Darwin finches or Myzomelid honeyeaters (Diamond et al., 1989;
Schluter, 1994; Reznick ¢» Ghalambor, 2001). Previously, we found that additional selection
pressure exerted by a congeneric species (T. evansi) facilitated adaptation of the focal
species (T. urticae) to a novel environment under high dispersal from a maladapted
ancestral population (Alzate et al., 2017). Adaptation to the novel environment can also be
reduced by interspecific competition when there is, for instance, a trade-off between traits
responsible for adaptation to the competing species and to the novel environment
(Chesson, 2000; Siepielski et al., 2016).

Furthermore, interspecific competition can create new niches or change the current
environment for species to adapt to. Species may use waste products or adapt to plants
with modified defences caused by co-occurring individuals (Sarmento et al., 2011;
Lawrence et al., 2012). These new niches will subsequently create opportunities for
adaptive shifts to novel environmental conditions. This illustrates that competition and
facilitation can jointly shape evolution, making it difficult to study the consequences of
interspecific competition alone.

As a last scenario, interspecific competition can hinder or limit the process of local
adaptation by restricting resource availability and hence decrease effective population size.
The resulting increased probabilities of genetic drift will then decrease the evolutionary
potential and hence the chance of local adaptation (Lawrence et al., 2012; Osmond ¢
De Mazancourt, 2013; Zhao et al., 2018). Extreme hindrance to local adaptation can even
cause extinction of one of the species (Jaeger, 1970; Bengtsson, 1989; Griffis ¢ Jaeger, 1998).

In this study we aimed to further unravel the effect of interspecific competition on
adaptation to a novel food source. We therefore performed an evolutionary experiment
with two related spider mite species, Tetranychus urticae and T. ludeni, adapting to a novel
host. Both species were placed alone or together on a new host plant and we wanted to
study how this interspecific competition affects local adaptation. More precisely, we
wanted to test for differences in the rates of adaptation and the final performance on the
novel food source at the end of the experiment. The two competitors were supposed to
be competitively similar, but the experiment demonstrated that this was not the case:
both species could only temporarily co-occur, because T. ludeni went extinct after a few
generations. We nevertheless continued the experiment and conducted subsequent
analyses that provided convincing evidence for the effect of the ghost competition on
adaptation. More precisely, we focused on the surviving species, T. urticae, and explored
whether we could detect long-term evolutionary effects on performance (measured as
fecundity) of this species due to differences in early selection pressures caused by the
ghost competitor, T. ludeni. We chose the average of the initial population size of the
unsuccessful species during the 1st month of co-occurrence as an indication for the early
competitive pressure. These differences in population sizes arose naturally and can be
attributed to selection, as well as drift and founder effects.

While inferior competitors are predicted to eventually go extinct, they may co-occur
with the more successful competitors for many generations (Holmes ¢» Wilson, 1998;
Lankau, 2011). These early and non-persisting interactions may leave a strong signature
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on the future community dynamics (Law ¢ Daniel Morton, 1996; Miller, TerHorst ¢
Burns, 2009; Mallon et al., 2018), because they have the possibility to induce large
habitat modifications or evolutionary changes in the more successful species. Historical
contingency (i.e. the influence of the arrival time of a certain species in a community;
Fukami, 2015) in terms of limitations imposed by so-called ghost species (Hawkes ¢ Keitt,
2015) may thus have a strong impact on the eco-evolutionary trajectories of populations
and communities, in the same way as successful species do (Fukami, 2015). The role
of competition intensity of an inferior species prior to its extinction on the ecological
and evolutionary dynamics of persisting species is still largely unknown, however.

In this study we found a lower fecundity of T. ludeni on bean and cucumber than
T. urticae in the control populations, which may explain their rapid extinction. Still, the
ghost species T. ludeni showed an effect on the surviving species T. urticae, because the
eventually achieved strength of adaptation of T. urticae increased with the initial density of
T. ludeni. We therefore suggest that ghost competition may lead to differences in
long-term local adaptation.

MATERIALS AND METHODS
Study species

We used two species of the family Tetranychidae (Acari, Arachnida): Tetranychus urticae
Koch, 1836, and T. ludeni Zacher, 1913. These herbivorous mite species are highly suitable
for evolutionary experiments due to their small body sizes, their possibility to maintain
large populations in the lab, and short generation times (Zhang, 2003).

For this study, we used different inbred populations of T. urticae from Bitume et al.
(2013). Each population originated from two adult females from the LS-VL line
(Van Leeuwen, Stillatus ¢ Tirry, 2004) and was afterwards kept at low population
densities. The LS-VL line was collected from roses in October 2000 (Ghent, Belgium,
Europe). After this initial collection, all populations were maintained on bean plants
(Phaseolus vulgaris, Prelude).

We used two populations of T. ludeni: the Tl Alval (Lisbon, Portugal) and
Tl CVM (Lourinha, Portugal). Both populations were sampled early autumn 2013 from
common morning-glory and afterwards maintained on bean plants (P. vulgaris,
Prelude). The founder populations were 160 and 300 individuals for T1 Alval and TI CVM
respectively. Our evolutionary experiment started in September 2015, implying that
T. urticae and T. ludeni had been under laboratory conditions for approximately 15 and
2 years, respectively.

For this study, we chose to subject different inbred lines of T. urticae that were created in
2012 (Bitume et al., 2013) to further inbreeding by mother-son mating for one more
generation prior to the experiments. This resulted in the creation of 13 isofemale lines.
The genetic variation within the lines is therefore very low, but larger among lines as we
used different inbred lines from Bitume et al. (2013). It may sound counterintuitive to use
inbred populations for an evolutionary experiment that mainly uses standing genetic
variation (note that no spider mites were added during our experiment), but in this way we
could generate genetically similar replicates and control for putative initial drift effects by
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differences in starting genetic variation. We deemed this more important than potential
inbreeding effects, because no effects of inbreeding on genetic trait variation have been
found in these and other lines (Van Petegem et al., 2018). Furthermore, we created six
isofemale lines for T. ludeni (coming from TI Alval and TI CVM). We wanted to create
13 lines for this species as well, but were unsuccessful due to low fertility or early mortality.
In hindsight, this may partly explain the rapid extinction T. ludeni: even the six initially
surviving lines were probably far from optimal.

We created a control population of T. ludeni from the stock (T1 Alval and TI CVM) and
placed them on bean plants (four two-weeks-old plants). We created a control population
of T. urticae from the created 13 isofemale lines (four mites per line) and placed them
also on bean plants (four 2-weeks-old plants). All populations were kept in a
climate-controlled room (25-30 °C, 16:8 L:D).

Experimental set-up

Novel host islands were created by placing two 3-weeks-old cucumber plants, Cucumis
sativus Tanja, in boxes with yellow sticky paper (Pherobank) at the bottom and Vaseline at
the walls to avoid contamination between islands; this method is known to work from
previous research (Alzate et al., 2017; Alzate, Etienne & Bonte, 2019; Bisschop et al., 2019).
These units consisting of multiple plants are referred to as ‘islands’ because they represent
isolated habitat. They represent continuous habitat because the leaves were overlapping
allowing easy dispersal across the plants. After the 1st week, two fresh 3-weeks-old
cucumber plants were added to create the island size of the experiment. To provide enough
food for the spider mites, the islands were then weekly refreshed by replacing the two
oldest plants with two new 3-weeks-old cucumber plants. In this way, sufficient time was
provided for a generation of spider mites to develop on the new plants, while allowing
the population to move toward the fresh leaves. The removed old plants may have
contained mites or unhatched eggs, but we nevertheless chose this refreshment procedure
to maintain relatively natural movement dynamics. It is for instance known that especially
young fertilised females disperse more (Li ¢» Margolies, 1993) and dispersive individuals
may differ in their body condition or performance compared to sedentary individuals
(Bonte et al., 2014; Dahirel et al., 2019). This refreshment procedure may have caused an
extra competitive pressure if one species was more dispersive or delayed its dispersal for
avoiding competition, but we preferred to design the experiment in a way that it resembled
more the actual life strategy of spider mites (colonisation with few founders followed by
rapid growth).

The spider mite isofemale lines (as subscribed under ‘study species’) were placed on the
islands with or without heterospecifics. Eight replicate islands received both T. urticae and
T. ludeni. Eight replicate islands received only T. urticae and another eight replicate
islands received only T. ludeni. Each island started with the same total population size of
52 adult females and as similar as possible gene pool. Therefore, the group with only
T. urticae received four adult females from each of the 13 isofemale lines. The group
with only T. ludeni received four adult females from the six isofemale lines and was
supplemented with 28 females from its stock population, because of the lack of success of
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Figure 1 The experimental set-up. Adult females from 13 inbred lines of T. urticae (Tu) were equally
divided over the different treatments to create the same starting genetic variation. Populations with
T. ludeni (TI) had a higher genetic variation as only six inbred lines were used and supplemented with the
stock population. The treatments were a control population on bean plants (yellow box for Tu and white
for TI), a competition treatment with both species present on cucumber (dark green or dark pink box for
Tu and TI respectively) or a no competition treatment on cucumber (light green box for Tu and light pink
box for T1). The density of the populations of mites on cucumber was tracked for ecological dynamics and
individual fecundity tests were performed on the novel and initial host plants after two generations on
the initial host plant for homogenising maternal effects. The boxes have the same colours as used in
Figs. 2 and 3. Full-size k&l DOI: 10.7717/peerj.8931/fig-1

creating more isofemale lines. The group with both spider mite species received 26 adult
females of T. urticae (two from each of the isofemale lines) and 26 adult females of

T. ludeni (11 T. ludeni females per island came from the six isofemale lines and were
supplemented with 14 mites from its stock population). Control populations on bean were
created as explained under ‘study species’.

The use of the outbred stock population of T. ludeni to supplement the populations
provided an unanticipated opportunity as it increased the initial genetic variation of
T. ludeni among replicates and hence differences in early selection pressures on T. urticae.

We started with a relatively low population size to make it biologically relevant as
natural populations usually colonise plants at small population sizes. All adult female mites
were equally distributed over the plants.

We chose the same total population size and no differences among island sizes, as it
is known that differences in densities change both the intra-and interspecific competitive
pressure and that an increase in island size would change the adaptive potential of the
treatment (Alzate, Etienne ¢ Bonte, 2019). This necessarily meant that the initial
population size for each species was not the same across the different treatments; we
recognise that this may affect genetic drift and cause sampling effects, which we will come
back to in the “Discussion”. A schematic overview of the different treatments is provided in
Fig. 1.

The total experiment lasted for 10 months, which is approximately 25 generations and
long enough to detect local adaptation (Gould, 1979; Fry, 1989; Magalhdes et al., 2007,
2009; Bonte et al., 2010). For logistical reasons the experiment was performed in two blocks
with 1 month difference, each block consisted of four replicate islands per treatment.
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Measurements

Ecological dynamics (population density assessment)

Every 2 weeks, the density of the spider mites in the evolutionary experiment was
measured by counting adult females on a square of 1 x 1 cm?; the first counting was done
after 2 weeks. The location of the square was chosen right next to the stalk of the highest,
fully grown leaf of the two newest plants of each island, keeping in mind that the mites
had one week to move from the old plants towards the fresh plants before counting.
Both the abaxial as well as the adaxial side were measured and summed for a total
overview. The location on the leaf was chosen to standardise the measurements in time and
make them comparable. The populations of T. ludeni under competition with T. urticae
went extinct after approximately 2 months. To get an impression of its competitive
pressure on the more successful T. urticae populations while it was still present, we used
the mean population density of the 1st month of T. ludeni (hereafter called ‘early
competitive pressure of the ghost competitor’).

Evolutionary dynamics (fecundity assessment)

Fecundity tests for the control populations on bean and for the experimental cucumber
populations were performed every 2 months to determine the level of adaptation. As the
experimental populations of T. ludeni went extinct under competition, we obviously
only have results from fecundity tests on the control population of T. ludeni. We chose
fecundity as a proxy of adaptation because previous research confirmed it to be the best
predictor of adaptation compared to survival or development (Magalhdes et al., 2007,
Alzate et al., 2017; Alzate, Etienne & Bonte, 2019). Five adult females were sampled from
each island and separately placed on a bean leaf disc (17 x 27 mm?) for two generations of
common-garden to standardise juvenile and maternal effects (Magalhdes et al., 2011;
Kawecki et al., 2012). Bean discs were chosen because bean plants are very suitable host
plants with a low selection pressure and will not cause a change in allele frequencies of the
evolved lines (Magalhaes et al., 2011). These leaf discs were placed in a petri dish on
wet cotton wool and surrounded with paper strip borders. Then, the fecundity of two
quiescent deutonymph females that originated from the same common-garden replicate
was tested. One female was put on a bean leaf and one on a cucumber leaf (same set-up as
for common garden) in a climate cabinet of 30 °C under 16:8 L:D. Bean and cucumber
plants were grown specifically for this test (for 2 and 3 weeks respectively) and were
protected against herbivory before the test. Fecundity (number of eggs laid after 6 days)
was measured based on daily pictures taken. Females that drowned in the cotton before the
6th day were excluded from the analysis (this was 13.5% for the populations of T. urticae
without T. ludeni, 15% for the populations of T. urticae with the ghost competitor, and
10.5% for the populations of T. urticae in the control treatment maintained on bean).
The cucumber plants that were necessary for the leaf discs for the fecundity test after

4 months did not grow for one of our two experimental blocks. Therefore, we were not able
to test fecundity at that time point for these replicates. In total, the fecundity was measured
for 974 females (exact sample sizes per treatments are given in the electronic Table S1).
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Figure 2 The dynamics and performance of the ghost competitor. (A) Overview of the population
density for the different treatments of the experimental populations on cucumber. Population density of
Tetranychus urticae (green dots) and T. ludeni (pink dots) measured as the sum of the abaxial and adaxial
density (number of adult females/cm?) per island through time. The lighter colours correspond to the
populations in absence of the competing species and the darker to the treatment where both species are
present. The lines are smoothing curves with their respective 95% confidence interval. (B) Comparison of
the densities for the different treatments at the plateau phase (starting from 200 days). The letters above
the violin plots indicate the significant differences. No significant difference was found between popu-
lation densities of T. urticae with or without initial competition, and both populations reached sig-
nificantly higher densities than T. ludeni. The violin plots show the observed data, and the points and
lines show the mean model estimates and their 95% confidence interval, respectively. (C) Comparison of
the individual performance of the control populations of T. ludeni and T. urticae (both maintained on
bean plants) on bean and cucumber leaf discs at the first measured time point. The fecundity of T. ludeni
is significantly lower than that of T. urticae, on both bean and cucumber.

Full-size K&l DOT: 10.7717/peerj.8931/fig-2

Statistical analysis

We used general linear mixed models (GLMMs; except for the dynamics and performance
of the ghost competitor where a GLM was used) with Negative Binomial distribution
with log link to account for overdispersion for both the fecundity and population density
measures. The variance was determined as p x (1 + p/k) in which p is the mean and k is
the overdispersion parameter (standard negative binomial parametrisation) (Hardin ¢
Hilbe, 2007). The violin plots in the figures illustrate the amount of overdispersion in
the data.

The dynamics and performance of the ghost competitor

We first studied the performance of the control populations that had been maintained on
bean of both species on bean and cucumber. The dependent variable in the maximal model
was fecundity (number of eggs after 6 days) and the explanatory categorical variables
were the plant species during the fecundity assessment (bean or cucumber) and the mite
species (T. urticae or T. ludeni). Model selection was based on the lowest AICc and a Wald
X test was performed on the maximal model to check the reliability of the model selection.
We present below the results of the best-fitting model. Pairwise comparisons for the
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Figure 3 Fecundity affected by ghost competition. On the x-axis the different treatments (the control
population of T. urticae from bean (yellow), T. urticae with ghost competition of T. ludeni (dark green)
and T. urticae from cucumber but without T. ludeni (light green)) are presented. The scale on the x-axis
indicates the early competitive pressure of T. ludeni (average number of adult females/cm? during the 1st
month) for the replicates of the treatment under ghost competition; this treatment is shown in the grey
box. On the y-axis the fecundity (number of eggs after 6 days) of T. urticae is presented. The variable time
was not present in the best-fitting model, so we presented all data points per treatment independent of the
time it was measured. (A) shows the fecundity assessed on bean, while (B) gives the results assessed on
cucumber. Populations without T. ludeni maintained on cucumber (light green) performed significantly
better on cucumber than the control (yellow) and seemed therefore locally adapted. The treatment under
competition (dark green) was intermediate between both other treatments. A significant relationship
between the density of T. ludeni (in the treatment under ghost competition; dark green) and the fecundity
of T. urticae was found when assessed on cucumber. This indicates that early experienced selection
pressures can exert a persistent evolutionary signal on species’ performance in novel environments. Each
violin plot presents the observed data, while the points and lines show the means of the model estimate
and their 95% confidence interval, respectively. Full-size K&l DOT: 10.7717/peerj.8931/fig-3

variables in this best-fitting model were adjusted for multiple comparisons with
Tukey’s method.

Signature of the ghost competitor on performance of T. urticae

Evolutionary dynamics (fecundity assessment)

We investigated the impact of the density of T. ludeni and of T. urticae at the onset of the
experiment (i.e. mean density during the 1st month) on the fecundity of T. urticae on
its initial and novel host plant. The explanatory variables in the maximal model were time
(as categorical variable; 2, 4, 6, 8 or 10 months), the density of T. ludeni (continuous
variable), the density of T. urticae (continuous variable), and the interaction between time
and densities of both species. In this way, we aimed to determine whether it was the
own density or the density of the ghost competitor that affected performance of T. urticae.
We compared this with an additional model with the total density (summing the density of
T. ludeni and T. urticae), time, and their interaction to find out whether fecundity was
affected by the species’ individual densities or just the total density. The random effect for
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all models was the replicate island nested within the experimental blocks. However, for
the assessment of fecundity on cucumber the nestedness in the random effects led to
overfitting of the full model, as the random effect variance was estimated to be zero
(Magnusson et al., 2018). As a consequence, we only used replicate island as random
variable for the assessment on cucumber. We chose a categorical variable for time
instead of a continuous one, because differences in quality of leaves at the different
measurements were likely and we did not want to assume a linear response of
adaptation. For completeness, we also performed the analyses with time as a continuous
variable; the results are similar, see (Tables S2-S6). Model selection was based on the
lowest AICc and an additional Wald x> test was performed on the maximal model.

We present the results of this best-fitting model in the main text. Pairwise comparisons for
the slopes and means in this best-fitting model were adjusted for multiple comparisons
with Tukey’s method (summary statistics for full models are provided in the electronic
Table S7).

Ecological dynamics (population density assessment)

We used the density assessed through time of the different spider mite populations to
investigate differences in demography between the species with or without competitor
after the plateau phase (starting from day 200 based on visual inspection). The dependent
variable in the maximal model was the density (number of adult female mites per cm?)
and the explanatory variable was the treatment (T. urticae with and without competitor
and T. ludeni with and without competitor). The random effects were time and the
different island replicates within their experimental block. Model selection, Wald x> test,
and pairwise comparisons were performed as explained above.

Performance of T. urticae
Because we were interested in the magnitude of the differences in performance due
to the presence of T. ludeni, we did a further analysis including also the control
population of T. urticae on bean and the populations of T. urticae on cucumber without
T. ludeni. We investigated the fecundity as a function of the three different treatments
(control of T. urticae on bean, the populations of T. urticae on cucumber without
T. ludeni, and those with T. ludeni) and time (categorical variable; 2, 4, 6, 8, or 10
months), and their interactions. The replicate islands were treated as random effects and
were nested within the two experimental blocks. Model selection, Wald X2 test of
the maximal model, and pairwise comparisons of the variables for the best-fitting
model were performed as explained above. Only results of the best-fitting model are
presented below (summary statistics for full models are provided in the electronic
Table S7).

The estimates provided in the tables are the raw and untransformed estimates for
the fixed effects of the final models (negative binomial distribution). All analyses were
performed in R (version 3.6.0) with glmmTMB version 0.2.3 (Brooks et al., 2017), MuMIn
version 1.43.6 (Barton, 2019), and emmeans version 1.3.5.1 (Lenth, 2019).
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Table 1 Model selection. Overview of the best models based on the lowest AICc with an AICc weight of
at least 0.100. Abbreviations of fixed variables in maximal model: fecundity (fec.), dens. Tu (initial density
T. urticae), dens. Tl (initial density T. ludeni), t (time), Tu comp./no comp. (T. urticae with competition/
without competition), Tl no comp. (T. ludeni without competition), and treat. (treatment).

Model df  LogLik AICc A AICc AICc weight

The dynamics and performance of the ghost competitor
Max. model: fec. ~ plant species x mite species (df = 5)

Plant species x mite species 5 —415.037 840.7 0.00 0.948
Signature of the ghost competitor on performance of T. urticae

Fecundity assessed on bean
Max. model: fec. ~ t + dens Tu + dens TI + t : dens. Tu + t : dens. TI + (1|block/island) (df = 18)

No fixed effects 4 —768.410 1545.1 0.00 0.237
Time 8 -764.312 1545.5 0.45 0.190
Initial density T. urticae 5 -767.785 1545.9 0.87 0.153

Fecundity assessed on cucumber
Max. model: fec. ~ t + dens. Tu + dens. Tl + t : dens. Tu + t : dens. TI + (1island) (df = 17)

Initial density T. ludeni 4 -594.802 1197.9 0.00 0.484
Initial density T. urticae + init. dens. TI 5 —-594.602 1199.6 1.74 0.203
Initial density T. urticae 4 —-596.243 12008  2.88 0.115

Demography from plateau phase
Max. model: dens. ~ treat. (Tu comp./no comp., Tl no comp.) + (1]t) + (1|block/island) (df = 7)

Treatment 7 -1,185.931 2386.2 0.00 1

Performance of T. urticae
Max. model: fec. ~ treat. (Tu control/Tu comp./Tu no comp.) x t + (1|block/island) (df = 18)

Treatment 6 -1,846.641 3705.5 0.00 0.751
No fixed effects 4 -1,849.890 3707.9 2.40 0.226
RESULTS

The dynamics and performance of the ghost competitor

In the competition treatments T. ludeni went extinct after approximately 2 months. While
T. ludeni was able to maintain a population on cucumber in the absence of a competing
species (12.3 individuals/cm?), it reached a significantly lower density than T. urticae
(19.8 individuals/cm?, ¢ ratio = 7.299 and p < 0.0001 for T. urticae under ghost
competition; 20.5 individuals/cm?, ¢ ratio = 7.756 and p < 0.0001 for T. urticae without
competitor). Although the significantly lower performance of T. ludeni during the
fecundity assessment could reflect difficulties dealing with the host plant, competitor

T. ludeni was able to maintain a population on cucumber in the absence of T. urticae. This
indicates that the presence of T. urticae hindered the survival of T. ludeni (Figs. 2A, 2B;
Tables 1-3).

The fecundity assessments on the initial and novel host plant with mites from the
control populations of T. urticae and T. ludeni (which had been maintained on bean plants
and had never been on cucumber before) showed that T. urticae had a significantly
lower fecundity on cucumber than on bean (27.9 vs. 48.0 eggs after 6 days; f ratio = —3.629
and p = 0.0025), while there was no difference in the performance of T. ludeni on bean or
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Table 2 Chi-square statistics for the maximal models before model selection. The results for the Wald
Chi-square tests are presented for the maximal models. The number of asterisks determines the level of
significance: one asterisk denotes a p value lower than 0.5, two asterisks lower than 0.01 and three
asterisks lower than 0.001.

Independent variables Chisq Df Pr(>Chisq)
The dynamics and performance of the ghost competitor

Plant species 5.1851 1 0.0228 *

Mite species 56.1019 1 6.881E-14 o

Plant species : mite species ~ 9.0064 1 0.0027 o
Signature of the ghost competitor on performance of T. urticae
Fecundity on bean Time 8.4890 4 0.0752

Initial density T. ludeni 0.8919 1 0.3450

Initial density T. urticae 1.4948 1 0.2215

Time : init. dens. TI 1.3088 4 0.8599

Time : init. dens. Tu 4.5696 4 0.3344
Fecundity on cucumber Time 4.6468 4 0.3255

Initial density T. ludeni 4.1050 1 0.0428 *

Initial density T. urticae 0.6019 1 0.4379

Time : init. dens. TI 1.7385 4 0.7837

Time : init. dens. Tu 4.0678 4 0.3969
Demography (from plateau phase)  Treatment 74.1960 2 <2.2E-16 B
Performance of T. urticae

Treatment 9.8340 2 0.0073 o

Time 0.8189 4 0.9359

Treatment : time 7.9751 8 0.4359

cucumber (13.3 vs. 16.2 eggs after 6 days; t ratio = —1.012 and p = 0.7426). The fecundity
assessments also showed that T. ludeni laid significantly fewer eggs than T. urticae on both
bean (13.3 vs. 48.0 eggs after 6 days; ¢ ratio = —7.463 and p < 0.0001) and cucumber
(16.2 vs. 27.9 eggs after 6 days; t ratio = —6.177 and p < 0.0001). This suggests that the
fecundity of T. ludeni on the novel host was already lower than that of T. urticae at the
onset of the experiment (Fig. 2C; Tables 1-4).

Signature of the ghost competitor on performance of T. urticae
Throughout the evolutionary experiment, we measured the densities of the populations of
both spider mite species. During the 1st month, the ghost competitor (T. ludeni) was
still present and the early competitive pressure calculated during the 1st month gave an
indication of the pressure exerted by the ghost species on T. urticae. We found that the
early competitive pressure of the ghost competitor positively affected the evolved
individual fecundity of T. urticae on the novel host plant, cuacumber, during the fecundity
assessment on cucumber (Fig. 3B; z value = 2.33 and p = 0.0199). The evolved fecundity of
individuals from populations under lower competitive pressures was lower than for
individuals from populations under a higher early competitive pressure of T. ludeni
(26.8 eggs after 6 days for T. urticae under a density of one individual of T. ludeni per cm®
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Table 3 Pairwise comparisons adjusted for multiple comparisons (Tukey method). The estimates
provided in the table are the raw and untransformed estimates (negative binomial distribution).
The estimates are the differences in fecundity for (A) and (C) and in density for (B). The number of
asterisks determines the level of significance: one asterisk denotes a p value lower than 0.5, two asterisks
lower than 0.01 and three asterisks lower than 0.001.

Contrast Estimate SE df tratio p Value

A. The dynamics and performance of the ghost competitor

Comparison control population Tu and TI on bean and cucumber (at first measured time point)

T. ludeni (bean) — T. ludeni (cucumber) -0.199 0.197 97 -1.012  0.7426

T. ludeni (bean) - T. urticae (bean) -1.284 0.172 97 -7.463  <0.0001  ***
T. ludeni (bean) — T. urticae (cucumber) -0.742 0.173 97 -4.279  0.0003 e
T. ludeni (cucumber) - T. urticae (bean) -1.085 0.176 97 -6.177  <0.0001  ***
T. ludeni (cucumber) - T. urticae (cucumber)  —0.543 0.177 97 -3.068 0.0146 *
T. urticae (bean) — T. urticae (cucumber) 0.542 0.149 97 3.629 0.0025 o

B. Signature of the ghost competitor on performance of T. urticae

Influence of interspecific competitor on demography (from plateau phase)

T. urticae (comp.) — T. urticae (no comp.) —-0.034 0.063 325 -0.544  0.8498
T. urticae (comp.) — T. ludeni (no comp.) 0.475 0.065 325 7.299 <0.0001  ***
T. urticae (no comp.) — T. ludeni (no comp.) 0.510 0.066 325  7.756 <0.0001  ***

C. Performance of T. urticae

Investigate local adaptation (pooled across time points)

T. urticae (no comp.) — T. urticae (comp.) 0.1119 0.0515 453 2.174 0.0767
T. urticae (no comp.) — T. urticae (control) 0.1605 0.0516 453  3.110 0.0056 o
T. urticae (comp.) — T. urticae (control) 0.0486 0.0516 453  0.941 0.6144

compared to 33.1 eggs with four individuals of T. ludeni per cm?®). This effect emerged
from the start of the experiment and was independent of time as the best-fitting model did
not include time.

An extra analysis was performed to investigate whether excluding the 1st months from
the dataset still gave the same results (electronic Table S8). The early competitive pressure
of the ghost competitor was still included as the only explanatory variable in the
best-fitting model when excluding the 2nd month, both the 2nd and 4th months, and the
2nd, 4th and 6th months. When we considered each time point by itself, this result was not
found, which is likely a lack of power.

The early competitive pressure of the ghost competitor did not explain the fecundity
assessed on the original host plant, bean (not included in the best-fitting model). Also, the
density of T. urticae itself or the total initial density was not related to performance during
the fecundity assessments on both bean and cucumber leaf discs (Tables 1-5).

The early competitive pressure of the ghost competitor did not influence the
demography of T. urticae. All T. urticae populations reached similar densities during
the plateau phase regardless of the initial presence of the ghost competitor (19.8 and
20.5 ind./cm? respectively; ¢ ratio = —0.666 and p = 0.7833). At the start, the density of
T. urticae without competition was temporarily higher than the populations of T. urticae
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Table 4 Summary of the final best-fitting GLMM explaining reproductive performance. The values
provided in the table are the raw and untransformed estimates due to the negative binomial distribution
in the model. The number of asterisks determines the level of significance: one asterisk denotes a p value
lower than 0.5, two asterisks lower than 0.01 and three asterisks lower than 0.001.

Estimate SE z value p value

The dynamics and performance of the ghost (fecundity at first measured time point)

(Intercept) (T. ludeni on bean) 2.5867 0.1367 18.92 <2E-16 ek
Cucumber 0.1990 0.1965 1.01 0.3114

T. urticae 1.2838 0.1720 7.46 8.47E-14 e
Cucumber : T. urticae —-0.7407 0.2468 -3.00 0.0027 i

Signature of the ghost competitor on performance of T. urticae

Fecundity assessed on bean (pooled across time points)

(Intercept) 3.7098 0.0899 41.27 <2E-16

Fecundity assessed on cucumber (pooled across time points)

(Intercept) 3.2209 0.0883 36.47 <2E-16 e
Initial density T. ludeni 0.0693 0.0298 2.33 0.0199 *
Density after plateau phase

(Intercept) (T. ludeni without comp.) 2.5095 0.0539 46.55 <2E-16 i
T. urticae with comp. 0.4751 0.0651 7.30 2.91E-13 o
T. urticae without comp. 0.5095 0.0657 7.76 8.79E-15 s
Performance of T. urticae (fecundity pooled across time points)

(Intercept) T. urticae without comp. 3.5241 0.0395 89.23 <2E-16 e
T. urticae under comp. -0.1119 0.0515 -2.17 0.0297 *
T. urticae control -0.1605 0.0516 -3.11 0.0019 o

with T. ludeni present (Fig. 2A), which is most likely due to the differences in starting
densities of T. urticae between both treatments.

Performance of T. urticae

We compared the performance of mites from a control population that was maintained
on bean plants with mites adapting to cucumber where in both cases the interspecific
competitor was replaced by conspecifics. The evolved individual fecundity of the control
population was significantly lower for the assessment on cucumber than the evolved
individual fecundity of populations grown on cucumber (28.9 vs. 33.9 eggs after 6 days;
t ratio = —3.110 and p = 0.0056), which suggests local adaptation to the novel host plant for
the latter group (Fig. 3B; Tables 1-4).

DISCUSSION

The process of genetic adaptation to novel environmental conditions is typically studied
and understood from the perspective of the available genetic variation and selection
pressures as imposed by the environment. Because competing species are an intrinsic
part of novel experienced environmental conditions, they are known to mediate sometimes
complex evolutionary processes. Here we provide empirical evidence that initial
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Table 5 Model selection (A) and Wald x* test (B) for the influence of total initial density on
fecundity. Overview of the best models based on the lowest AICc with an AICc weight of at least 0.100.

(A) Model df LogLik AICc AAICc AICc weight

Fecundity assessed on bean — max. model: fecundity ~ time + total initial density + time : total initial density +
(1|block/island)

No fixed effects 4 —-768.410 1,545.1 0.00 0.293

Total initial density 5 -767.371 1,545.1 0.04 0.287

Time 8 -764.312 1,545.5 0.45 0.235

Time + total initial density 9 -763.522 1,546.2 1.10 0.170

Fecundity assessed on cucumber — max. model: fecundity ~ time + total initial density + time : total initial
density + (1]island)

No fixed effects 3 —597.445 1,201.1 0.00 0.617

Total initial density 4 -597.132 1,202.5 1.48 0.294

(B) Independent variables Chisq Df Pr(>Chisq)

Fecundity on bean Time 8.3414 4 0.0798
Total initial density 1.5149 1 0.2184
Time : total init. dens. 4.4325 4 0.3506

Fecundity on cucumber Time 4.2049 4 0.3790
Total initial density 0.7819 1 0.3766
Time : total init. dens. 3.8180 4 0.4312

competition between two species can have a long-lasting effect on their performance in a
novel environment.

The unintentional rapid extinction of T. ludeni seems a logical consequence of the
higher attained fecundity of T. urticae on the novel host already at the onset of the
experiment (Fig. 2C). This higher fecundity and hence higher growth rate increased the
chance for better establishment or recovery after disturbance (Turcotte, Reznick ¢» Hare,
2011, 2013). Also, populations from T. urticae were at a higher density at the plateau
phase than populations from T. ludeni (Fig. 2B). The density of T. urticae on the measured
surface was almost fifty percent more than the density of T. ludeni when grown alone.
This suggests that T. urticae has a higher resource efficiency than T. ludeni, which could for
instance arise from evolved detoxification mechanisms as often found between herbivores
and their hosts (Després, David & Gallet, 2007; Dermauw et al., 2018). The population
size at the plateau phase might not only be due to a signature of ecological dynamics,
but may also be a consequence of adaptation itself, because the carrying capacity may
be affected by organismal traits. In this case, our results suggest selection for growth rate
but not for carrying capacity due to ghost competition. After 1 month the density of
populations of T. urticae without heterospecific competition was higher than that of
populations with heterospecific competition, but this difference vanished together with the
extinction of the competitor. This probably means that the ghost competitor (when
still present) decreased the available resources resulting in a lower population size for
T. urticae (Fig. 2A). Another explanation is a delayed growth due to the lower initial
population size in the experiment.
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We have shown that the higher the competitive pressure of the ghost competitor
(as measured by its average density in the 1st month), the higher the fecundity of T. urticae
was on the novel host plant (Fig. 3B). We speculate that a higher selection pressure was
exerted under a higher early competitive pressure of the ghost competitor, which
eventually led to an increase in fecundity of the focal species. It is known that the
competitor, T. ludeni, can down-regulate plant defences (Godinho et al., 2016), but this
cannot explain the correlation between its density and the fecundity of the focal species
even long after the ghost competitor went extinct, because plants were refreshed weekly.

Furthermore, we compared the evolved individual performance of mites from a
control population (maintained on the initial host plant) with mites adapting to cucumber
with or without the ghost competitor. We found that individuals from populations of
T. urticae grown on cucumber plants without T. ludeni reached a higher evolved fecundity
on the novel host plant than individuals from the control population (maintained on
the initial host plant), implying local adaptation to the novel host (Fig. 3B). This difference
in evolved individual fecundity with the control population was not found for individuals
from the populations that were initially under competition with T. ludeni when
considering all these populations as a single group (so not splitting them according to initial
population size of T. ludeni). However, the fecundity of this group under interspecific
competition was also not significantly different from the adapted T. urticae populations
without interspecific competition, indicating that this group was intermediate between the
adapted group without interspecific competition and the control population.

We explain this by the various degrees of early competitive pressure in this group under
heterospecific competition, the main result of our study. We suggest that not finding a
difference in fecundity with the control population may be due to an initial trade-off
between performance on the novel host and the ability to compete with heterospecifics
(Siepielski et al., 2016). It is possible that the populations under competition initially
adapted to the competitor and that this lowered the amount of standing genetic variation
necessary for adaptation to the novel host. A likely alternative explanation for these
various degrees of early competitive pressure is variation in drift effects which is more
probable in the populations under heterospecific competition because of the lower initial
population size per species. Under a scenario of strong drift effects we would expect
large differences in performance between replicates with and without T. ludeni (and thus
with high or low initial population size for T. urticae), but they were quite similar (Fig. S1),
so strong drift can be largely discarded as a driver of the observed evolutionary dynamics.

Individuals from populations where half of the population was replaced with
heterospecifics could not adapt as well to the novel host plants as the populations
consisting of only conspecifics. This could be due to a higher selection pressure from
conspecifics compared to heterospecifics which may in turn be due to the larger initial
population sizes or due to a larger niche overlap (Bolnick, 2001; Svanbdck ¢ Bolnick, 2007).

The history of species in a community can have an impact on interspecific interactions
(Fukami, 2015). The magnitudes of such historical contingencies do, however, strongly difter
among species and environments (Vannette ¢ Fukami, 2014). Differences in historical
contingency may explain why some populations experience radiations, whereas others from
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the same clade do not achieve this under seemingly similar conditions (Seehausen, 2007).
Our results suggest that increased interspecific competition leads to higher selection
pressures and thus improved performance (Fig. 3B). Our results coincide in this respect with
other empirical work demonstrating that increased competition with heterospecifics
increased local adaptation in bunchgrasses (Rice ¢» Knapp, 2008). Similarly, intraguild
predation between lizard species increased the selection pressure and led to strong divergence
in morphological adaptation as associated with niche specialisation (Stuart et al., 2014).

Nevertheless, we have to be careful with generalising our results. First, we chose small
populations sizes as they are more biologically relevant, but this may limit adaptation
and establishment (Del Castillo et al., 2011; Yates ¢ Fraser, 2014). We also used populations
that have been maintained in the lab for many generations, probably leading to a decrease
in genetic variation compared to wild populations. The problems we encountered in
creating isofemale lines for T. ludeni could be an indication of inbreeding depression.
However, we are confident that our results are robust as we could still provide evidence for
local adaptation in the populations of T. urticae without competitor (Fig. 3B). This suggests
that the initial amount of genetic variation did not limit T. urticae in our study.

Second, it is impossible to add a competitor without changing total population
sizes, population densities, or island sizes; all of these affect genetic variation and drift
(Del Castillo et al., 2011; Alzate, Etienne ¢» Bonte, 2019). As it is known that larger
populations usually contain more genetic variation, we chose to standardise this by means
of isofemale lines, knowing that this might create differences in drift among treatments.
One way to better disentangle the effects of drift from those of selection with our
small population size would have been to increase the number of replicates which was
difficult for logistical reasons.

Third, our experimental design is not strictly suitable to assess adaptation in the
interspecific competition treatment, as we did not keep a heterospecific control population
on bean (again for logistical reasons). Hence, we cannot disentangle the effect of changes
in fecundity due to competition (independent of the novel environment) from the
effect of competition on adaptation to the novel environment. Although this means that
we cannot detect adaptation in the treatment under ghost competition, we did find a
positive influence of the density of the ghost competitor on fecundity, meaning that early
competitive pressures substantially matter and providing evidence for eco-evolutionary
dynamics.

CONCLUSIONS
In conclusion, we have shown the importance of early selection pressures such as ghost

competition. Even when one species becomes extinct, the competition signature continues
to affect the adaptation process of the successful species.
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