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Understanding the evolution of human intelligence from great apes to humans is an
important undertaking in the science of human genetics. Recently, a great deal of
biological research has been conducted to search for the human-specific genes and
variations that have resulted in the significant increase in human intelligence over that of
apes. It is very important, yet extremely difficult, to discover additional genes involved in
the evolution of human intelligence and various approaches need to be taken to further
explore the issue. We designed a new strategy to discover genes involved in the evolution
of human intelligence. Information was collected from published GWAS works on
intelligence and from these a total of 549 genes located within the associated loci were
identified. The intelligence-related genes containing a human-specific variation were
detected based on the latest high-quality genome assemblies of three great apes,
including 40 strong candidates involved in human intelligence evolution. Expression
analysis using RNA-Seq data revealed that most of the genes displayed a relatively high
expression in the cerebral cortex. However, there is a distinct expression pattern between
humans and other species, especially in the-tissues-ef-the-neocortex tissues. Our work
may provide a list of strong candidates for the evolution of human intelligence, which may
also imply that some intelligence-related genes may undergo inter-species evolution and
contain intra-species variation. More importantly, the work provides a new method in
searching for the key genes in human evolutionary genetics.
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Abstract

Understanding the evolution of human intelligence from great apes to humans is an important
undertaking in the science of human genetics. Recently, a great deal of biological research has
been conducted to search for the human-specific genes and variations that have resulted in the
significant increase in human intelligence over that of apes. It is very important, yet extremely
difficult, to discover additional genes involved in the evolution of human intelligence and
various approaches need to be taken to further explore the issue. We designed a new strategy to
discover genes involved in the evolution of human intelligence. Information was collected from
published GWAS works on intelligence and from these a total of 549 genes located within the
associated loci were identified. The intelligence-related genes containing a human-specific
variation were detected based on the latest high-quality genome assemblies of three great apes,
including 40 strong candidates involved in human intelligence evolution. Expression analysis
using RNA-Seq data revealed that most of the genes displayed a relatively high expression in the
cerebral cortex. However, there is a distinct expression pattern between humans and other
species, especially in the tissues of the neocortex tissues. Our work may provide a list of strong
candidates for the evolution of human intelligence, which may also imply that some intelligence-
related genes may undergo inter-species evolution and contain intra-species variation. More
importantly, the work provides a new method in searching for the key genes in human

evolutionary genetics.
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Introduction

The rapid change in intelligence from great apes to humans is one of the greatest mysteries in
evolutionary genetics (Varki et al., 2008). Physically, humans have brains with significantly
increased size and complexity with a large expansion of the neocortex wersus their ape
counterparts (Rakic., 2009; Chenn et al., 2002; Lui et al., 2011). Corresponding to the increased
size of the neocortex, humans are much more intelligent than chimpanzees, although
chimpanzees are able to learn to use some specific tools and undertake certain tasks. The human
advantage in intelligence has helped this species compete with nature over the past few million
years and survive, create tools, civilizations, and sciences (Deary et al., 2012). The superior
intelligence is thought to be derived from changes in genetics, owing to a small fraction of the 1%
of sequence differences between the human genome and the chimpanzee genome, in which the
hominid-specific gene insertions, deletions, and duplications played a critical role (Cheng et al.,
2015). Various approaches in molecular biology have been used to search for the human-specific
genes and mutations, that have led to the remarkable leap in human intelligence. For example, in
a very recent study, the information from gene expression profiling was integrated with the
information from gene duplications in the hominid and human lineages, which was then used to
search for the human-specific genes that were highly expressed during human corticogenesis. In
>35 candidates obtained through bioinformatics analysis, NOTCH2NL was functionally
investigated and found to be able to expand cortical progenitors, serving as an important gene
contributing to the evolution of the human brain (Fiddes, et al., 2018; Suzuki et al., 2018). More
recently, several human-specific genes and variations have been identified in which the genetic
changes often occurred in gene regulation regions or resulted from the hominid-specific gene
duplications; these include the NOTCH2NL gene, as well as FZDS8, SRGAP2, ARHGAPI1 1B, and
TBCID3, (Boyd et al., 2015; Dennis et al., 2012; Charrier et al., 2012; Florio et al., 2015; Ju et
al., 2016).

As a highly heritable trait, intelligence has been intensively investigated using forward
genetic approaches (Davies et al., 2015; Davies et al., 2016; Sniekers et al., 2017; Trampush et
al., 2017; Zabaneh et al., 2018; Savage et al., 2018; Davies et al., 2018; Hill et al., 2016; Hill et
al., 2019). Several genome-wide association studies (GWAS) and meta-analyses using very large
human populations have been performed to identify the genomic loci and related genes
underlying intelligence. Despite a significant enrichment in the nervous system, the functional

links of the identified genes are diverse and a wide variety of genes are involved (Davies et al.,
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2015; Davies et al., 2016; Sniekers et al., 2017; Trampush et al., 2017; Zabaneh et al., 2018;
Savage et al., 2018). This suggests that the evolution of intelligence from great apes to humans
should also be a complicated process and that the causative genes may be derived mainly from
those in the central nervous system; however, genes from many related biological processes may
be also involved.

Investigating the human-specific variations (genetic differences between human and the great
apes) would provide key clues for understanding the process of the evolution of human
intelligence. However, the previous reference genomes of great apes (e.g., the human sequence
guided assembling from short reads) are not qualified enough for the detection of complex
structural variations (Priifer et al., 2012; Scally et al., 2012; Prado-Martinez et al., 2013) such as
tandem repeats, large-scale inversions, and duplications. However, these structural variations
usually play important roles in human evolution (McLean et al., 2011). Hence, comparative
genomic analysis from the complete genome sequences of both human, and great apes is needed
to comprehensively mine the genetic variation. Recently, the high-quality genome sequences of
three of human’s closest relatives, chimpanzee, orangutan, and gorilla, were generated from
long-read sequencing (PacBio technology) and de novo assembly (Kronenberg et al., 2018;
Gordon et al., 2016). The chromosome-level contiguous genome assemblies facilitate a deeper
understanding of the genomic differences between these species. These differences are
responsible for all phenotypic differences between humans and apes but it is difficult to know
which variants are specific to intelligence.

In order to further search out the candidate genes related to the evolution of human
intelligence, we suppose that some intelligence gene may have both inter-species (between
human and the great apes) and intra-species (within human) variations. We collected genomic
loci identified by several sets-of GWAS on human intelligence. Genes in these loci (termed as

intelligence-associated-genes) could be related to the intra-species intelligence differences. DNA

the inter-species variations.
intelligence-associated gene
intelligence-associated genes contained human-specific structural variations, including tens of
strong candidate genes related to the evolution of human intelligence. Coupled with the

expression profiling of the genes, this genome-wide analysis provided a useful resource for the
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evolutionary genetic studies on intelligence.

Materials & Methods
Identification of candidate genes from GWAS on human intelligence

To exploit the genes related to human intelligence, six major works were collected from
GWAS or meta-analyses on human intelligence with a large sample size in-therecent five years
(various intelligence related phenotypes including general cognitive, reaction time, verbal-
numerical reasoning), which identified 271 loci associated with intelligence in the human genome
(Table S1). The six GWAS studies include (i) meta-analyses for general cognitive function
(n=53,949, Davies et al., 2015); (i1)) GWAS of cognitive function and educational attainment
(n=112,151, Davies et al., 2016); (iii) meta-analyses for calculated Spearman’s g or a primary
measure of fluid intelligence (n=78,308, Sniekers et al., 2017); (iv) GWAS using human
populations with extremely high intelligence (n=1,238, Trampush et al., 2017); v) meta-analysis
and gene-based analysis for human cognition using 24 cohorts (#=35,298, Zabaneh et al., 2018);
(vi) a recent meta-analysis of 14 independent epidemiological cohorts with intelligence assessed
(n=269,867, Savage et al.,, 2018). All the independent, significantly associated SNPs
(IndSigSNPs) nearest genes (based ANNOVAR annotations) were integrated with the
redundancies (the same gene identified in more than one study) removed. We take these genes as
“bait genes” (Table S2), which are candidates for human intelligence-related genes.

It should be noted here, because genotype imputation was not performed for the X
chromosome in some cohorts (e.g., the UKB cohort including 195,653 samples with the assessed
phenotype verbal and mathematical reasoning) and GWAS have relatively low power in
discovering the associations in the 23th chromosome, the potential genes related to intelligence

in the sex chromosomes were not included in our “bait genes”.

Comparative genomics analysis for the intelligence genes

Previous studies (McLean et al., 2011; Kronenberg et al., 2018; Dennis et al., 2017) have
identified a number of human-specific variants that were included in our work including exon
gain and loss, STR, indels, hCONDEL, HSDs, and large structural variations. The human-
specific variation that was located within each of the 549 genes was left for further analysis using
a window of 1 Kb. The genome sequences of three great apes were downloaded from the NCBI

database. The reference genome sequences from Pan troglodytes (chimpanzee), Pongo abelii
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(Orangutan) and Gorilla gorilla (Western Lowland Gorilla) were downloaded from:
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/880/755/GCF _002880755.1 Clint PTRv2,
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/880/775/GCF_002880775.1 Susie PABv2, and
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/151/905/GCF _000151905.2 gorGor4,
respectively. Localized alignments of the target gene sequences were performed to filter out the
false positives—ef human-specific variations from previous reports (Kronenberg et al., 2018;
Dennis et al., 2017). The local sequences of the human genome were retrieved from
chromosomes found in the GRCh38 version, and were then aligned with great ape genomes
using BLASTn (ncbi-blast-2.2.28+ version) with the parameters “-evalue 1E-50 -dust no”. The
human-specific variation that was undetectable with a local BLAST was then removed for
subsequent analyses, thus generating the “prey genes” (Tablel and Table S3-S5).
Investigation of HIEGs

Most “prey” genes contained the human-specific variation in introns, with-thevariation-far
away from the exon-intron junction site. This may not affected the gene functions, so only the
genes that contained variations in the coding regions were considered, named as—Human
intelligence evolution genes (HIEGs). These HIEGs included all the genes containing exon-
gain/loss (2 genes), hCONDEL (28 genes), or HSD (1 gene), and genes with exon-located indels
(8 genes) or STRs (4 genes). 40 non-redundant genes were finally identified, which were
associated with human intelligence and which carried significant human-specific variations.
The gene transcript information was obtained from Ensembl Release 95
(Http://asia.ensembl.org/index.html). For exon alignment, all transcript isoforms of one gene
were compared both intra-species (within human) and inter-species (between human and the
great apes) in order to confirm the specificity of the new transcript in humans. The human-
specific transcripts and their most similar principle transcripts in humans and great apes are
shown in Figure 3. The human principle isoform, the variant isoform, the chimpanzee isoform,
the gorilla isoform, and the orangutan isoform of the PCCB gene are ENST00000469217
(NM_001178014), ENST00000466072, ENSPTRT00000028811, ENSGGOT00000005484 and
ENSPPYT00000016431, respectively. The human principle isoform, the variant isoform, the
chimpanzee isoform, the gorilla isoform, and the orangutan isoform of the STAUI gene are
ENST00000371856, ENST00000340954, ENSPTRT00000050938, ENSGGOT00000048652
and ENSPPYTO00000012903, respectively.

The analysis for protein domain was performed using the Simple Modular Architecture Research
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Tool (SMART) in the normal mode (Http://smart.embl-heidelberg.de). The protein accession
numbers in humans, chimpanzees, gorillas, and orangutans for KMT2D are NP 003473,
XP 016778992, XP 018894141, XP 024112209, respectively. The protein accession numbers
in human, chimpanzee, gorilla, and orangutan for TRIOBP are NP 001034230, XP 016794633,
XP_ 004063488, and H2P4B5 (UniProt), respectively. We performed multiple alignments using
the software Constraint-based Multiple Alignment Tool (COBALT,
ftp.ncbi.nlm.nih.gov/pub/agarwala/cobalt).

Expression analysis for the candidates for intelligence evolution

We assessed the expression patterns of the HIEGs using transcriptome data for humans and
their closest relatives. The HPA RNA-seq data was downloaded from the Human Protein Atlas
(Http://www.proteinatlas.org), including 102 samples of 37 tissues, in which TPM (transcripts
per million) was used for the evaluation of expression levels. In order to compare the expression
levels between humans and great apes, the RNA-Seq data (NCBI ID: GSE100796) from 107
samples of 8 brain regions from humans, chimpanzees, gorillas, and gibbons was used (Xu et al.,
2018). The brain tissues included five neocortical areas, namely the anterior cingulate cortex
(ACC), the dorsolateral prefrontal cortex (DPFC), the ventrolateral prefrontal cortex (VPFC), the
premotor cortex (PMC), the primary visual cortex (V1C), and three other brain tissues including
the hippocampus (HIP), the striatum, and the cerebellum (CB). Hierarchical cluster analysis was
applied using the RPKM (reads per kilobase per million) of 39 genes in 8 brain tissues of
humans and three primates and was displayed wusing the software MeV4.2

(http://www.tm4.org/mev.html).

Results
A strategy for searching for genes in human intelligence evolution

The study strategy that was used for detecting the candidate genes in the evolution of human
intelligence is briefly described in Figure 1. Hundreds of genetic loci have been identified by
GWAS in the last ten years and studies have been conducted using large population data for
human intelligence and its related traits (e.g., general cognitive ability, reaction time, and verbal-
numerical reasoning). We take the genes implicated by these genetic loci as “bait genes” which

are related to human intelligence. In the meantime, comparative genomics analyses between the
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human genome and the great ape genomes (including those of the chimpanzee, gorilla, and
orangutan) were used to identify kinds of specific human variations. The human-specific
variations are taken as “variation ponds” that are related to human evolution. The “baits” and
“ponds” were then integrated to detect intelligence-related genes with human-specific variations
as “prey genes” which are related to the evolution of human intelligence. Furthermore, based on
the potential influence of the sequence variations and other gene function studies, the strong
candidates in the “prey genes”  was highlighted as potential human intelligence evolution
related genes (HIEGs). The expression profiles of HIEGs were also investigated.
Preparation of bait genes

We integrated six high quality GWAS works and the large-scale meta-analyses from the last
five years that were found through publication searches. This enabled the identification of a total
of 271 associated loci in the human genome underlying intelligence related phenotypes (Table
S1). It should be noted that some GWAS works underlying human intelligence that have been
published very recently may be not included in this study. This would not affect our analyses
because this study aimed to provide some candidate genes for human intelligence evolution and
cannot identify all related genes at one time. According to the human gene annotation
information, a total of 549 human genes were found to be located within the 271 associated loci.
The 549 human genes, used as “bait genes” (Table S2), were distributed across the whole human
genome as indicated by red dots in Fig. 2.

The “baits” constituted intelligence-related genes from GWAS underlying intra-species
intelligence variations in human populations. A subset of these may be involved in the evolution
of intelligence from great apes to humans. Hence, the comparative genomics analyses between
great apes and humans were further added to examine whether there was a human-specific

variation hit by our “bait genes”.

Human-specific variation on the intelligence related genes

The nearly compete genome sequences from chimpanzees, gorillas, and orangutans have
become fully available recently through single-molecule, real-time (SMRT) long-read
sequencing, providing a large number of high-quality sequence differences between the human
genome and great ape genomes. The new genome assemblies had improved the resolution of
large and complex regions. We incorporated the human-specific structural variations (from

intermediate size to large size) into a “variation pond”, including exon gain/lost, short tandem
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repeats (STRs), insertion/deletion (indels) of more than 50bp, and inversions. Moreover,
considering the important role of the human-specific segmental duplications (HSDs, >1kb
sequence with >90% similarity, indicating the large recent duplication events, Bailey et al., 2001)
in new gene function and human evolution (Dennis et al., 2016), the HSDs identified recently
from the genomic information of both the macaque and mouse (Dennis et al., 2017) were added
into the “pond”. After putting the “bait genes” into the “variation pond”, we found 406 sequence
variations physically located within 213 genes related to intelligence, which is considered to be
“prey genes” (Fig. 2). The 213 “prey genes” linked the inter-species and intra-species variations
and may be related to the evolution of human intelligence. Additionally, the potential effects of
the human-specific variation through local sequence comparisons and gene structure analyses
were carefully checked. Following in-depth analyses, there were 40 strong candidate genes that
were identified as containing human-specific variations, probably changing either the coding or
the expression of intelligence related genes, which were named Human intelligence evolution

genes (HIEGs, Table 1).

Exon gain and loss on the intelligence related genes

There were only two genes classified as the “prey genes” with exon gain or loss events during
the evolution of the human lineage, PCCB and STAUI (Table 1). The PCCB gene encoding the
propionyl-CoA carboxylase subunit beta, was located in the locus on chromosome 3 identified
by GWAS for intelligence (P =1.956x10-9, Savage et al., 2018). Human PCCB contained 15
protein coding isoforms according to the Ensembl release 95. The principal isoforms generated
proteins of 539 aa, 559 aa and 570 aa, respectively, all of which have identical isoforms in the
chimpanzee. However, comparative genomics analysis showed human-specific variation led to
the generation of a new transcript variant. Compared with the principal isoform, the variant lost a
60-bp exon (exon 4 of principal isoform) but gained another new 60-bp exon (exon 11 of the
variational isoform). The gained 60-bp exon did not appear in any transcripts of the PCCB of the
three great apes (Fig. 3A). This human-specific transcript variant can be detected in the human
cerebral cortex at a lower level than that of the principal isoform (note: transcriptome data was
obtained from the Human Protein Atlas, HPA). However, the relative expression level in the
cerebral cortex, relative to the average expression level of this gene in 37 tissues, of the PCCB
variant was higher than the principal transcript (Fig. 3B), implying a potential role of the human-

specific PCCB transcript variant in the cerebral cortex. Although there were few reports on
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neuron system development for PCCB, mutations in PCCB are one of the major causes of the
genetic disease propionic academia (PA). Neurological complications, such as intellectual
disability, brain structural abnormalities, optic neuropathy, and cranial nerve abnormalities are
significant symptoms of PA (Schreiber et al., 2012). Moreover, there were reports that patients
carrying PCCB mutations exhibited intellectual disabilities (Witters et al., 2016).

STAUI was also located in a locus identified by GWAS for intelligence (Savage et al., 2018).
STAUI encoding the double-stranded RNA-binding protein which regulates RNA metabolism.
There were a total of 10 protein-coding isoforms of human STAUI. Compared with the longest
principal isoform, a human-specific insertion resulted in a gain of 123-bp exon (exon 2, located
within the 5’UTR of the gene) in one transcript variant, was not detected in any transcripts of the
chimpanzee, gorilla, or orangutan. The isoform, with the addition of a 123-bp exon, is a new
isoform in the human transcriptome (Fig. 3C). The human-specific isoform was expressed in
many human tissues. In the human cerebral cortex, the expression of the new isoform was
equivalent to ~21% of that of the principal isoform of the gene (Fig. 3D). Previous functional
studies found that STAUI plays a role on mRNA transport in neuronal dendrites (Broadus et al.,
1998).

STR variations on the intelligence related genes

In the variation pond, there were a total of 1,465 human-specific STR contractions and 4,921
human-specific STR expansions. These STRs hit 100 “prey genes” (26 genes containing the STR
contractions and 74 genes containing the STR expansions, Table S3). Most of the human-
specific STR variation was located within the intron regions or intergenic regions. Only four
human-specific STRs were located within the exonic regions, highlighted as HIEGs (Tablel).
Among them, three STR expansions were located within the exon of noncoding isoforms of three
genes (ARIH2, STABI and TSNAREI), and one STR contraction was located within the 39th
exon of the KMT2D gene.

KMT2D, also known as MLL2, encodes an H3K4 histone methyltransferase in humans made
up of 5537 amino acids. GWAS for intelligence detected one associated locus (P =2.518x10-14,
Savage et al., 2018) on chromosome 12 containing the candidate gene KM72D. Compared with
the KMT2D sequence in great apes, the STR region contracted for 60-bp in the c.11838, and this
region was also polymorphic among the human population. The contraction led to a 16-aa

discontinuous deletion for the human KMT2D protein from the p.3958 position (Fig. 3E). The
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STR region is in the coiled coil region for KMT2D, which could affect the protein structure
through wrapping the hydrophobic residues and forming an amphipathic surface (Mason et al.,
2004). Mutations in KMT2D are the main cause of the genetic disease Kabuki syndrome, and
several mutations in the 39" exon have been found in Kabuki patients. Kabuki syndrome affects
mental capabilities and most of these patients show various levels of intellectual disability
(Lehman et al., 2017).

Indels on the intelligence related genes

Among 5,894 human specific deletions and 11,899 human specific insertions in the “variation
pond”, we found 94 “prey genes” with 148 deletions and 144 genes with 298 insertions (Table
S4). Furthermore, it was found that there were 7 insertions and 1 deletion for the exonic regions,
as highlighted by the HIEGs (Table 1). Insertions in PDE4D, NRXNI, EXOC4, FUTS, and
ZNF584, and the deletion in SLC27A5 affect the lengths of the noncoding isoforms of the six
genes, while one insertion in TRIOBP resulted in a gain of 675-bp coding regions (c.887-1560)
in the 5th exon of the longest isoform when compared with that in the chimpanzee. This
variation resulted in a 238-aa discontinuous insertion in the region p.296-811 of the human
TRIOBP protein (Fig. 3F). The GWAS for intelligence (P= 3.582x10-8, Savage et al., 2018) and
the GWAS for underlying brain ventricular volume also identified the gene TRIOBP as a strong
candidate (Vojinovic et al., 2018). Biochemistry experiments have shown that TRIOBP could
physically interact with TRIO, which is an important gene involved with neural tissue
development (Seipel et al., 2001). Mutations in TRIOBP can cause autosomal recessive deafness-
28 (DFNB28), which is a genetic disease, and surprisingly, several causal mutations have been
located within the human-specific insertion regions (e.g., R347X and Q297X) (Shahin et al.,
2006). Hence, the human-specific variation in 7TRIOBP is probably also involved in the evolution
of human intelligence.

We also searched for human conserved deletions (hRCONDELSs) near the “bait genes” that
had been previously identified (McLean et al., 2011; Kronenberg et al., 2018).  These
sequences are lost in the human genome but are highly conserved among other species (including
great apes, the macaque, and the mouse). In total, 28 “prey genes” were identified as containing
the hCONDEL and all 28 genes were taken into HIEGs with the high lineage specificity of
hCONDEL (Table 1) serving as important signs of intelligence evolution. The list included
NRXNI1, GRID?2 and GRIA4, which were all involved in neurotransmission and the formation of
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synaptic contacts. The GNB5 gene in the associated locus on chromosome 15 (P= 2.47x10'1,
Savage et al., 2018), which is responsible for encoding the beta subunit of heterotrimeric GTP-
binding proteins (G proteins), was found to be one of the HIEGs. GNB5 was expressed in the
brain tissues and participated in neurotransmitter signaling (e.g., through the dopamine D2
receptor) (Xie et al., 2012). In human populations, mutations in GNB5 have been reported to
cause several diseases affecting intelligence, including language delay, ADHD/cognitive
impairment with or without cardiac arrhythmia, and intellectual developmental disorder with
cardiac arrhythmia (Lodder et al., 2016). Aligned with the genome sequences of great apes, we
found that there was a 292-bp human-specific insertion in the 3’UTR of the gene and a 1,472-bp
hCONDEL in the intron (2.7 kb distance to the third exon) of the gene (Fig. 2). The human-

specific variation in GNBS might participate in the evolution of human intelligence as well.

Large structural variations on the intelligence related genes

The inversion variation is a rearrangement in which a genomic segment is reversed. Based on
the previous report, there were a total of 625 inversions in our “variation pond” ranging from 9
kb to 8.4 Mb in size. Among these, 31 of them hit the “bait genes” (Table S5). However, none of
these genes were located in the breakpoint of the human-specific inversions.

There were 218 human-specific duplications (HSD) of > 5 kb that were also reported
(Prado-Martinez et al., 2013). Among them, one 24.6-kb HSD was detected to be overlapped
with the AFF3 gene. The AFF3 contained an hCONDEL around the intron-exon junction regions
(31-bp distance to the exon). The region around AFF3 has been identified to be an associated
locus in found in two distinct meta-analyses conducted on intelligence (P= 1.56x108[16] or P=

3.41x10719, Savage et al., 2018), but no functional reports on neuron development are available.

Expression profiling analysis of the HIEGs

The transcriptome data from 37 human tissues in the Human Protein Atlas database (Uhlén et
al, 2015) was used to investigate the tissue expression patterns of the 40 highlighted HIEGs (Fig.
4A). Of these there were 23 genes with higher expressions in the cerebral cortex than its average
expression in all 37 tissues. Furthermore, there were 12 genes with more than twofold
expressions in the cerebral cortex versus its average expression levels. These were regarded as
genes that were potentially involved in the development of the cerebral cortex. Except the case

for FUTS, the remaining 11 genes are the hCONDEL-containing genes. Four genes, including
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GRIA4, NRXNI, CADM?2, and CALN, were highly expressed in brain tissues but had low
expressions in the other tissues; SGCZ, DCC, and GRID?2 showed relatively high expressions in
brain tissues with low expressions in all other tissues; and NCAM1, FBXL17, FUTS and GNBS5
were expressed well in all tissues.

A transcriptome dataset sampling eight brain regions (five neocortical areas, hippocampus,
striatum, and cerebellum) of both humans and four primate species (chimpanzees, gorillas,
gibbon, and macaques) was very recently reported (Xu et al., 2018), which enabled a
comprehensive interspecies comparison. This dataset was used to examine whether the human-
specific variation led to the expression changes in the cortex of HIEGs between humans and
great apes. The expression data of the other 39 genes, with the exception of STAU1, can be found
in the transcriptome dataset. Among them, the expression levels of the genes AFF3, SKAPI,
REEP3, DCC, and SGCZ in the human neocortical areas were much lower than those in the
neocortical areas of great apes (fold change <0.5), while the expressions of STAB/ in the human
neocortex were much higher than those in great apes (fold change= 4.8). Hierarchical clustering
was also performed for the 39 gene expressions in all samples. We found that 5 neocortices in
the same species could be always clustered (that is, one clade for one species), while CB, STR,
and HIP were generally clustered based on their tissue types (Fig4 B). This result suggested that
the expression profiles of the HIEGs in the neocortex tissues displayed a strong species
specificity, which was in contrast to the profiles in these non-neocortex tissues (e.g, CB). Taken
together, it was possible to determine that the human-specific variation in the intelligence-related

genes may have effects on the changes in expression in the neocortex tissues.

Discussion

The understanding of human intelligence from the view of evolutionary genetics is an
important scientific undertaking. Science magazine posted 125 scientific questions to cover over
the next quarter-century which were selected to cover various disciplines as a way to celebrate its
125th anniversary (Kennedy et al., 2005); among the top 25 questions, human evolution was
addressed with the question: “What Genetic Changes Made Us Uniquely Human?” (Culotta.,
2005). Obviously, a genetic rise in intelligence over the last million years is a key step in human
evolution, making us uniquely Homo sapiens. The high-quality genome assemblies of three great
apes were completed recently and the improved sequence contiguity enabled more

comprehensive and accurate discoveries with complex variations. With both the human genome
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sequence and those of our closest relatives becoming available, it is possible to pinpoint the
genetic changes underlying the phenotypic differences between humans and great apes. However,
it is still very challenging to study the causative genetic changes that are responsible for the rise
in human intelligence because the molecular mechanisms controlling human intelligence are
largely unknown. One possible solution is to utilize the genetic findings on intelligence from
GWAS. A subset of genes with that reveals the differences in the evolution of intelligence in the
human-chimpanzee may also contain intraspecific allelic variation underlying the variation of
intelligence levels in human populations. Hence, in this work we integrated both the latest
GWAS information on intelligence and the latest advances in great ape genomics, aiming to
mine the gene clues to understand the evolution of human intelligence. We found several strong
candidates, for example, the genes TRIOBP and GNBS contain human-specific variations and
have the genetic evidence to be involved in the development of intelligence (Vojinovic et al.
2018; Xie et al., 2012; Lodder et al., 2016), although more in-depth molecular evidence and
validations are needed in future experiments.

The associated loci from GWAS in humans often contain several candidate genes, which is
one of the difficulties in our bioinformatics analyses. To avoid artificial bias, all the candidate
genes around the associated loci were included in the collection of “baits”, although usually for
each associated locus only a single one is causative. Consequently, a total of 549 human genes
were included for the 271 associated loci and “bait genes” contain many false positives.
However, we cannot clearly distinguish the true one with the highly linked one, because other
information (e.g., based on expression profiles or the distance to lead SNPs) is often misleading.
As a result, HIEGs must contain many unrelated genes, although the intelligence related genes
involved in human evolution have been partly enriched. Further experiments and analyses may
include the validation of gene functions (whether and how these genes could influence
intelligence the development of intelligence in human brains) and the assessment of the effects of
the human-specific variation (whether and how these sequence variations could influence the
gene coding or the gene expression patterns).

There are already several findings of the human-chimpanzee differences altering the
development of the neocortex to date. The knowledge from the works of gene functional studies
and evolutionary genetics studies greatly enhanced our understanding of intelligence and the
brain (Boyd et al., 2015; Dennis et al., 2012; Charrier et al., 2012; Florio et al., 2015; Ju et al.,
2016). Certainly, the known genes (e.g., NOTCH2NL, FZDS8, SRGAP2, ARHGAPIIB, and
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TBC1D3) are only a small proportion of the whole gene set that encapsulates the vast differences
in brain size and intelligence levels from great apes to humans, leaving many remaining gaps in
our knowledge. More integrated approaches incorporating genetics, genomics, bioinformatics,
and development biology will be needed in future works.

One candidate gene with an exon gain in human evolution, Staufenl (S74AUI), which is
involved in the transport, relocation, translation of mRNA and mRNA decay is known to
regulate the post-transcription phase (Paul et al., 2018). However, the loss of STAU! function in
mice resulted in impaired mRNA transport and reduced synapse formation (Vessey et al., 2008).
Another candidate gene, KMT2D with STR contractions, showed a number of truncating
mutations within KM72D resulting in mRNA degradation through nonsense-mediated mRNA
decay, contributing to protein haploinsufficiency (Micale et al., 2014). It is unclear whether there

are any functional links between the two genes for mRNA processes in brain developments.

Conclusion

GWAS has identified hundreds of genes associated with intelligence variation in human
populations. Through inter-species genome comparisons with great apes, we found a small
proportion of intelligence-related genes that also contained a human-specific variation which
were detected in multiple high-quality genome assemblies of humans and its closest relatives.
Through integrated analytical approaches, especially the careful checking of sequence
alignments and gene annotations, we identified 40 strong candidates in which human-specific
variation may have effects on gene coding or expressions. Transcriptome-wide comparison
between humans and four primate species for the 40 candidate genes suggests that several of
them displayed a different expression pattern among these species. The results implied that at
least a few of the intelligence-related genes may contain both intra-species variations and inter-
species variations. The intra-species variation underlies the small variation of intelligence levels
for different human individuals while the inter-species variation controlled the large genetic
differences of intelligence between great apes and humans. This work may provide a list of
candidate genes to be used in subsequent studies as well as a new route for discovering genes

that are important in the study of human intelligence evolution.
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Figure 1

Strategy of the genome-wide analysis forintelligence associated genes containing
human-specific variations

Grey areas indicated the result used from the previous studies including six GWAS works on intelligence and
the comparative genomics analysis between human and great apes.
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Figure 1. Strategy of the genome-wide analysis for intelligence associated genes
containing human-specific variations.

Grey areas indicated the result used from the previous studies including six GWAS
works on intelligence and the comparative genomics analysis between human and
great apes.
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Figure 2

The distribution of intelligenceassociated genes and their located human specific
variations in the 22autosomes of the human genome

The intelligence associated genes (bait genes) are on the left side of the chromosome bars.
The human specific variations around the intelligence associated loci are indicated by lines of
colors on the right side of chromosome bars. The centromere regions are indicated by red
boxes. STR-c: STR contraction; STR-e: STR expansion; SV-d: deletions; SV- i : insertions; HSD:

human segmental duplications; and hCONDEL : human conserved deletions
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Figure 2: The distribution of intelligence associated genes and their located human specific
variations in the 22 autosomes of the human genome.

The intelligence associated genes (bait genes) are on the left side of the chromosome bars. The
human specific variations around the intelligence associated loci are indicated by lines of colors on
the right side of chromosome bars. The centromere regions are indicated by red boxes. STR-c: STR
contraction; STR-e: STR expansion; SV-d: deletions; SV-i: insertions; HSD: human segmental
duplications; and hCONDEL: human conserved deletions.
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Figure 3

Four candidates involved in humanjntelligence evolution

(A) Gene structures of PCCB in human and great ape genomes. Qiange box represents the gained exon*(also
indicated by red arrow). The mutations in patients with intellectual disability are labeled. Splid box
represents coding exon, aneihollow bo&represent UTR; (B) The expression level of PCCB ef-the-prinetplg
isoform and the-variant isoform. Left panel: TPM of transcript in cerebral cortex. Right panel: TPM in cerebral
cortex relative to 37 human tissues. (C) Gene structures of STAUL. (D) The expression level of STAUL. (E)
The schematic representation of KMT2D and TRIOBP proteins. The protein sequence alignments of regions
with human-specific variation are showed. The numbers indicated the position of amino acids, and the
numbers in square brackets between sequences were hided amino acid.
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Figure: 3 Four candidate genes involved in human intelligence evolution.

(A) Gene structures of PCCB in human and great ape genomes. Orange box represents the
gained exon(also indicated by red arrow). The mutations in patients with intellectual disability
are labeled. Solid box represents coding exon, and hollow box represent UTR; (B) The
expression level of PCCB of the principle isoform and the variant isoform. Left panel: TPM of
transcript in cerebral cortex. Right panel: TPM in cerebral cortex relative to 37 human tissues.
(C) Gene structures of STAU1. (D) The expression level of STAU1. (E) The schematic
representation of KMT2D and TRIOBP proteins. The protein sequence alignments of regions
with human-specific variation are showed. The numbers indicated the position of amino acids,

and the numbers in square brackets between sequences were hided amino acid.
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Figure 4

Expression profiling analysis of 40 HIEGs

(A) The expression levels of the 40 genes in 37 human tissues (data from the HPA). The sort
order of the genes from top to bottom is based on the ratio of the expression in cortex to the
average in 37 tissues, which is indicated behind each gene name. (B) Hierarchical clustering
of the expressions of 39 HIGEs in the 8 brain tissues of human, chimpanzee, gorilla, and
gibbon. ACC: anterior cingulate cortex [J] DPFC: dorsolateral prefrontal cortex; VPFC:
ventrolateral prefrontal cortex; PMC: premotor cortex; V1C: primary visual cortex; HIP:

hippocampus; striatum; CB: cerebellum
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Figure: 4 Expression profiling analysis of 40 HIEGs.

(A) The expression levels of the 40 genes in 37 human tissues (data from the HPA). The
sort order of the genes from top to bottom is based on the ratio of the expression in
cortex to the average in 37 tissues, which is indicated behind each gene name.

(B) Hierarchical clustering of the expressions of 39 HIGEs in the 8 brain tissues of human,
chimpanzee, gorilla, and gibbon. ACC: anterior cingulate cortex: DPFC: dorsolateral
prefrontal cortex; VPFC: ventrolateral prefrontal cortex; PMC: premotor cortex; V1C:
primary visual cortex; HIP: hippocampus; striatum; CB: cerebellum

Peer] reviewing PDF | (2019:08:40721:0:1:NEW 19 Sep 2019)



PeerJ Manuscript to be reviewed

Table 1l(on next page)

The highlighted human intelligence evolution related candidates (HIEGS)
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Table1 The highlighted human intelligence evolution related candidates (HIEGSs).

Variation Genetic
Gene CHR Gene loci Related SNP Variation Type  Variation Position .
Length Disorders
KDM4A 1 43650158-43705515 rs284218804 hCONDEL 43656932 466
NRXN1 2 49918505-51225575 rs7557525014 hCONDEL 50146470 3405 Pitt Hopkins
hCONDEL 50146625 958 like syndrome2
insertion 50827590-50829782 2193
AFF3 2 99545419-100142739 rs714138770'4 HSD 100080237-100104859 24623
rs13010010"] hCONDEL 99554281 1250
THSD7B 2 136765545-137677717  rs2558096!14 hCONDEL 137333693 1212
ARIH2 3 48918821-48986382 rs13096357 insertion 48968205-48968380 176
rs2352974 (STR_expansion)
rs73078367014
STAB1 3 52495338-52524495 rs4687625114 STR_expansion  52509368-52509454 87
SFMBT1 3 52903572-53046750 rs4687625114 hCONDEL 52951656 4034
FOXP1 3 70952817-71583993 rs11720523014 hCONDEL 71460722 449 Mental
hCONDEL 71162689 1760 retardation
CADM2 3 84958981-86074429 rs67706220'4 hCONDEL 85947229 1042
PCCB 3 136250306-136337896  rs9853960!14] exon_gain 136326325-136326385 60 Propionic
acidemia
TFDP2 3 141944428-142149544  rs10804681[14 hCONDEL 142144111 2011
GRID2 4 92303622-93810157 rs19728600"4 hCONDEL 92649012 135 Spinocerebellar
ataxia
BANK1 4 101411286-102074812 rs13107325[14 hCONDEL 101422878 3650
rs13107325 hCONDEL 101990081 4838
TTC29 4 146706638-146945882 rs6840804[14] hCONDEL 146796204 9671
) L. L. . Variation Genetic
Gene CHR Gene loci Related SNP Variation_Type Variation_Position .
Length Disorders
PDE4D 5 58969038-60522120 rs34426618['4 insertion 60429841-60432132 2292
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PAM 5 102753981-103031105 rs76160968!'4 hCONDEL 102883977 3868
FBXL17 5 107859035-108382098 rs1438660 hCONDEL 108119106 959
rs12187824014
CALN1 7 71779491-72447151 rs56150095114] hCONDEL 72221700 2994
SND1 7 127652180-128092609 rs4731392014 hCONDEL 127808446 749
EXOC4 7 133253073-134066589 rs1362739!11 insertion 133889352-133895456 6105
rs47283020"4
SGCz 8 14089864-15238339 rs13253386114 hCONDEL 14090971 277
TSNARE1 8 142212080-142403240 rs4976976!'4 STR_expansion  142326108-142326158 51
REEP3 10 63521363-63625123 rs2393967!4 hCONDEL 63593088 554
GRIA4 11 105609994-105982092 rs7116046!'4 hCONDEL 105754761 3804 Neurodevelopme
ntal
disorder
NCAM1 11 112961247-113278436 rs2885208!4 hCONDEL 113152794 160
RERG 12 15107783-15348675 rs55754731014 hCONDEL 15107134 69
KMT2D 12 49018975-49059774 rs1054442 STR_constraction 49032866 60 Kabuki syndrome
rs146865992['4
PRKD1 14  29576479-30191898 rs971681014 hCONDEL 29869703 1515 Congenital heart
defects
and ectodermal
dysplasia
FUT8 14  65410592-65744121 14:66113725 insertion 65457887-65458201 315 Glycosylation
_C_Al0 disorder
) L. L. . Variation Genetic
Gene CHR Gene loci Related SNP Variation_Type Variation_Position .
Length Disorders
RTF1 15  41408408-41483563 rs75322822[14 hCONDEL 41430384 1965
GNB5S 15 52115105-52191369 rs717297914l hCONDEL 52177036 1472 Language delay
insertion 52121612-52121903 292 and
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SKAP1

DCC

ZNF584
SLC27A5
PHF20
STAU1
DDX27
TRIOBP

EP300

17

18

19
19
20
20
20
22

22

PeerJ

48133440-48430275
52340172-53535903

58401504-58418327
58479512-58512413
35771974-35950381
49113339-49188367
49219295-49244077
37696988-37776556

41091786-41180079

rs12928404111
rs12928404
rs71367283
rs6508220!0"4!
rs73068339114
rs73068339114
rs78084033[14
rs601953514
rs601953514
rs4396807!"4

rs4821995!014]

hCONDEL
hCONDEL
hCONDEL

insertion

deletion
hCONDEL
exon_gain
hCONDEL

insertion

hCONDEL

48286479
48259161
52358208

58404219-58406377
58490956
35797866
49179121-49179244
49221110
37723443-37724117

41135508

343
53
566

2159
3235
3808
124
809
675

2279

impairment;
Intellectual
developmental
disorder

Corpus callosum
agenesis

Nonsyndromic
deafness
Rubinstein-Taybi
syndrome2
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