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ABSTRACT
Background. Soil erodibility (K factor) and soil aggregate stability are often used to
assess soil degradation in an erodible environment. However, their applicability under
land-use change is uncertain, especially agricultural abandonment.
Methods. Different land-use types, including cropland, abandoned cropland, and
native vegetation land, were converted into the successive stages following agricultural
abandonment by space-for-time substitution approach in a small karst catchment,
Southwest China. The indexes of soil aggregate stability and K factor of the Erosion
Productivity Impact Calculator (EPIC)model in soil profiles were calculated to identify
which method is suitable to indicate soil degradation under land-use change.
Results. The indexes of soil aggregate stability in the soils at 0∼30 cmdepth under native
vegetation land were significantly larger than those under cropland and slightly larger
than those under abandoned cropland. The K factor was not significantly different
among the three land use examples because the EPIC model does not consider soil
permeability. In the soil organic carbon (SOC)-rich soils (>2%), the K factor was
significantly correlated with silt and clay content ranging within a narrow scope of
near 0.010 t hm2 h/hm2/MJ/mm. While in the SOC-poor soils, the K factor was
significantly increased with decreasing SOC content and was significantly correlated
with soil aggregate stability.
Conclusions. Soil aggregate stability is more suitable to indicate soil degradation under
land-use change. Sufficient SOC in erodible soils would restrain soil degradation, while
SOC loss can significantly increase soil erosion risk.

Subjects Ecosystem Science, Soil Science
Keywords Soil aggregate stability, Soil erodibility, K factor, Soil degradation, Agricultural
abandonment, Karst catchment, Southwest china

INTRODUCTION
Soil erosion, which is one of the form of soil degradation, has seriously threatened
environmental sustainability, economic development, and residential survival (Annabi
et al., 2017; Ye et al., 2018). Soil erodibility is generally considered as an inherent soil
property that the ease of soil detachment by rainfall and/or surface flow (Renard et al.,
1997). In the Universal Soil Loss Equation (USLE) model, the concept of soil erodibility is
introduced as the K factor, which is defined as the amount of soil loss caused by rainfall,
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runoff, or seepage within a standard unit based on substantial field data (Wischmeier &
Smith, 1965), thus the K factor is also a key parameter to assess the susceptibility to soil
erosion (Wang et al., 2013). Many nomographs of K factor are established based on their
quantitative relationships with soil properties, including soil particle distribution, soil
organic matter (SOM), soil permeability, and soil structure (Wang, Zheng & Guan, 2016),
which also avoids the expensive observation periods of direct measurement. The K factor
in the Erosion Productivity Impact Calculator (EPIC) model, which is calculated using the
parameters of soil organic carbon (SOC) content and soil particle distribution, is widely
used for the prediction of soil erosion on a catchment scale (Sharpley & Williams, 1990),
as well as the indicator of soil degradation (Zhang et al., 2018).

In China, karst landscapes account for 13.5% of total land area (Wang, Liu & Zhang,
2004; Zhang et al., 2019b), where have also occurred many environment problems (Han
et al., 2009; Han et al., 2019; Zeng et al., 2020). Ecologically fragile karst land under long-
term irrational agricultural activities has occurred serious soil degradation, including
soil erosion and nutrient loss (Liu et al., 2016). In the karst region of Southwest China,
the researches of soil erodibility mainly focus on large catchment, mountain region, and
slope farmland to illustrate the temporal and spatial variability of the K factor in different
estimation models, as well as its influencing factors, including soil properties, geology,
geomorphology, and agricultural management (Xu et al., 2008; Zeng et al., 2017). For
example, Li et al. (2016) reported that soil erosion mainly occurred on the slope steepness
within 8◦∼25◦; Yang et al. (2014) suggested that southeastern Guilin had a relatively
high risk of soil erosion than the northwest; and Zeng et al. (2017) analyzed the temporal
variability of soil erodibility in a mountainous area from 2000 to 2013, indicating that slight
and middle erosion risk increased, while heavy erosion risk decreased. In the karst region,
the K factor is commonly obtained based on the USLE model and GIS, direct measurement
in the field is limited due to serious underground soil leaks (Zeng et al., 2017).

Soil aggregates are commonly regarded as the basic units of soil structure, which provide
the space for the transports of soil water and dissolved nutrients, soil microbe activity,
and root extension (Blanco-Canqui & Lal, 2004). Soil aggregate stability regarded as an
important index of soil quality can be used for the indicator of soil degradation under
land-use change (Ye et al., 2018), due to its rapid response to land management (Six, Elliott
& Paustian, 2000; Choudhury et al., 2014). In a large catchment scale, the calculated K
factor can be perfectly executed to indicate soil degradation, while it will be restricted in a
small catchment scale because some soil properties may be constant. Thus, the results of
soil aggregate stability can be used to check the applicability of the K factor to indicate soil
degradation under land-use change in a small catchment.

For alleviating the problems of soil degradation, many low yielding and steeply sloping
croplands have been abandoned and spontaneously recovered under the ‘Grain for Green
Project (GGP)’ since the 1990s (Liu et al., 2019a). The assessment of soil degradation
in the land restoration process is also important for the sustainable development of the
living environment and agricultural production in the local area, but relevant works in
the karst region have not been reported. Furthermore, in addition to surface soil erosion,
underground soil leaks are also widely present (Zeng et al., 2017), thus soil structure and
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erodibility of the deep soil should be concerned. These evaluations of whole soil profiles
are key to accurately predicting karst soil loss. In the present study, the researches of soil
aggregate stability and the K factor in different land-use types, including cropland (CL),
abandoned cropland (AL), and native vegetation land (NV), were converted into the
studies along the successive stages following agricultural abandonment (land-use change)
by the space-for-time substitution approach (Blois et al., 2013; Liu, Han & Zhang, 2020).
Soil aggregate distribution, soil particle distribution, and SOC content were measured,
then the indexes of soil aggregate stability and soil erodibility K factor were calculated in
soil profiles under the three land types in a small karst catchment, Southwest China. The
objectives of this study were: (1) to analyze the changes in soil aggregate stability and the
K factor following agricultural abandonment; (2) to analyze the applicability of the two
methods to indicate soil degradation in the small catchment under land-use change; and
(3) to identify the key factor affected soil degradation in karst region.

MATERIALS & METHODS
Study area
The study sites were located in Chenqi catchment (26◦15.779′–26◦16.710′N, 105◦ 46.053′–
105◦46.839′E) with an area of 1.54 km2, at Puding county, Guizhou province, Southwest
China (Fig. 1). The region controlled by sub-tropical monsoonal climate has an average
annual temperature of 15.1 ◦C and an average annual precipitation of 1400 mm (Han, Li
& Tang, 2017). The calcareous soils, which are Mollic Inceptisols in the Soil Taxonomy
of United States Department of Agriculture (USDA), are developed from limestone, and
soil thickness ranges from 10 to 160 cm (Zhang et al., 2019a). In the study area, much
soil is unevenly distributed in the crevices between rocks, which is translocated from
topsoil at upslope. Native vegetation lands (NV) are mainly distributed on the hilltop and
hillside (Fig. 1), these are covered by mixed evergreen and broadleaved deciduous forest
or shrub-grass. Abandoned croplands (AL) are mainly located at the bottom of hillside,
these have been developed from croplands and pear orchards in 8 years ago, and have
evolved into shrublands or grasslands at present. Croplands are located in the depression
of this catchment, these are characterized by terraced fields, long-term tillage, and alternate
planting of corn and rice (Liu, Han & Zhang, 2020). Croplands are mainly fertilized by
urea and manure from May to August (Zeng et al., 2019).

Soil sampling
The hills, which are considered most likely to erode, are mainly located in the middle to
north of this catchment. Moreover, cropland, abandoned cropland, and native vegetation
land are widely distributed in this region. Thus, soil sampling sites in this region of the
catchment adequately support the studies of soil degradation at different stages following
agricultural abandonment. In the study area, the native vegetation lands are public areas.
Soil sampling in croplands and abandoned croplands were conducted after receiving a
permission from the farmer, Aihua Li. Total 18 soil profiles in the study area, 8 soil profiles
under cropland (CL), 5 soil profiles under abandoned cropland (AL), and 5 soil profiles
under native vegetation land (NV)were selected, location and vertical characteristic of these
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Figure 1 Location of study area and sampling sites.
Full-size DOI: 10.7717/peerj.8908/fig-1

soil profiles are shown in Fig. 1 and Table 1. About 1× 0.5 m pit was dug by a shovel, and
chose a side of the pit as the soil profile for collecting soil samples. The thicknesses of these
soil profiles ranged from 30 cm to 90 cm depended on bedrock depth. Soil samples were
collected from 0∼10, 10∼20, 20∼30, 30∼50, 50∼70, and 70∼90 cm depth, the number of
samples collected at different profiles was 3 to 6, with the total number of 83 soil samples.
After the soil samples were collected, the pits were refilled by the original soils and marked
by red flag to hint the subsequent sampler. In the small catchment, parent material and
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Table 1 Visible characteristics of the soil profiles.

Sampling site Elevation (m) Soil profile thickness (cm) Visible characteristics

Native vegetation (NV)
NV1 1,420 m 30 cm 0∼30 cm: Black-brown, fine grained, loose, abundant plant

roots and debris, accumulated on the unweathered rock
NV2 1,375 m 90 cm 0∼50 cm: Black-brown, fine grained, loose, abundant plant

roots and debris
50∼90 cm: Red, clayey, tight, no rootlet

NV3 1,449 m 50 cm 0∼30 cm: Black-brown, fine grained, loose, abundant plant
roots and debris
30∼50 cm: Red, clayey, tight, no rootlet

NV4 1,370 m 50 cm 0∼50 cm: Black-brown, fine grained, loose, abundant
plant roots and debris, accumulated in crevices between
unweathered rocks

NV5 1,410 m 90 cm 0∼30 cm: Black-brown, fine grained, loose, abundant plant
roots and debris
30∼90 cm: Gray, clayey, tight, no rootlet

Abandoned cropland (AL)
AL1 1,340 m 90 cm 0∼10 cm: Black-brown, fine grained, loose, abundant plant

roots and debris
10∼90 cm: Red, block, tight, few plant roots

AL2 1,345 m 90 cm 0∼10 cm: Brown, fine grained, loose, abundant plant roots
and debris
10∼90 cm: Yellow, block, tight, few plant roots

AL3 1,340 m 70 cm 0∼70 cm: Black-brown, fine grained, loose, abundant
plant roots and debris, accumulated in crevices between
unweathered rocks

AL4 1,361 m 70 cm 0∼20 cm: Black-brown, fine grained, loose, abundant plant
roots and debris
20∼70 cm: Red, block, tight, few plant roots

AL5 1,352 m 70 cm 0∼30 cm: Black-brown, fine grained, loose, abundant plant
roots and debris
30∼70 cm: Red, block, tight, few plant roots

Cropland (CL)
CL1 1,315 m 30 cm 0∼10 cm: Brown, fine grained, loose, few plant roots

10∼30 cm: Yellow, block, tight, no rootlet
CL2 1,319 m 70 cm 0∼10 cm: Brown, fine grained, loose, few plant roots

10∼70 cm: Yellow, block, tight, no rootlet
CL3 1,325 m 50 cm 0∼50 cm: Brown, fine grained, loose, few plant roots

accumulated on the unweathered rock
CL4 1,320 m 50 cm 0∼50 cm: Brown, fine grained, loose, few plant roots

accumulated on the unweathered rock
CL5 1,320 m 70 cm 0∼70 cm: Brown, fine grained, loose, few plant roots,

accumulated on the unweathered rock
CL6 1,321 m 50 cm 0∼50 cm: Brown, fine grained, loose, few plant roots,

accumulated on the unweathered rock
CL7 1,321 m 70 cm 0∼10 cm: Brown, fine grained, loose, few plant roots

10∼70 cm: Red, block, tight, no rootlet
CL8 1,322 m 30 cm 0∼10 cm: Brown, fine grained, loose, few plant roots

10∼30 cm: Yellow, block, tight, no rootlet
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climate at all sampling sites are same. Croplands and abandoned croplands were belong to
terraced fields without slope length and slope steepness. And the sites of native vegetation
lands were selected the flat ground (slope steepness <5◦). Thus the topography factor at
all sites can be considered no difference. In the present study, differences in soil aggregate
stability and soil erodibility in the soils at this three land-use types can be considered only
to depend on land-use change.

Soil analysis
Soil samples were air-dried at room temperature after removing big roots and stones.
Different-sized aggregates were separated by the modified method of wet sieving (Liu, Han
& Zhang, 2019). Macro-aggregates (250∼2,000 µm) and micro-aggregates (53∼250 µm)
were collected after passing through 2000, 250, and 53 µm sifters; and silt + clay-sized
fractions (<53 µm) were isolated using centrifugation (Liu et al., 2019b). All aggregates
were dried at 55 ◦C until constant weight, then weighed. Macro-aggregates obtained
through wet sieving are also water-stable aggregates, their mass percentage can be regarded
as an index of soil aggregate stability. Furthermore, water shock for soil aggregates in the
processes of wet sieving simulates the shock by runoff and raindrops. Thus the percent of
water-stable macro-aggregates not only indicates soil structure, but also associates with soil
erodibility.

For dispersing soil particles, organic bonding agents between soil mineral particles were
removed using 10% hydrogen peroxide (H2O2) and calcareous cements were removed
using 2 mol/L hydrochloric acid (HCl) (Liu, Han & Zhang, 2020). Soil particle distribution
was measured by the laser particle size analyzer (Mastersizer 2000, Malvern, England) with
a precision of± 1% (equivalent volume proportion), in the Center Laboratory for Physical
and Chemical Analysis, Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences.

Dried soil samples were ground using agate mortar and passed through 150 µm steel
sifter. The carbonates in pulverous soil samples were removed using 0.5 mol/L HCl for
24 h, then washed with deionized water until neutral supernatant (Liu, Han & Zhang,
2020). Treated soil samples were dried at 55 ◦C until constant weight, then weighed and
ground into powder (<150 µm). The C content was analyzed using combustion method
in an elemental analyzer (Elementar, Vario TOC cube, Germany) in the Laboratory of
Surficial Environment Geochemistry, China University of Geosciences (Beijing). The
reproducibility was determined through replicate measurements of standard material low
organic soil (OAS-B2152, C content: 1.55± 0.06%), which was better than± 0.1%. Actual
SOC content can be obtained by multiplying the measured C content by the rate of soil
sample mass after carbonate loss to the mass before carbonate loss.

Calculation of the indexes of soil aggregate stability
Water-stable macro-aggregates (WSMacA) are the summation of 250∼2,000 µm sized
aggregates using wet sieving method.

WSMacA(%)= percentage of macro-aggregates. (1)
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Mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates
are calculated as (Choudhury et al., 2014):

MWD(mm)=
n∑

k=1

Xk × Mk (2)

GMD(mm)= exp
n∑

k=1

ln(Xk)× Mk (3)

whereK is the size-class aggregates (k= 1, 2, 3 indicatemacro-aggregates,micro-aggregates,
and silt + clay sized fractions, respectively); Xk (mm) is the mean diameter of the size-class
aggregates (X1 =

(250+2000)
2000 ,X2=

(53+250)
2000 ,X3=

53
2000); and Mk (%) is the percentage of the

size-class aggregates.
The aggregate ratio (AR) of soils is calculated as:

AR=
percentage of macro-aggregates
percentage of micro-aggregates

. (4)

Calculation of K factor
Soil erodibility factor in EPIC model (Kepic) is calculated as (Sharpley & Williams, 1990):

Kepic=
{
0.2+0.3exp

[
− 0.0256S

(
1−

F
100

)]}(
F

M+F

)0.3

[
1.0−

0.25C
C+exp(3.72−2.95C)

][
1.0−

0.7E
E+exp(−5.51+22.9E)

]
(5)

where S, F, M (%) represent the percentage of sand (0.05∼2.0 mm), silt (0.002∼0.05
mm), and clay (<0.002 mm), respectively, according to the soil texture classification of the
USDA; C (%) is the SOC content; E = 1–S/100. The result is expressed in the American
unit (t acre h/100 acre/ft/tanf/in), then it should be translated into the international unit
(t hm2 h/hm2/MJ/mm) by multiplying 0.1317.

To make the K factor respect to Chinese soils, the Kepic factor is calibrated as the formula
(Zhang et al., 2008):

K=−0.01383+0.5158 Kepic. (6)

Statistical analysis
One-way ANOVA with least significant difference (LSD) test was performed to determine
the differences in soil particle distribution, SOC content, K factor, and soil aggregate
stability indexes among different land-use types or among different soil depths at the
threshold of the level of P <0.05. Two-way ANOVA analysis with LSD test was used
to examine the significance of land-use type, soil depth, and their interactions on soil

Liu and Han (2020), PeerJ, DOI 10.7717/peerj.8908 7/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.8908


aggregate stability indexes, soil particle distribution, SOC content, and the K factor. The
relationships between K factor and the soil properties, including SOC content and soil
particle distribution, were determined by line regression analysis, and coefficient R 2 and
P-value showed the fitting degree of the best-fit regression line. Pearson’s correlation
analysis was used to analyze the relationships between soil aggregate stability indexes and
K factor, soil particle distribution, and SOC content.

Principle component analysis (PCA) was used to transform the original soil
physiochemical properties and indexes that can indicate soil degradation degree into
two component compound variables, and each compound variable was uncorrelated with
all other compound variables. The principle component whose eigenvalue was exceeding 1
would be extracted, and component matrix, eigenvalues, variance, and cumulative variance
were exhibited. The figures and statistical analyses were done using SigmaPlot 12.5 (Systat
Software GmbH, Erkrath, Germany) and SPSS 18.0 (SPSS Inc., Chicago, IL, USA) software
package, respectively.

RESULTS
Soil properties, soil aggregate stability and soil erodibility K factor
In the study area, clay contents in the soil profiles of all sampling sites ranged from 12%
to 25%, silt contents ranged from 75% to 88%, while the soils seldom contained sand
sized particles (Table S1). The SOC contents ranged from 0.33% to 5.80%, exhibited a
decreasing trend with the increase of soil depth. The proportions of macro-aggregates,
micro-aggregates, and silt + clay sized fractions in all soils varied within the wide range of
23%∼91%, 5%∼24%, and 4%∼61%, respectively. Generally,macro-aggregate proportions
decreased with increasing soil depth, while the proportions of micro-aggregates and silt
+ clay sized fractions increased. The soil aggregate stability index of WSMacA equals
macro-aggregate proportion, thus WSMacA also ranged from 23% to 91%. Other indexes,
includingMWD, GMD, and AR, had the range of 0.302∼1.030 mm, 0.084∼0.868 mm, and
1.46∼19.53, respectively. The changes in these indexes along soil profiles were similar to the
trend ofmacro-aggregate proportionwith depth, due to the largeweight ofmacro-aggregate
in the calculation of these indexes. Soil erodibility K factor in these profiles at all depths
ranged from 0.00956 to 0.01838, with an increasing trend from the top to the bottom of
the profile.

Effects of land-use type and soil depth on soil aggregate stability and
soil erodibility K factor
The results of indexes of two-way ANOVA analysis (Table 2) showed that the four indexes
of soil aggregate stability (WSMacA, MWD, GMD, and AR) were affected by land-use types
significantly; soil depth did not significantly affect them, except AR. Soil erodibility K factor
and SOC content were only significantly affected by soil depth. Soil particle distribution
was not affected by both land-use type and soil depth, which showed constant composition
with depth at different sites within this small catchment. Based on the above analysis,
one-way ANOVA analysis was used to determine the significance of land-use type on soil
aggregate stability at different depths (Fig. 2) and the significance of soil depth on SOC
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Table 2 Effects of land use type, soil depth, and their interactions on soil aggregate stability indexes, soil particle distribution, SOC content,
and the K factor. Two-way ANOVA analysis with LSD test; ‘‘ns’’ means no-significant differences.

Factor Variable Type III
sum of
squares

df Mean
square

F Sig.

Soil depth WSMacA 1035.380 5 207.076 1.324 0.265 ns
MWD 0.114 5 0.023 1.271 0.287 ns
GMD 0.225 5 0.045 1.840 0.117 ns
AR 129.819 5 25.964 2.891 0.020
SOC 65.660 5 13.132 8.048 0.000
Clay 10.926 5 2.185 0.312 0.904 ns
Silt 15.309 5 3.062 0.410 0.840 ns
K factor 0.000 5 0.000 10.369 0.000

Land use type WSMacA 1,894.041 2 947.021 6.056 0.004
MWD 0.202 2 0.101 5.616 0.006
GMD 0.267 2 0.134 5.468 0.006
AR 206.646 2 103.323 11.505 0.000
SOC 2.960 2 1.480 0.907 0.409 ns
Clay 29.077 2 14.539 2.077 0.133 ns
Silt 23.003 2 11.501 1.539 0.222 ns
K factor 0.000 2 0.000 0.358 0.700 ns

Soil depth× Land use type WSMacA 806.588 9 89.621 0.573 0.814 ns
MWD 0.094 9 0.010 0.578 0.811 ns
GMD 0.199 9 0.022 0.904 0.527 ns
AR 80.510 9 8.946 0.996 0.452 ns
SOC 8.795 9 0.977 0.599 0.793 ns
Clay 28.721 9 3.191 0.456 0.899 ns
Silt 27.619 9 3.069 0.411 0.925 ns
K factor 0.000 9 0.000 0.384 0.939 ns

content and K factor under different land-use types (Fig. 3). In the soils at 0∼30 cm depth,
the four indexes of soil aggregate stability in the soils under native vegetation land were
significantly higher than these under cropland (Fig. 2). While the four indexes under native
vegetation land were not significantly difference with these under abandoned cropland.
However, the four indexes among the three land-use types were not significantly different
in the soils below 30 cm. Clay contents and slit contents were almost constant among
different land-use types and different depths (Fig. 3). In the soils under native vegetation
land and abandoned cropland, the SOC contents significantly decreased with increasing
depth, while the K factors significantly increased. However, the SOC contents and K factors
under cropland did not significantly vary with increasing depth in the soils at 0∼50 cm
depth.

Indication of soil degradation by soil aggregate stability and K factor
According to the results of PCA, two principal components (PC) were extracted (Table 3).
The PC1 explained 62.99% of total variance and predominantly included the four indexes
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Figure 2 Soil aggregate stability indexes ofWAMacA (A), MWD (B), GMD (C) and AR (D) in differ-
ent depths of soil layer at different stages after agricultural abandonment. Lowercases indicate signifi-
cant differences of these soil aggregate stability indexes among the different stages after agricultural aban-
donment at the threshold of P < 0.05 level, based on the least significant difference (LSD) test. WAMacA,
water-stable macro-aggregate; MWD, mean weight diameter; GMD, geometric mean diameter; AR, the ra-
tio of macro-aggregate to micro-aggregate; CL, cropland; AL, abandoned cropland; and NV, native vegeta-
tion land.

Full-size DOI: 10.7717/peerj.8908/fig-2

of soil aggregate stability (WSMacA,MWD, GMD, and AR), SOC content, and K factor; the
PC2 explained 20.59% of total variance with significant loadings of clay and silt content.
The Component matrix of these variables showed that soil aggregate stability (0.94) is
a better indicator of soil degradation rather than the K factor (0.74) in this study area.
Moreover, the coefficients of SOC, K factor, clay and sand are 0.724, −0.737, −0.551 and
0.510, respectively, which indicates that the K factor exhibits a stronger correlation SOC
content compared to clay and silt content. Subsequently, line regression analyses were used
to determine the relationships between the K factor and SOC content, silt content, and clay
content (Fig. 4). The K factor in the soils that SOC contents were larger than 2% fluctuated
within a small range near 0.010, while significantly increased with decreasing SOC contents
when SOC contents were lower than 2%. Similarly, in the soils of >2% SOC content, the K
factors significantly correlated with silt contents (positively) and clay contents (negatively).
However, the correlations between the K factors and soil particle distribution were not
observed in the soils that SOC contents were lower than 2%. These results indicated that
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the estimation of the K factor in the SOC-rich soils mainly depended on soil particle
distribution, while in it mainly depended on SOC content. The results from Pearson’s
correlation analysis (Table 4) showed that the four indexes of soil aggregate stability were
significantly correlated with silt contents (positive) and clay contents (negative) in the
SOC-rich soils (>2%); while the SOC-poor soils (<2%), they exhibited significant positive
correlations with SOC contents and negative correlations with K factors. These results
showed that soil aggregate stability could be used to indicate the degree of soil degradation
in the SOC-rich soils; while both soil aggregate stability and the K factor were feasible in
the SOC-poor soils.

DISCUSSION
Effects of land-use change on soil aggregate stability
Soil aggregate stability generally attributes to frequent soil microbial activities and abundant
SOM in surface soils (Bach & Hofmockel, 2014). Soil organic matters, those are the organic
binding agents derived from plant debris, root exudates, and microbial secretions, can
significantly affects soil aggregate stability in C-rich soils (Six et al., 2004). In the present
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Table 3 Principal component analysis of soil aggregate stability indexes, soil particle distribution,
SOC content, and K factor.

Variable Component

PC1 PC2

WSMacA 0.940 0.184
MWD 0.939 0.180
GMD 0.963 0.084
AR 0.846 0.158
SOC 0.724 0.098
Clay −0.551 0.828
Silt 0.510 −0.852
K factor −0.737 −0.358
Eigenvalues 5.039 1.647
Variance (%) 62.993 20.592
Cumulative (%) 62.993 83.584
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Figure 4 Relationships between K factor and silt content (A), clay content (B), and SOC content (C).
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study, soil aggregate stability in the soils under cropland was significantly lower than
that under abandoned cropland and native vegetation land (Fig. 2), while SOC contents
were not significantly different among the three land types (Fig. 3 and Table 2). This
result infers that soil aggregate stability is also affected by other factors. In addition
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Table 4 Pearson’s correlation analysis between soil aggregate stability indexes and the K factor, silt,
clay and SOC contents.

WSMacA MWD GMD AR

SOC >2%
Silt 0.30* 0.31* 0.37** 0.24
Clay −0.36** −0.37** −0.43** −0.28*

SOC 0.13 0.14 0.18 −0.01
K factor 0.21 0.21 0.27 0.20
SOC <2%
Silt 0.14 0.14 0.25 0.05
Clay −0.14 –0.14 −0.25 −0.05
SOC 0.64** 0.64** 0.67** 0.54**

K factor −0.59** –0.59** −0.62** −0.54**

Notes.
*P < 0.05.
**P < 0.01.

to organic binding agents, soil aggregate stability is also affected by inorganic binding
agents, i.e., metal cations, including Ca2+ and Mg2+ (Six et al., 2004). Jiang et al. (2006)
reported that long-term tillage significantly reduced Ca2+ and Mg2+ contents in the
karst soils. Thus low soil aggregate stability under cropland likely results from the loss
of those metal cations. Land management (especially tillage) can also strongly affect soil
aggregate stability. Long-term tillage influences the formation and turnover of water-stable
macro-aggregates, i.e., WSMacA as one of soil aggregate stability indexes (Six, Elliott &
Paustian, 2000; Choudhury et al., 2014). Moreover, macro-aggregates (>70%) generally
accounted for the largest proportion in all sized aggregates (Table 2). Due to the large
weight of macro-aggregate proportion in the calculation of MWD, GMD, and AR, thus
the four indexes of soil aggregate stability show similar trends among the three land-use
types as WSMacA. Overall, macro-aggregate plays an important role in affecting soil
aggregate stability under land-use change. Soil aggregate stability can quickly respond
to land-use change, resulting from the sensitive macro-aggregates to land management.
However, reduced soil disturbance in abandoned cropland enhances the formation of
water-stable macro-aggregates and soil aggregate stability. Vegetation restoration after
agricultural abandonment generally enhances plant biomass, as well as soil microbial
activity (Chavarria et al., 2018). The increases in plant biomass and soil microbial activity
under abandoned cropland enhance the organic puts into the soils through litter, root
exudates andmicrobial secretions (Liu, Han & Zhang, 2019), which increases soil aggregate
stability after agricultural abandonment. These results indicated that soil aggregate stability
significantly decreased under long-term tillage, and it could be recovered after 8 years
agricultural abandonment.

Limitation in soil erodibility K factor of the EPIC model in karst soils
Soil erodibility K factor of EPIC model was significantly correlated with soil particle
distribution in the SOC-rich soils, while it was significantly correlated with SOC content in
the SOC-poor soils (Fig. 4). The effects of soil particle on erodibility mainly depend on: (1)
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fine particles are more easily migrated by runoff, and (2) high soil permeability in coarse
texture soils reduces water erosion (Ostovari et al., 2018). Soil organic matters, which act as
matrixes to absorb soil water, improve anti-erosion ability through decreasing detachment
of soil particles by runoff and raindrops and increasing soil shear strength (Zhu et al., 2010).
They also bind soil particles to reduce the migration of fine particles through the formation
of soil aggregates and organic–inorganic complexes, for example, allophane–Fe (Al)–OC
(Six et al., 2004; Rodríguez et al., 2006; Wang, Fang & Chen, 2017). Furthermore, these soil
aggregates and organic–inorganic complexes increase the sizes of matrix particles and soil
pores, which enhances soil permeability. However, there was not reasonable that the K
factor was not significantly different under land-use change (Table 2). A key limitation in
soil erodibility of the EPIC model in karst soils is that it does not consider soil permeability
associated with abundant aggregates.Vaezi et al. (2008) reported that calcium in calcareous
soils strongly affected aggregate formation and soil structure and hence influenced soil
erodibility. The second limitation in the K factor is the number of sites, which is associated
with this catchment size. This defect is exhibited from the relationships between the K
factor and soil particle distribution, i.e., the K factor only varied by less 0.001 with soil
particle distributions in the SOC-rich soils due to constant silt and clay contents in this
small catchment. A larger change in soil particle distribution for whole karst soils, thus
the relationships between the K factor and soil particle distribution are feeble to generalize
in whole karst region only based on the present study, widely sampling is necessary for
the future work. The third limitation in the estimated K factor is the lack of contrast with
the values derived from field measurement, which makes it impossible to quantify the
importance of soil aggregate stability in estimating K factor. However, from the qualitative
analysis, it can be convinced that soil permeability associated with soil aggregate stability
plays an important role in estimating K factor in the karst soils.

Indicator of land degradation in karst soils
Soil aggregate stability and soil erodibility are important indicators of soil degradation
(Adhikary et al., 2014; Ye et al., 2018). According to the results of PCA, soil aggregate
stability in SOC-rich soils is more suitable to indicate soil degradation than the K factor,
mainly resulting from sufficient consideration in soil permeability and quickly responding
to land-use change. For the low SOC soils (<2%) generally located at deep depth, soil
degradation, including soil erodibility and soil structure, is also necessary to study due
to the presence of underground soil leaks (Zeng et al., 2017). In the SOC-poor soils, SOC
content exhibited a positive correlation with soil aggregate stability and showed a negative
correlation with K factor (Fig. 4 and Table 4), suggesting that SOM played a key role in
soil aggregate stability and soil erodibility, hence affected soil degradation. Soil organic
matters can directly affect soil degradation due to the supply of mineral nutrients in their
decomposition processes (Zhou et al., 2019). They also indirectly affect soil degradation
through: (1) soil microbial richness, which is generally associated with SOM as the
energy source for microbial growth (Zhu et al., 2010; Yang et al., 2018); (2) soil structure
maintaining by the formation of soil aggregates (Six et al., 2004) and organic–inorganic
complexes (Rodríguez et al., 2006; Wang, Fang & Chen, 2017). Moreover, the K factor
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remained relatively low value (near 0.010) when SOC content was larger than 2%; while it
significantly increased when SOC content decreased below 2% (Fig. 4). Thus, the threshold
value of SOC content is determined as 2%, decrease in SOC can significantly lead to soil
degradation.

CONCLUSIONS
Soil aggregate stability in the soils at 0∼30 cm depth under native vegetation land was
significantly higher than that under cropland and slightly higher than that under abandoned
cropland. Soil erodibility K factor was significantly increased with increasing depth, while
SOC content was significantly decreased. Soil erodibility in the SOC-rich soils was mainly
controlled by soil particle distribution,while it in the SOC-poor soils wasmainly determined
by SOM.

Soil aggregate stability is more suitable to indicate soil degradation under land-use
change because the K factor of the EPICmodel do not consider soil permeability. Sufficient
SOC was underscored in restraining soil degradation based on the significant correlations
between SOC content and soil aggregate stability, K factor in the SOC-poor soils.
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