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ABSTRACT
Mitogenomes are useful in analyzing phylogenetic relationships and also appear to
influence energy metabolism, thermoregulation and osmoregulation. Much evidence
has accumulated for positive selection acting on mitochondrial genes associated with
environmental adaptation. Hence, the mitogenome is a likely target for environmental
selection. The family Bufonidae (true toads) has only nine complete and four partial
mitogenomes published compared to the 610 known species of this family. More
mitogenomes are needed in order to obtain a clearer understanding of the phylo-
genetic relationships within Bufonidae that are currently controversial. To date, no
mitogenomes have been reported from the genera Anaxyrus and Bufotes. Anaxyrus
americanus can live in low temperature environments and Bufotes pewzowi can live in
high salinity environments. We sequenced the mitogenomes of these two species to
discuss the phylogenetic relationships within Bufonidae and the selection pressures
experienced by specimens living in low temperature or saline environments. Like other
toads, the circularmitogenomes of both species contained the typical 37 genes.Anaxyrus
americanus had the highest A+T content of the complete mitogenome among the
Bufonidae. In addition,A. americanus showed a negative AT-skew in the control region,
whereas Bufotes pewzowi showed a positive AT-skew. Additionally, both toad species
had unique molecular features in common: an ND1 gene that uses TTG as the start
codon, an extra unpaired adenine (A) in the anticodon arm of trnS (AGY), and the loss
of the DHU loop in trnC. The monophyly of Bufonidae was corroborated by both BI
andML trees. An analysis of selective pressure based on the 13 protein coding genes was
conducted using the EasyCodeML program. In the branch model analysis, we found
two branches of A. americanus and Bufotes pewzowi that were under negative selection.
Additionally, we found two positively selected sites (at positions 115 and 119, BEB value
> 0.90) in the ND6 protein in the site model analysis. The residue D (119) was located
only in A. americanus and may be related to adaptive evolution in low temperature
environments. However, there was no evidence of a positively selected site in Bufotes
pewzowi in this study.
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INTRODUCTION
Bufonidae, the true toads, consists of 33 genera and 610 species (according to theAmphibian
Species of theWorld 6.0, an online reference (https://amphibiansoftheworld.amnh.org/); 16
Apr. 2019) (Frost, 2014) and is one of the most species-rich amphibian families (Frost et al.,
2006; Pramuk, 2006). However, there are only nine complete mitochondrial genomes
(mitogenomes) of Bufonidae species published in GenBank along with four partial
genomes (Cao et al., 2006; Dong & Yang, 2016; Igawa et al., 2008; Jacob Machado et al.,
2018; Machado, Lyra & Grant, 2016; Jiang et al., 2017b; Wang et al., 2013; Yang et al., 2016;
Zhang et al., 2005; Zhang et al., 2013; Zhang et al., 2016). These molecular data are not
sufficient to represent the biodiversity of Bufonidae species. Pauly, Hillis & Cannatella
(2004), Frost et al. (2006) and Van Bocxlaer et al. (2009) corroborated the monophyly of
Bufonidae by using partial mitochondrial DNA sequences. Portik & Papenfuss (2015) also
confirmed the monophyly of Bufonidae, based on 243 taxa and 13 loci including nine
nuclear genes and four mitochondrial genes. Furthermore, the phylogenetic relationships
within Bufonidae remain controversial (Graybeal, 1997). As for intergeneric relationships,
the genus Bufo was strongly confirmed as monophyletic (Graybeal, 1997; Dong & Yang,
2016). On the contrary, the polyphyly of Bufo was recovered in several other studies
(Maxson, 1984; Pyron & Wiens, 2011; Brandvain et al., 2014; Jiang et al., 2018) and the
paraphyly of South American toads was also supported (Frost et al., 2006; Pramuk, 2006).

Mitogenomes of Anura are closed, double-stranded circular molecules of about 16-24
kb in length that include 2 ribosomal RNA genes (12S and 16S rRNA), 22 transfer
RNA genes (tRNAs), 13 protein-coding genes (PCGs), and one control region (CR;
also known as the D-loop region) (Kakehashi et al., 2013; Cai et al., 2019). Mitogenomes
(synonym mitochondrial genomes) are useful molecular markers for analyzing population
structure, phylogenetic relationships and divergence time (Igawa et al., 2008; Masta et
al., 2002) due to their small size, lack of recombination, rapid evolution rate, conserved
gene content and genomic organization, and maternal inheritance (Masta et al., 2002;
Zhang et al., 2003). In addition, mitogenomes have high substitution rates and these
substitutions may have relevant effects on fitness and metabolism (Carapelli et al., 2019).
Although mitogenomes are usually thought to be under neutral or nearly neutral selection,
evidence has accumulated for positive selection acting on mitochondrial genes associated
with environmental adaptations (Carapelli et al., 2019; Shen et al., 2010). Hence, the
mitogenome is a likely target for environmental selection and it is useful in analyzing
positive selection or natural selection (Zhou et al., 2014).

Mitochondria are called the powerhouses of the cell because they synthesize most of the
ATP necessary to drive cell functions (McBride, Neuspiel & Wasiak, 2006). Numerous
environmental factors can affect the growth and survival of amphibians, including
temperature and salinity (Yaghobi et al., 2018). Temperature has a great effect on the
bioenergetic demands and metabolic adaptation of ectotherms (Sun et al., 2018a). For
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example, negative selection was found in the mitochondrial protein-coding genes of
Glandirana (Xia et al., 2014). Malyarchuk et al. (2010) postulated that the amino acid
changes in cytochrome B (CYTB) might be advantageous in cold climatic conditions and
make it possible for several Siberian salamanders to live in extreme cold environments.
Adaptation to saline environments probably needs more energy devoted to osmoregulation
(Xia et al., 2017) and several genes in the mitogenome appear to be under positive selection
for the role that they play in energy metabolism (Caballero et al., 2015). Salinity and
osmoregulation are also significant factors in the survival and fitness of all amphibians
because their skin is highly water-permeable (Yaghobi et al., 2018). Indeed, Whitehead
(2009) found that salinity differences were associated with amino acid changes in the
mitochondrial protein-coding genes of Fundulus fish populations along the Atlantic coast.

Mitogenomes could have an impact on energy metabolism, thermoregulation and
osmoregulation.However, few studies of Anura have examined the potential involvement of
mitogenome adaptations to life in extreme environments. Anaxyrus americanus (synonym
Bufo americanus) is a small American toad (Frost et al., 2006; Masta et al., 2002). It is
widely distributed across North America (Haislip et al., 2011) and can live in places with
low nighttime temperatures below 0 ◦C for as much as eight months of the year. However,
contrary to various frog species in the same environment that endure whole body freezing
in winter (Storey & Storey, 2017), A. americanus is freeze intolerant (Bergstrom, 2010; Storey
& Storey, 1986) and typically overwinters by digging underground to below the frostline.
Bufotes pewzowi (synonym Bufo pewzowi) is distributed in China, Kazakhstan, Kyrgyzstan,
Mongolia and Uzbekistan; belonging to the Bufo viridis group, the species can withstand
low temperatures and a high level of water salinity (Katz et al., 1981; Ren et al., 2009).
Hence, we hypothesized that the mitogenome adaptations of these two species that live
in low temperature (A. americanus) or low temperature and high water salinity (Bufotes
pewzowi) environments may be affected by these extreme environments. Therefore, in the
present study, we sequenced and annotated the complete mitogenomes of A. americanus
and Bufotes pewzowi, these being the first reported mitogenomes for the genera Anaxyrus
and Bufotes, and clarified their mitogenome differences and similarities in comparison
with other Bufonidae species. We also performed evolutionary relationship analyses
to discuss the intergeneric relationships among the Bufonidae and evaluated potential
positive selection in A. americanus and Bufotes pewzowi by using the branch model and the
site model. These two complete mitogenomes represent two genera for which complete
mitogenomeswere previously unknown.Hence, our results not only supplement the limited
molecular data previously available for Bufonidae, but also examine the monophyly of
Bufonidae and explore the idea of adaptive evolution of mitogenomes in response to
extreme environmental stresses.

MATERIALS AND METHODS
Sample Collection and DNA extraction
The specimens of A. americanus and Bufotes pewzowi were collected in Ottawa, Ontario,
Canada (45◦25.38′N, 75◦43.11′W) and Aksu, Xinjiang, China (41◦10.54′N, 80◦16.81′E),
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respectively. Both were identified by J.Y. Zhang. Toe-clip samples of both species were
stored at−80 ◦C in the Institute of Ecology, Zhejiang Normal University. Our experimental
procedures complied with the current regulations on animal welfare and research in China
and Canada. The Animal Research Ethics Committees of Zhejiang Normal University and
Carleton University approved the experimental design (No.1082196).

PCR amplification, and sequencing
Total DNA was extracted from the toe-clips samples of A. americanus or Bufotes pewzowi
using an Ezup Column Animal Genomic DNA Purification Kit (Sangon Biotech Company,
Shanghai, China). The 11 universal primers for standard polymerase chain reaction (PCR)
amplification of mitogenomes were slightly modified according to Yu et al. (2015) and
Zhang et al. (2013) and 15 specific primers were designed based on the sequenced fragments
from universal primers using Primer Premier 5.0 (PREMIER Biosoft International, CA,
USA) (Tables S1 and S2). All PCR amplifications were carried out in a 50 µL reaction
mixture and the procedures were performed using an Eppendorf Thermal Cycler
(Mastercycle R© nexus GSX1, Hamburg, Germany). We used both standard PCR and
Long-PCR methods with TaKaRa Ex-Taq and TaKaRa LA-Taq Kits (Takara Biomedical,
Dalian, China). These two methods were slightly modified from Yu et al. (2015) and Zhou
et al. (2009). All PCR products were detected by electrophoresis on 1% agarose gels, and
sequences were obtained in an automated DNA sequencer (ABI 3730) by Sangon Biotech
Company (Shanghai, China).

Mitogenome annotation and sequence analyses
Sequences were checked and assembled using SeqMan (Lasergene version 5.0) (Burland,
2000). The 22 tRNAs were identified by their cloverleaf secondary structure using
tRNAscan SE 1.21 (Lowe, 1997) (http://lowelab.ucsc.edu/tRNAscan-SE/) or determined
by comparison with the available tRNA genes of closely related anurans downloaded from
GenBank. Location of the 13 PCGs and 2 rRNA genes were determined by comparison
with homologous sequences of mtDNA from other Bufonidae species using ClustalW
(Thompson, Higgins & Gibson, 1994) and then PCGs were checked and translated to
amino acids using the vertebrate mitogenome code by Mega 5.0 (Tamura et al., 2011).
The mitogenome maps of A. americanus and Bufotes pewzowi were constructed using
GenomeVx (http://wolfe.gen.tcd.ie/GenomeVx/) (Conant & Wolfe, 2008). The A+T and
C+G content values, codon usage and relative synonymous codon usage (RSCU) of
protein-coding genes were calculated using Mega 5.0 (Tamura et al., 2011). Nucleotide
sequence skewness was calculated according to the following formulae: AT-skew = (A
−T)/(A +T) and GC-skew = (G −C)/(G +C) (Perna & Kocher, 1995).

Phylogenetic analyses
To confirm the phylogenetic relationships among Bufonidae, 19 sequences of complete or
partial mitochondrial genomes were used. The data set was inclusive of the ingroups of the
2 species from this study, 13 other species from Bufonidae (Cao et al., 2006; Dong & Yang,
2016; Igawa et al., 2008; Jacob Machado et al., 2018; Jiang et al., 2017b; Machado, Lyra &
Grant, 2016; Wang et al., 2013; Yang et al., 2016; Zhang et al., 2005; Zhang et al., 2013) and
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Table 1 GenBank accession numbers of the species used in constructing the phylogenetic trees.

Family Genus Species GenBank
accession number

References

Anaxyrus Anaxyrus americanus MK855099
Bufo japonicus AB303363.1 Igawa et al. (2008)
Bufo gargarizans DQ275350.1 Cao et al. (2006)
Bufo tibetanus JX878885.1 Wang et al. (2013)
Bufo stejnegeri KR136211.1 Dong & Yang (2016)
Bufo gargarizans minshanicus KM587710.1 Yang et al. (2016)

Bufo

Bufo gargarizans KU321581.1 Jiang et al. (2017a) and Jiang et al. (2017b)
Bufotes Bufotes pewzowi MK855100
Duttaphrynus Bufo melanostictus AY458592.1 Zhang et al. (2005)
Leptophryne Leptophryne borbonica JX564876.1 Zhang et al. (2013)

Melanophryniscus moreirae KY962391.1 Jacob Machado et al. (2018)Melanophryniscus
Melanophryniscus simplex KT221611.1 Machado, Lyra & Grant (2016)

Bufonidae

Rhinella Rhinella sp. KT221613.1 Machado, Lyra & Grant (2016)
Aromobatidae Mannophryne Mannophryne trinitatis JX564878.1 Zhang et al. (2013)

Dendrobates tinctorius MF069441.1 Lyra et al. (2017)
Dendrobates leucomelas MF069436.1 Lyra et al. (2017)Dendrobatidae Dendrobates

Dendrobates auratus MF069434.1 Lyra et al. (2017)

the outgroups of 4 species fromMannophryne and Dendrobatidae (Lyra et al., 2017; Zhang
et al., 2013). Accession numbers of all mitogenomes are summarized in Table 1. The amino
acid and nucleotide sequences of the 13 protein-coding genes from all 19 species were
employed to construct BI and ML phylogenetic trees according to the methods of Zhang et
al. (2018) and Zhou et al. (2009). All of the 13 PCGs were aligned using Clustal W in Mega
5.0 (Tamura et al., 2011) and were analyzed with Gblocks 0.91b (Castresana, 2000) using
default settings to select conserved regions. The best partition scheme and evolutionary
model were determined with the PartitionFinder v.1.1.1 program (Lanfear et al., 2012),
using the Bayesian Information Criterion (BIC) (Schwarz, 1978). For the ML analysis, we
used the RAxML program (Stamatakis, 2014) under the GTRGAMMAI model with 1,000
bootstrap replications. For BI analysis, we used MrBayes 3.1.2 (Huelsenbeck & Ronquist,
2001) under the GTR+I+Gmodel. Markov ChainMonte Carlo (MCMC) was run with four
chains for 10 million generations, with sampling every 1,000 generations. The first 25% of
generations were removed as burn-in, which was decided by checking convergences of -log
likelihood (-lnL). After the average standard deviation of split frequencies in Bayesian was
below 0.01, we judged that the Bayesian analysis had reached sufficient convergence.

Analysis of positive selection
The program EasyCodeML (Gao et al., 2019) was used to analyze the selective pressure on
mitogenomes; this is an interactive visual tool for detecting selection in a molecular
evolutionary analysis based on CodeML (Yang, 2007). The ω ratio is the rate of
nonsynonymous (dN ) versus synonymous (dS) substitution (dN /dS) and can indicate
natural selection acting on the proteins. All of the concatenated 13 PCGs (Table S3) were
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used in the analysis and the values for ω ratio >1, =1 or <1 indicate positive selection,
neutral evolution or negative selection, respectively (Yang, 2007). To investigate whether
positive selection occurred on specific branches, branch models were run under the
one-ratio model (M0) or the two-ratio model with A. americanus or Bufotes pewzowi as the
foreground branch, respectively. M0 assumes that all branches have the same ω ratio values
whereas the two-ratio model assumes one ω ratio value for the branches of interest and
the other for the background branches. Because different topologies of trees will affect the
results, both of the phylogenetic trees structured in BI and ML were used in the analyses.
In addition, a likelihood ratio test (LRT) was performed to assess the significant difference
between the results of the M0 and the two-ratio model (Yu et al., 2011). Variation happens
mostly in several base pairings and may affect a few sites in some lineages (Yang, 2007;
Yu et al., 2011). Consequently, the site model was applied to detect the potential selection
among sites and allow for different ω ratios in different sites, codons or amino acids (Yang,
2007). Seven useful codon substitution models were taken into account in the calculations,
including M0 (one ratio), M1a (Nearly Neutral), M2a (Positive Selection), M7 (β), M8
(β & ω) and M8a (β & ω = 1). We also used LRTs to assess these models and Bayes
Empirical Bayes (BEB) to evaluate the posterior probability of positive selection sites. The
three-dimensional (3D) structures of the amino acid positive selections in the ND6 protein
were formed using SWISS-MODEL Workspace (Waterhouse et al., 2018).

RESULTS AND DISCUSSION
Mitogenome organization and arrangement
The lengths of the complete A. americanus and Bufotes pewzowi mitogenomes are 17,328
base pairs (bp) and 17,551 bp, respectively (Table 2). Both mitogenomes are circular and
contain the typical 37 genes (Tables 3 and 4). Most of the genes are coded on the H-strand,
except for 8 tRNA genes and theND6 gene on the L-strand. Gene structures are detailed in
Figs. 1 and 2. In addition, the gene order and composition are identical with that of other
mitogenomes of Bufonidae (Dong & Yang, 2016; Jiang et al., 2017b; Zhang et al., 2016).
The different lengths of the mitogenomes are primarily caused by the different sizes of
intergenic nucleotides (IGNs) (Tables 3 and 4), particularly the length of the CRs. The
overall base composition, A+T and G+C content, as well as AT and GC skew of the A.
americanus and Bufotes pewzowi genomes are listed in Table 2; these data show that A.
americanus has the highest A+T content (62.4%) and a strong A+T bias. The H-strand of
both mitogenomes showed a negative AT-skew and GC-skew, which is expected for most
vertebrates (Fonseca, Froufe & Harris, 2006; Hao, Ping & Zhang, 2016; Zhang et al., 2019).
Previous studies showed that the asymmetry of the nucleotides resulted primarily from
mutations affecting the H-strand during its single-stranded state (Sahyoun et al., 2014).

Protein-coding genes and codon usages
All the typical 13 PCGs ranged from165 bp (ATP8) to 1,789 bp (ND5) in bothA. americanus
and Bufotes pewzowi. In addition, the total size of the 13 PCGs in A. americanus and Bufotes
pewzowi were identical (11,290 bp). Mitochondrial PCGs have no introns, but have several
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Table 2 The mitogenome composition of A. americanus and Bufotes pewzowi.

Region Size (bp) A+T content C+G content AT-skew CG-skew

A. americanus B. pewzowi A. americanus B. pewzowi A. americanus B. pewzowi A. americanus B. pewzowi A. americanus B. pewzowi

Whole
Genome

17,328 17,551 62.4 59.1 37.6 40.9 −0.038 −0.002 −0.248 −0.271

PCGs 11,290 11,290 61.9 58.6 38 41.5 −0.111 −0.085 −0.256 −0.272

rRNA 2,536 2,543 60.7 58.8 39.4 41.2 0.117 0.149 −0.086 −0.103

tRNA 1,534 1,535 58.9 59.5 41.2 40.4 0.039 0.028 0.014 0.04

CRs 1,916 2,129 70.3 63 29.7 37.1 −0.030 0.006 −0.205 −0.294
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Table 3 The mitogenome gene characteristics and location of [i] A. americanus.

Gene Strand Position Length
(nuc.)

Anticodon Start
codon

Stop
codon

Intergenic
nucleotides

tRNALeu
+ 1–72 72 TAG 0

tRNAThr
+ 73–144 72 TGT 0

tRNAPro
− 144–212 69 TGG −1

tRNAPhe
+ 212–279 68 GAA −1

12S rRNA + 280–1213 934 0
tRNAVal

+ 1214–1282 69 TAC 0
16S rRNA + 1283–2884 1602 0
tRNALeu

+ 2885–2957 73 TAA 0
ND1 + 2958–3918 961 TTG T 0
tRNAIle

+ 3919–3989 71 GAT 0
tRNAGln

− 3989–4059 71 TTG −1
tRNAMet

+ 4059–4127 69 CAT −1
ND2 + 4128–5162 1035 ATT TAG 0
tRNATrp

+ 5161–5230 70 TCA −2
tRNAAla

− 5232–5300 69 TGC +1
tRNAAsn

− 5302–5374 73 GTT +1
L-strand origin of replication 5375–5403 29 0
tRNACys

− 5401–5464 64 GCA −3
tRNATyr

− 5465–5534 70 GTA 0
COX1 + 5539–7080 1542 ATA TAA +4
tRNASer

− 7081–7151 71 TGA 0
tRNAAsp

+ 7156–7224 69 GTC +4
COX2 + 7226–7910 685 ATG T +1
tRNALys

+ 7911–7982 73 TTT 0
ATP8 + 7984–8148 165 ATG TAA +1
ATP6 + 8139–8822 684 ATG TAA −10
COX3 + 8822–9605 784 ATG T −1
tRNAGly

+ 9606–9674 69 TCC 0
ND3 + 9675–10016 340 ATG T 0
tRNAArg

+ 10015–10083 69 TCG 0
ND4L + 10084–10383 300 ATG TAA 0
ND4 + 10377–11741 1365 ATG TAA −7
tRNAHis

+ 11742–11810 69 GTG 0
tRNASer

+ 11811–11877 67 GCT 0
ND5 + 11915–13703 1789 ATG T +37
ND6 − 13701–14195 495 ATG AGA −3
tRNAGlu

− 14196–14263 68 TTC 0
CYTB + 14269–15411 1143 ATG AGG +5
control region 15412–17328 1917 0
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Table 4 The mitogenome gene characteristics and location of Bufotes pewzowi.

Gene Strand Position Length
(nuc.)

Anticodon Start
codon

Stop
codon

Intergenic
nucleotides

tRNALeu
+ 1–72 72 TAG 0

tRNAThr
+ 73–144 72 TGT 0

tRNAPro
− 144–212 69 TGG −1

tRNAPhe
+ 212–279 68 GAA −1

12S rRNA + 280–1213 934 0
tRNAVal

+ 1214–1282 69 TAC 0
16S rRNA + 1283–2891 1609 0
tRNALeu

+ 2892–2964 73 TAA 0
ND1 + 2965–3925 961 TTG T 0
tRNAIle

+ 3926–3996 71 GAT 0
tRNAGln

− 3996–4066 71 TTG −1
tRNAMet

+ 4066–4134 69 CAT −1
ND2 + 4135–5169 1035 ATT TAG 0
tRNATrp

+ 5168–5237 70 TCA −2
tRNAAla

− 5238–5306 69 TGC 0
tRNAAsn

− 5307–5379 73 GTT 0
L-strand origin of replication 5380–5407 28 0
tRNACys

− 5405–5468 64 GCA −3
tRNATyr

− 5469–5538 70 GTA 0
COX1 + 5543–7084 1542 ATA TAA +4
tRNASer

− 7087–7157 71 TGA +2
tRNAAsp

+ 7159–7227 69 GTC +1
COX2 + 7229–7916 688 ATG T +1
tRNALys

+ 7917–7988 72 TTT 0
ATP8 + 7990–8154 165 ATG TAA +1
ATP6 + 8151–8828 678 ATA TAA −4
COX3 + 8828–9611 784 ATG T −1
tRNAGly

+ 9612–9680 69 TCC 0
ND3 + 9681–10022 342 ATG TAA 0
tRNAArg

+ 10021–10089 69 TCG −2
ND4L + 10090–10389 300 ATG TAA 0
ND4 + 10383–11747 1365 ATG TAA −7
tRNAHis

+ 11748–11816 69 GTG 0
tRNASer

+ 11817–11883 67 GCT 0
ND5 + 11923–13711 1789 ATG T +39
ND6 − 13709–14203 495 ATG AGG −3
tRNAGlu

− 14204–14272 69 TTC 0
CYTB + 14277–15422 1146 ATG AGA +4
control region 15423–17551 2129 0
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overlapping nucleotides with the adjacent gene. There are 5 and 6 reading frame overlaps
in the mitogenome of A. americanus and Bufotes pewzowi, respectively (Tables 3 and 4).
All PCGs begin with ATA or ATG as the start codons, except ND1 that begins with TTG.
Although TTG is an uncommon start codon among PCGs, it is often found in amphibians
(Wang, Cao & Li, 2017; Zhang et al., 2005). The stop codons for A. americanus and Bufotes
pewzowi are mostly complete TAA, AGG, AGA, and TAG codons with some incomplete T
codons. The functionality of these latter is believed to be restored by post-transcriptional
polyadenylation (Liu, Wang & Su, 2005; Ojala, Montoya & Attardi, 1981). Furthermore,
a comparative analysis indicated that the mitogenome of A. americanus had the highest
A+T content (61.9%) (Dong & Yang, 2016; Jacob Machado et al., 2018). We also analyzed
the relative synonymous codon usage (RSCU) of the A. americanus and Bufotes pewzowi
mitogenomes, excluding stop codons (Table 5; Figs. 3 and 4). The results show that A and
T at the third codon position are slightly overused when compared to the synonymous
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codons of C and G. Moreover, we found that the most frequently used amino acids in these
two mitogenomes are Leu (CUN), Ile and Ala, with those encoding Cys and Ser (AGY)
being rare.

Ribosomal and transfer RNA genes
We found that the length of rRNAs in Bufotes pewzowi (2,543 bp) is longer than other
Bufonidae species (Cao et al., 2006; Igawa et al., 2008; Jiang et al., 2017b; Wang et al., 2013;
Yang et al., 2016). The complete mitogenome of A. americanus or Bufotes pewzowi contains
22 typical tRNA genes, which ranged from 64 bp to 73 bp in length. In the H-strand, A.
americanus showed a positive AT-skew and GC-skew of the tRNAs, and Bufotes pewzowi
also showed a positive AT-skew andGC-skew (Table 2). Furthermore, all of the tRNA genes
displayed the potential to fold into the typical cloverleaf secondary structure, excluding
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Table 5 RSCU information for the mitochondrial protein-coding genes of A. americanus and Bufotes pewzowi.

A. americanus B. pewzowi A. americanus B. pewzowi A. americanus B. pewzowi A. americanus B. pewzowi

Codon Count RSCU Count RSCU Codon Count RSCU Count RSCU Codon Count RSCU Count RSCU Codon Count RSCU Count RSCU

UUU(F) 202 1.57 168 1.3 UCU(S2) 93 1.86 67 1.36 UAU(Y) 58 1.07 56 1 UGU(C) 12 0.77 10 0.71

UUC(F) 55 0.43 90 0.7 UCC(S2) 50 1 65 1.32 UAC(Y) 50 0.93 56 1 UGC(C) 19 1.23 18 1.29

UUA(L2) 176 1.73 130 1.3 UCA(S2) 96 1.92 105 2.13 UAA(*) 5 2.5 6 2.67 UGA(W) 103 1.84 96 1.73

UUG(L2) 23 0.23 28 0.28 UCG(S2) 13 0.26 14 0.28 UAG(*) 1 0.5 1 0.44 UGG(W) 9 0.16 15 0.27

CUU(L1) 182 1.79 144 1.44 CCU(P) 61 1.21 47 0.94 CAU(H) 38 0.89 31 0.7 CGU(R) 9 0.51 10 0.57

CUC(L1) 80 0.79 110 1.1 CCC(P) 38 0.75 50 1 CAC(H) 47 1.11 58 1.3 CGC(R) 16 0.9 10 0.57

CUA(L1) 125 1.23 151 1.51 CCA(P) 95 1.88 89 1.78 CAA(Q) 83 1.89 76 1.67 CGA(R) 43 2.42 45 2.57

CUG(L1) 24 0.24 37 0.37 CCG(P) 8 0.16 14 0.28 CAG(Q) 5 0.11 15 0.33 CGG(R) 3 0.17 5 0.29

AUU(I) 281 1.66 214 1.32 ACU(T) 78 1.11 66 0.93 AAU(N) 67 0.99 61 0.92 AGU(S1) 24 0.48 10 0.2

AUC(I) 57 0.34 111 0.68 ACC(T) 77 1.1 99 1.39 AAC(N) 68 1.01 72 1.08 AGC(S1) 24 0.48 35 0.71

AUA(M) 131 1.51 116 1.35 ACA(T) 114 1.62 108 1.52 AAA(K) 73 1.72 74 1.68 AGA(*) 1 0.5 1 0.44

AUG(M) 42 0.49 56 0.65 ACG(T) 12 0.17 11 0.15 AAG(K) 12 0.28 14 0.32 AGG(*) 1 0.5 1 0.44

GUU(V) 83 1.79 75 1.55 GCU(A) 92 1.21 83 1.06 GAU(D) 37 1 29 0.77 GGU(G) 39 0.7 37 0.66

GUC(V) 25 0.54 36 0.75 GCC(A) 111 1.47 123 1.57 GAC(D) 37 1 46 1.23 GGC(G) 47 0.84 56 1

GUA(V) 63 1.36 56 1.16 GCA(A) 92 1.21 96 1.22 GAA(E) 71 1.53 63 1.4 GGA(G) 103 1.85 80 1.43

GUG(V) 14 0.3 26 0.54 GCG(A) 8 0.11 12 0.15 GAG(E) 22 0.47 27 0.6 GGG(G) 34 0.61 51 0.91
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the trnC and trnS (AGY) (Figs. S1 and S2). In both species, the trnS (AGY) has an extra
unpaired adenine (A) in the anticodon arm and the trnC has lost the DHU loop. This
phenomenon is also found in other Bufonidae species (shown in Fig. S3) (Cao et al., 2006;
Igawa et al., 2008; Zhang et al., 2005; Zhang et al., 2013). The trnS (AGY) in A. americanus
had also lost the DHU arm, whereas in Bufotes pewzowi lost only the DHU loop. Hence, the
unusual secondary structure of trnS (AGY) is in line with the molecular trend observed in
metazoa (Wolstenholme, 1992). We also found 13 unmatched base pairs in A. americanus
and 15 in Bufotes pewzowi. The putative origin of L-strand replications (OL) are 29 bp
and 28 bp long in A. americanus and Bufotes pewzowi, respectively. Both of these have the
potential to fold into the characteristic stem and loop structure (Jiang et al., 2017a; Sahyoun
et al., 2014) that has been demonstrated by Hixson & Brown (1986) to be involved in the
transition from RNA to DNA synthesis.

Control region and intergenic regions
The control regions (CRs) in A. americanus and Bufotes pewzowi have lengths of 1,916 bp
and 2,129 bp, respectively. The A+T content value (70.3%) of A. americanus is the highest
known to date among Bufonidae species. In addition, A. americanus showed a negative
AT-skew and GC-skew in its CR, whereas Bufotes pewzowi showed a positive AT-skew and
negative GC-skew. Guanine (G) was the scarcest nucleotide at the third codon position of
the H-strand due to a strong bias against guanine usage in the A. americanusmitogenome,
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which is common for mitogenome strands of vertebrates (Kan et al., 2010). The CRs can
be divided into three regions that depend on the distribution of the variable nucleotide
positions and differential frequencies of the nucleotides, and contain repeat regions at both
5′ and 3′-sides. We found 3 tandem repeats in A. americanus with consensus sizes of 162
bp, 21 bp and 2 bp. In Bufotes pewzowi there are only two tandem repeats whose consensus
sizes were 104 bp and 91 bp. The intergenic spacers (IGNs) have a variable length within the
mitogenomes of A. americanus (Table 3) and Bufotes pewzowi (Table 4). All lengths of IGNs
in both species are smaller than 5 bp, except for one that was 37 bp in A. americanus and
39 bp in B. pewzowi, both located between the trnS (AGY) and ND5 genes. Comparative
analysis showed that the longest IGN between A. americanus and Bufotes pewzowi had a
high similarity (76.9%). In many vertebrates, there is usually a trnL (CUN) gene following
the trnS (AGY) gene (Cheng et al., 2018; Lin et al., 2014; Ni et al., 2016; Ye et al., 2016; Yu et
al., 2012; Yu, Zhang & Zheng, 2012). However, when the trnL (CUN) gene is translocated,
an IGN is left in its original position (Zhou et al., 2009). Thus, Cao et al. (2006) speculated
that this might reflect the evolution of the mitogenome arrangement in Anura.

Phylogenetic analyses
Phylogenetic relationships based on the nucleotide sequences of the 13 PCGs were obtained
with BI and ML analyses (Fig. 5). Our BI analysis was relatively robust and provided
resolution with high clade posterior probabilities, whereas the ML results showed some
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modest clade frequencies. Furthermore, the phylogenetic relationships deduced from BI
and ML analyses showed somewhat different topologies. In the BI and ML analyses, the
monophyly of Bufonidae was well recovered. In the BI analysis, Bufo japonicus was a sister
group to the clade of (Bufo gargarizan DQ275350 + (Bufo tibetanus JX878885 + (Bufo
gargarizan KM587710 + Bufo gargarizan KU321581))). However, in the ML analysis, Bufo
japonicus was a sister group to Bufo stejnegeri and then the group of (Bufo japonicus + Bufo
stejnegeri) was a sister group to the cluster of (Bufo gargarizanDQ275350+ (Bufo tibetanus
JX878885 + (Bufo gargarizan KM587710 + Bufo gargarizan KU321581))). Coincidentally,
Dong & Yang (2016) also reported that Bufo japonicus was a sister group to Bufo stejnegeri
and the monophyly of family Bufonidae and genus Bufo were corroborated. Frost et al.
(2006) and Van Bocxlaer et al. (2009) corroborated the monophyly of Bufonidae as well
as the results of Portik & Papenfuss (2015). Our phylogeny within Bufonidae is generally
similar to the results of Pramuk et al. (2008), Ron et al. (2015) and Dong & Yang (2016).
The ML and BI analyses also confirmed the monophyly of Bufo, which has also been
demonstrated by other researchers (Graybeal, 1997; Dong & Yang, 2016). By contrast, our
results were different from Brandvain et al. (2014) and Jiang et al. (2018), who reported
that Bufowas a paraphyletic group, a result that was also deduced by Pyron & Wiens (2011).
However, we found that Dong & Yang (2016) confirmed the monophyly of Bufo using the
complete mitogenomes, whereas Brandvain et al. (2014), Pyron & Wiens (2011) and Jiang
et al. (2018) confirmed a paraphyletic relationship using partial mitochondrial genes (12S,
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16S and CYTB) and several nuclear genes. Hence, the different results from these studies
are likely caused by the different data sets and/or methods applied.

The family Bufonidae was divided into 3 major groups: (Leptophryne + (Bufotes +
(Duttaphrynus + (Strauchbufo + (genus Bufo))))), (A. americanus + Rhinella acrolopha),
and (Melanophryniscus simplex + M. moreirae). Among them, the clade of A. americanus
was the sister group to R. acrolopha whereas Bufotes pewzowi was a sister group to the
clade of (Duttaphrynus + (Strauchbufo + (genus Bufo))). Genus Anaxyrus was a sister
group to genus Rhinella and then the clade of (A. americanus + R. acrolopha) was the sister
group to (Leptophryne + (Bufotes + (Duttaphrynus + (Strauchbufo + (Bufo))))). Portik &
Papenfuss (2015) also found that genus Anaxyrus was the sister group to genus Rhinella.
Our phylogenetic tree showed that the clade of (M. simplex + M. moreirae) (BI: 1, ML:
100%) was recovered as the sister group to the other Bufonidae species. We also found
a similar result in the research of Portik & Papenfuss (2015). The South American genera
include Melanophryniscus, Nannophryne, as well as the group of Rhinella that is endemic
to South America and is distributed from the southern tip of Texas to as far south as
Argentina (Vallinoto et al., 2010). This phenomenon was consistent with the results from
other researchers and implies that Bufonidae may have originated from South America.
Coincidentally, nearly all recent phylogenetic analyses have asserted a South American
origin for Bufonidae (Pérez-Ben, Gómez & Báez, 2019; Pramuk et al., 2008). In addition,
discrepancies in the results between our work and prior studies were likely to be caused by
the different composition of the data chosen (Gao et al., 2018). Therefore, more molecular
data are needed to better comprehend the phylogenetic relationship of the family, especially
from taxa that, in other studies, led to a conclusion that Bufo was paraphyletic.

Analysis of positive selection in 13 protein-coding genes
The results of positive selection are shown in Tables 6 and 7. In the analyses of the branch
model, we reached a similar conclusion no matter which toad species was set as the
foreground branch. The ω ratio value in the M0 model was 0.03375 when using the BI tree
and 0.03373 using the ML tree, with ω ratio values all smaller than 1. This means that these
two branches are under negative selection. When we set A. americanus as the foreground
branch, the LRT of the comparison (M0 vs. the two-ratio model) was highly significant
(p< 0.01), whereas when Bufotes pewzowi was set as the foreground branch, the LRT value
was greater than 0.05. The site model was used to detect positive selection sites and we got
similar conclusions regardless of which tree-buildingmethod was used. The LRT ofM7-M8
comparison showed high significance (P < 0.01) and two amino acid positions were found
have BEB values >0.90 (positions 3,590 and 3,594 in the concatenated amino acids of the
13 PCGs). Amino acid residues 3,590 and 3,594 correspond to amino acid positions 115
and 119 in the ND6 protein, respectively (Table S3). Residue glycine (G, 115) in the ND6
protein can be found inA. americanus, Bufo gargarizan, Bufo japonicus, Bufo stejnegeri, Bufo
tibetanus and S. raddei, which are distributed across northern regions of the earth at similar
latitudes (33◦N to 44◦N), and residues serine as well as glutamic acid can also be found in
this position in other Bufonidae. Residue aspartic acid (D, 119) in the ND6 protein can
only be found inA. americanuswhereas most of the other Bufonidae species contain glycine
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Table 6 Summary of EasyCodeML analysis of positive selection onmitogenomes based on the phylogenetic tree from BI.

Foreground
branch

Models `n L Estimates of parameters Model
compared

LRT P-value Positive sites

Branch model
A. americanus M0 −64953.9215 ω= 0.03375

two-ratios model −64937.6024 ω0= 0.03520, ω1= 0.01846
M0 vs. two-
ratios model

0.000000011

Bufotes pewzowi M0 −64953.9215 ω= 0.03375
two-ratios model −64953.7750 ω0= 0.03390, ω1= 0.03200

M0 vs. two-
ratios model

0.588391030

Site model
M0 −64953.9215 ω0= 0.03375
M3 −63675.0885 ω0= 0.00589, ω1= 0.1673, ω2= 101.4548

p0=0.8120, p1=0.1880, p2=0.00000
M0 vs. M3 0.000000000 [] Not Allowed

M1a −64441.3475 ω0= 0.02382, ω1= 1.00000
p0=0.9533, p1=0.04670

M2a −64441.3475 ω0= 0.02382, ω1= 1.0000, ω2= 40.4741
p0=0.9533, p1=0.04670, p2=0.0000

M1a vs. M2a 0.999999000 [] Not Allowed

M7 −63769.6465 p= 0.1688, q= 2.4104
M8 −63735.9750 ω0= 1.00000, q= 2.5906

p0=0.9893, p1=0.01066, p2=0.1583
M7 vs.M8 0.000000000

3584 I 0.655, 3585 T 0.654,
3590 G 0.925, 3594 D 0.942
Not Allowed

M8a −63639.2914 ω0= 1.00000, q= 3.8610
p0=0.9985, p1=0.00149, p2=0.1657

M8a vs.M8 0.000000000 Not Allowed
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Table 7 Summary of EasyCodeML analysis of positive selection onmitogenomes based on the maximum-likelihood tree.

Foreground
branch

Models `n L Estimates of parameters Model com-
pared

LRT P-value Positive sites

Branch model
A. americanus M0 −64946.8069 ω= 0.03373

two-ratios model −64930.6151 ω0= 0.03518, ω1= 0.01848
M0 vs. two-
ratios model

0.000000013

Bufotes pewzowi M0 −64946.8069 ω= 0.03373
two-ratios model −64946.6112 ω0= 0.03390, ω1= 0.03171

M0 vs. two-
ratios model

0.531545543

Site model
M0 −64946.8069 ω0= 0.03373
M3 −63668.4498 ω0= 0.00589, ω1= 0.1674, ω2= 112.9303

p0=0.8121, p1=0.1879, p2=0.00000
M0 vs. M3 0.000000000 [] Not Allowed

M1a −64433.7560 ω0= 0.02376, ω1= 1.00000
p0=0.9531, p1=0.04689

M2a −64433.7561 ω0= 0.02376, ω1= 1.0000, ω2= 52.2715
p0=0.9531, p1=0.04689, p2=0.0000

M1a vs. M2a 0.999941002 [] Not Allowed

M7 −63763.2701 p= 0.1689, q= 2.4119
M8 −63730.7785 ω0= 1.00000, q= 2.5907

p0=0.9894, p1=0.01056, p2=0.1586
M7 vs.M8 0.000000000

3584 I 0.654, 3585 T 0.655,
3590 G 0.925, 3594 D 0.942
Not Allowed

M8a −63633.2296 ω0= 1.00000, q= 3.8578
p0=0.9986, p1=0.00145, p2=0.1656

M8a vs.M8 0.000000000 Not Allowed
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at this site. Amino acid positions 115 and 119 (Fig. S4) are in a part of the ND6 protein that
protrudes outside the mitochondrial inner membrane into the intermembrane space (as
determined using the TMHMM Server v. 2.0; http://www.cbs.dtu.dk/services/TMHMM/)
(Möller, Croning & Apweiler, 2001). In this study, A. americanus was obtained from the
highest latitude and contained both of the two positive selection sites. At 115 and 119
positions of ND6 protein, aspartic acid has a negatively charged polar side chain, whereas
glycine has an uncharged side chain with no polar group (Shiraishi & Kuwabara, 1970).
The amino acid changes in the ND6 protein may have a role in modulating Complex I
redox potential and ROS production (Zhuang & Cheng, 2010).

Consequently, the above evidence possibly implies that the mitogenomes of these
northern species are under natural selection. The changes in the relative mass and
electrical charges of amino acids that they encode may be related to adaptive evolution
to low temperature environments in A. americanus. As the first enzyme complex of the
respiratory chain, mitochondrial complex I consists of 45 subunits, its seven hydrophobic
subunits being encoded by the mitogenome (ND1-6 and 4L) (Formosa et al., 2018; Zhou
et al., 2014). Thus, the adaptive changes in several ND4 and ND6 gene sites may affect
the proton-pumping process and metabolic performance (Yu et al., 2011). Sun et al.
(2018a) found positive selection on ND4 from Tetranychus truncatus during adaptation
to low temperature. Zhuang & Cheng (2010) proposed that the modification of ND6 gene
probably improved complex I subunit interactions at low temperatures after analyzing
positive selection results. Lamb et al. (2018) also found positive selection of the ND6 gene
when tested for evolution caused by climate-linked selection. Furthermore, residue aspartic
acid (D, 119) can also be found in the same position in the ND6 proteins of other anurans,
such as in the family Ranidae (Rana dybowskii, R. cf. chensinensis and R. huanrenensis),
Leptodactylidae (Leptodactylus melanonotus) and Microhylidae (Phrynomantis microps).
We observe that the three frogs in the family Ranidae are mainly distributed in northern
China (Li, Lei & Fu, 2014; Dong, Zhou & Yang, 2015), where temperatures are relatively
low. L. melanonotus and P. microps are distributed near the equator, where temperatures
are relatively high. More research is needed to reach definitive conclusions about low or
high temperature positive selections in mitochondrial genes (e.g., Banguera-Hinestroza
et al., 2018; Ben Slimen et al., 2018; Sun et al., 2018b; Zhou et al., 2014). According to this
evidence, we can hypothesize that residue aspartic acid (D, 119) in the ND6 protein of A.
americanus may be related to temperature adjustment and in different anurans may be
under different climate-linked selection. However, we did not find evidence for positive
selection in the mitogenome of Bufotes pewzowi and this suggests that gene adaptations
that improve osmoregulation (if they occur) may be associated with nuclear genes. Hence,
more information on the evolution of nuclear genomes in toads is needed to analyze the
potential adaptation to salinity.

CONCLUSIONS
The complete mitochondrial genomes of A. americanus and Bufotes pewzowi were
successfully sequenced and annotated. Both show the same gene orders and orientation
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as occurs in other mitogenomes of Bufonidae, whereas the A+T content of the whole
mitogenome in A. americanus is the highest among the known species of Bufonidae. It is
noteworthy that the ND1 gene begins with TTG as the start codon and the trnC and trnS
(AGY) genes could not fold into the typical cloverleaf secondary structure in these two
toad species, which is a common phenomenon in Bufonidae. Both BI and ML analyses
indicated Bufonidae and Bufo as monophyletic groups in this study.

Furthermore, foreground branches (A. americanus and Bufotes pewzowi) are subject to
negative selection ( ω <1). In the site model, two positive selection sites with BEB values
>0.90 were found and both were located in the ND6 gene. The residue G (115) in ND6
protein can be found in toad species living in northern regions, but residue D (119) in ND6
protein can only be found in A. americanus. No positive selection site was found in Bufotes
pewzowi. The results show that adaptation to low temperature in A. americanus may be
partly related to evolutionary changes in the ND6 gene and the residue D (119) in ND6
protein may be linked to temperature adjustment. However, adaptation to high salinity by
Bufotes pewzowi could not be linked to a modification of its mitogenome.
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