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ABSTRACT

Accurate estimation of CHy fluxes in alpine peatland of the Qinghai-Tibetan Plateau
under extreme drought is vital for understanding the global carbon cycle and predicting
future climate change. However, studies on the impacts of extreme drought on peatland
CHy fluxes are limited. To study the effects of extreme drought on CHy4 fluxes of
the Zoige alpine peatland ecosystem, the CHy4 fluxes during both extreme drought
treatment (D) and control treatment (CK) were monitored using a static enclosed
chamber in a control platform of extreme drought. The results showed that extreme
drought significantly decreased CHy fluxes in the Zoige alpine peatland by 31.54%
(P < 0.05). Extreme drought significantly reduced the soil water content (SWC) (P <
0.05), but had no significant effect on soil temperature (Ts). Under extreme drought
and control treatments, there was a significant negative correlation between CHy fluxes
and environmental factors (Ts and SWC), except Ts, at a depth of 5cm (P < 0.05).
Extreme drought reduced the correlation between CH,4 fluxes and environmental
factors and significantly weakened the sensitivity of CHy4 fluxes to SWC (P < 0.01).
Moreover, it was found that the correlation between subsoil (20 cm) environmental
factors and CH,4 fluxes was higher than with the topsoil (5, 10 cm) environmental
factors under the control and extreme drought treatments. These results provide a
better understanding of the extreme drought effects on CH4 fluxes of alpine peatland,
and their hydrothermal impact factors, which provides a reliable reference for peatland
protection and management.

Subjects Ecosystem Science, Climate Change Biology, Environmental Impacts
Keywords CHy fluxes, Alpine peatland, Extreme drought, Hydrothermal sensitivity

INTRODUCTION

In recent years, due to the aggravation caused by human activities, the global atmospheric
and water cycle pattern has been significantly changed, resulting in an increasing frequency
and intensity of global extreme climate events (IPCC, 2013; Kreyling et al., 2008; Kang et

al., 2018; Thakur et al., 2017). Recent studies have indicated that the occurrence of extreme
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drought events can significantly change the water and heat conditions of the ecosystem,
affecting the physiological state of plants and activities of soil microbes, triggering changes
in the soil structure and function, and breaking the original carbon balance of the ecosystem,
which in turn can aggravate the intensity and frequency of extreme drought events on a
global scale (Reichstein et al., 2013; Bloor & Bardgett, 2012; Beierkuhnlein et al., 2011; Hao et
al., 2011). However, research on extreme drought is still concentrated in arid and semi-arid
grasslands at present, and research on peatland is relatively rare (Bloor ¢ Bardgett, 2012;
Beierkuhnlein et al., 2011; Yin et al., 2013). As an important global carbon pool, peatlands
are carbon-rich ecosystems that cover just 3% of the Earth’s land surface, but they store
one-third of the soil carbon (Dargie et al., 2017; Page, Rieley ¢ Banks, 2011). As such,
peatlands play an important role in the global carbon cycle and mitigation of climate
change (Wu, 2012).

The alpine peatland ecosystem, on account of its special altitude, presentsa higher
sensitivity to climate change (Mclaughlin ¢ Webster, 2014). Additionally, with low
temperatures and anoxia all year round, peatlands have sequestered large amounts of
carbon in the soil (Van Bellen, Garneau ¢ Booth, 2011; Bunbury, Finkelstein ¢» Bollimann,
2012). However, when disturbed by external conditions, the source and sink of CHy in
the alpine peatland ecosystem can be significantly altered (Webster et al., 2013). As one of
the main greenhouse gases, the warming potential of CHy is 23 times than that of CO»,
and changes in the CHy4 content in the atmosphere can have a significant impact on the
trend and intensity of global climate change (Reichstein et al., 2013; Soren, Sejian ¢ Malik,
2015). However, the dynamics of CHy in alpine peatland ecosystems and its response to
extreme drought are poorly understood and lack quantified analyses. Therefore, accurate
quantification of alpine peatland CH, fluxes under extreme drought conditions at various
spatial and temporal scales is crucial and necessary for fully understanding the climate
change process.

The Zoige plateau, located in the northeast of the Qinghai-Tibet plateau, is the region
with the highest organic carbon reserves in China and one of the largest plateau peatlands
in the world, thus playing an important role in the global carbon cycle (Wang et al.,
2012). As such, this region could potentially have a significant impact on regional
climate change (Kang et al., 2014). However, due to the warming and drying trends
that have occurred over the past 30 years, the surface water level of the Zoige peatland has
decreased substantially, which directly alters the pattern of CHy fluxes in this area (Rydin
& Jeglum, 2006; Yang et al., 2014; Gorham, 1991; Chen et al., 2013). Moreover, changes
in precipitation and atmospheric temperatures, as well as the effects of decreased water
levels, serve to increase the level of uncertainty regarding the magnitude of the CH, fluxes
occurring in many ecosystems (Chen et al., 2013; Blankinship et al., 2010). Therefore, to
improve our understanding of the CH4 dynamics occurring in the Zoige alpine peatland,
the effects of temperature and precipitation variability under extreme drought conditions
should be studied simultaneously.

In recent years, researchers have found that CH4 uptake is strongly controlled by soil
moisture, as soil temperature only has a minor influence on CHy fluxes measured at the
Tasmania Ecological Research site (Fest et al., 2017). Daily observations of CH, fluxes in
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nine different types of swamps in northern Finland have shown that the average CH,4
emission is significantly correlated with the average groundwater level (Huttunen et al.,
2003). Related research has also indicated that the yield of CHy4 is lower under drought
conditions in peatlands (Freeman et al., 2002). Moreover, frequent extreme drought events
in recent years have been increasing, and these events have clearly had a profound impact on
CHy, fluxes in the Zoige peatland (Chen et al., 2009; Wang, Ding ¢~ Wang, 2003). However,
data regarding the changes in CH, fluxes in the Zoige peatland under extreme drought are
limited.

Therefore, the accurate estimation of CHy fluxes and the factors impacting their
dynamics will help quantify the interactions and feedback occurring between extreme
drought events and the alpine peatland ecosystem. In this study, we observed the CH,4 fluxes
and environmental factors at the Zoige peatland in a controlled experiment of extreme
drought with the hope of estimating the drought effects on CHj, fluxes, and we identified
the environmental variables affecting these fluxes under continuous drought stress. The
results provide an important scientific basis to accurately evaluate the contribution of
alpine peatland CH,4 towards global climate change and will also help support peatland
conservation.

MATERIALS & METHODS

Site description

The experiment was conducted in Zoige county in the eastern Tibetan Plateau (33.79°N,
102.95°E) at an altitude of 3,430 m (Fig. 1A). The mean annual temperature is 1.1 °C,
and mean annual precipitation is 648.5 mm, with 80% falling during the growing season
from June to September. The mean monthly temperature ranges from 1 °C (January) to
11 °C (July). The experiment was established in a frigid temperate zone steppe dominated
by herbaceous marshes and composed mainly of Carex meyeriana, Carex muliensis, and
Kobresia tibetica. The main soil type was marshy peat, with the soil pH is between 6.8-7.2
in localized areas (Zhou et al., 2015). The depth of peat in the vertical profile of this site is
in general 1.2 m. Field experiments were approved by the Institute of Wetland Research.

Experiment design and data collection

Based on the local rainfall data for the past 50 years, we defined daily rainfall > three
mm as ecologically effective precipitation (Hao et al., 2012). During the flourishing period
of the growth season, we selected 32 days as the duration of non-ecologically effective
precipitation (drought days) and simulated extreme drought over this period of plant
growth (Wang et al., 2007). The area of the plot was 20 m x 20 m, and extreme drought
treatment (D) and control treatments (CK) were set up, independently, with each treatment
consisting of three (2 m x 2 m) repetition plots (Fig. 1B). We buried iron sheets in the
soil about 1 m deep around each treatment to prevent the lateral flow of soil water. A
stainless-steel base (50 cm x 50 cm x 20 cm) was placed at the sampling point and inserted
into the ground at a depth of 10 cm. Before each measurement, we filled the groove of
stainless steel with water to ensure the airtightness of the measurement (Fig. 1C). For the
extreme drought treatment, we used a magnesium-aluminum alloy shelter (length x width
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Figure 1 (A) Zoige peatland in the eastern part of the Tibetan Plateau with the location of the study
site, Sichuan province; (B) the picture of experiment site; (C) the zoning schematic map of experiment
plot.

Full-size Gal DOI: 10.7717/peer;j.8874/fig-1

x height; 2.5 m x 2.5 m x 1.8 m) to simulate drought, and the light transmittance of the
shelter was more than 90%. The gas in the controlled plot was monitored under natural
conditions.

A fast greenhouse gas analyzer (DLT-100, Los Gatos Research, USA) was used to monitor
CHj, fluxes, at a data acquisition frequency of 1 Hz. A TZS-5X thermometer was used to
monitor the air temperature (Ta) and soil temperature (Ts), and a TDR 300 was used to
measure the SWC. A box (50 cm x 50 cm) was connected with the fast greenhouse gas
analyzer. There were two small holes two cm in diameter at the top of the box, which were
closed with rubber plugs. There was a small hole in each rubber plug for the insertion of
two gas conduits (intake pipe and outlet pipe) with a length of 20 m and an inner diameter
about four mm. The box was connected to an intake pipe and an outlet pipe with a length
of about 20 m. To ensure the gas in the box could be quickly mixed and evenly distributed,
two small fans (10 cm in diameter) were set at the top of the box. Each sampling point
was measured in a sealed transparent box or dark box for 2 min, and the measured data
from the dark box were used to ascertain the CHy fluxes. The drought treatment started
on July 15, 2017, and end on August 16, 2017. The measurements were taken at three
periods of one day (first: 9:00-10:00, second: 12:00-13:00, third: 14:00-15:00). For the
measurement of aboveground biomass, 50 cm x 50 cm quadrats were randomly chosen
in each experimental plot, and all plants within the quadrats were cut to ground level.
After the dust was removed, the plant material was oven dried to constant weight at 70 °C.
Belowground biomass was collected by digging soil pits at the same locations where the
aboveground biomass had been removed at the sampling depths of 0-20 cm and 20-40 cm.
Soils containing root biomass were placed in 40-mesh nylon bags and taken back to the
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laboratory, where the roots were carefully washed and then oven dried to a constant weight
at 70 °C. A soil drill was used to sample the soil via multi-point sampling and mixing.
The soil organic matter (SOC) was determined using a potassium dichromate volumetric
method (Wang et al., 2007), total carbon (TC) was determined by the elemental analyzer
(Sokolova & Vorozhtsov, 2014), and total nitrogen (TN) was determined via the Kjeldahl
method (Nozawa et al., 2005).

Data analysis

The formula used for calculating the greenhouse gas fluxes (Wickland et al., 2001) was:
oC M P To H

=—X—X—X X — % 3600 (1)
ot Vo Py To+t 100

where Fc is the gas fluxes (mg C/ (m2 h)); M is the molar mass of gas (g/mol); Vj is

C

the standard molar volume of gas (22.4 L/mol); P/Py is the measurement of pressure to
standard air pressure; T is the absolute temperature (273.15 °C); t is the average value of
the measured temperature in the box (°C); and H is the static height (cm). Importantly,
the measured data were analyzed by linear regression to calculate the linear slope of the gas
concentration relative to the time of observation.

Repeated-measure ANOVA with Duncan’s multiple-range tests were performed to
examine the main and interaction effects of date, treatment and block on the differences
in CHy fluxes and environmental factors in 2017 (SPSS, Chicago, IL, USA). A one-way
ANOVA analysis was performed to examine the properties (above and below ground
biomass, TC, TN, SOC) at different depths in 2017 (SPSS, Chicago, IL, USA). To further
evaluate the relationship of CH, fluxes and environmental factors, a correlation matrix
analysis between CH4 fluxes and environmental factors was conducted (Origin 2017, USA).
The slopes of those linear relationships were analyzed and compared by SMA (Standardized
Major Axis) regression analysis, using the SMATR (Standardized Major Axis Tests and
Routines) package (Warton et al., 2006). R v3.5.1 with the corrplot package was used for
the correlation analysis (Svetnik et al., 2004).

RESULTS

Climate during the experiment period

During the experiment period (32 d), 14 precipitation events occurred in Zoige, with 6
days including ecologically effective precipitation events (>3 mm). The daily precipitation
ranged from 0.1 mm to 20.6 mm (Fig. 2) and the average precipitation was 1.9 mm. The
total precipitation was 58.9 mm in the control treatment and 0 mm in the extreme drought
treatment during the experimental period. The precipitation mainly occurred in early
August, and a transient rainfall occurred at the end of the treatment period. The highest
and lowest daily temperatures were 15.3 °C and 8.4 °C, respectively, and the average
temperature was 12.9 °C during the treatment period.

Effects of extreme drought on CH, fluxes
From the end of June to the middle of July, there was a transition period between a weak
CH, sink and a weak CH,4 source of the Zoige peatland (Fig. 3A). The emission of CHy
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Figure 2 Daily average precipitation and temperature of Zoige peatland during the experimental pe-
riod in 2017. Point-line chart and histogram indicate temperature and precipitation, respectively.
Full-size & DOI: 10.7717/peer;j.8874/fig-2

from the Zoige peatland reached a maximum around August 16. During the pre-drought
period, the ecosystem functioned as a CHy sink, and during the extreme drought and
post-drought periods, the ecosystem functioned as a net CH, source (Fig. 3B). Compared
to the control treatment, extreme drought significantly decreased the CH, fluxes of the
Zoige peatland ecosystem by 31.54% (P < 0.05, Fig. 3B, Table 1) in the drought period,
and there was no significant change in the pre and post-drought periods of the experiment
under the extreme drought and control treatment (P > 0.05). Additionally, the difference
of CH,4 fluxes between the control and drought reached the highest value at the peak of
plant growth (Fig. 3C). The extreme drought significantly decreased SWC at depths of 5,
10, and 20 cm (P < 0.05), but there was no significant influence of the extreme drought on
Ts at depths of 5, 10, or 20 cm (P > 0.05, Table 1).

Effects of extreme drought on plant biomass and soil
physicochemical properties

The extreme drought treatment significantly decreased the aboveground biomass of the
Zoige alpine peatland ecosystem by 42.75% (P < 0.05, Fig. 4A). The extreme drought
treatment significantly decreased the belowground biomass by 59.73% and 59.65% at a
depth of 0—10 cm and 10-20 cm, respectively (P < 0.05, Fig. 4B). Under both treatments,
the root mass of the subsoil (10-20 cm) was higher than that of the topsoil (0-10 cm)
(Fig. 4B). Subsoil (20 cm) SWC was higher than that of the topsoil (5, 10 cm) (Fig. 4C).
Significant differences in TC and TN between the two treatments were observed at a depth
of 10-20 cm (P < 0.05, Figs. 4D—4E), but there was no significant difference in TC or
TN between the extreme drought treatment and control treatment at depths of 0-10 cm
(P > 0.05, Figs. 4D—4E). There was also no significant difference in SOC at depths of 0-10
and 10-20 cm (P > 0.05, Fig. 4F). The organic matter (TC, TN, and SOC) of the subsoil
was lower than that of the top soil (Figs. 4D—4F).
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Table 1 Results (P value) of effects of CH4 fluxes, Ts5, Ts10, Ts20, SWC5, SWC10 and SWC20 on
block, date, drought, date*drought and date*block in 2017. Ts 5/10/20, soil temperature at depth of 5,
10 and 20 cm; SWC 5/10/20, soil water content at depth of 5, 10 and 20 cm.

CH, fluxes Ts5 Ts10 Ts20 SWC5 SWC10 SWC20
Block 0.679 0.960 0.999 0.900 0.072 0.066 0.034
Date <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Drought 0.015 0.624 0.617 0.499 0.023 0.034 0.033
Date*Drought <0.001 0.775 0.960 0.937 0.354 0.883 0.499
Date*Block 0.006 0.623 0.994 0.947 0.100 0.790 0.793

Relationship between CH, fluxes and environmental factors

The regression analysis showed that the Ts at the depth of 10 and 20 cm had a significantly
negatively relationship with CH, fluxes between the two treatments (P < 0.05, Figs. 58-5C),
as the CHy fluxes gradually decreased as the Ts increased. The correlation between the
subsoil (20 cm) temperature and CH, fluxes was higher than it was with the topsoil (5,
10 cm) temperature between the two treatments (Figs. 5A-5C). The dynamics of the CH,4
fluxes correlated well with that of the SWC, both in the extreme drought and control
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Figure 4 (A) The impacts of extreme drought on aboveground biomass; (B) the impacts of extreme
drought on belowground biomass; (C) the impacts of extreme drought on SWC at depths of 5, 10 and
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treatments (Figs. 5D-5F). The SWC at depths of 5 (P < 0.01), 10 (P < 0.01), and 20
(P <0.01) cm was negatively correlated with the CHy fluxes under the extreme drought
and control treatments (Figs. 5SD-5F). The correlation between the subsoil (20 cm) water
content and CHy fluxes was higher than it was with the topsoil (5, 10 cm) water content
between the two treatments. Moreover, there was a significant difference in the slopes
of the SWC at depths of 5, 10, and 20 cm between the control and drought treatments
(Pglope < 0.01, Figs. 5D-5F). The slope of the CHy fluxes under the extreme drought
treatment was lower than that under the control treatment relative to the SWC. The
correlation of CH, fluxes to SWC was higher than it was relative to Ts (Figs. 5A-5F).

The correlation matrix analysis between CHy fluxes and the different environmental
factors at depths of 5, 10, and 20 cm were negative under the two treatments. The correlation
between CH4 fluxes and subsoil (20 cm) environmental factors (SWC and Ts) was higher
than that with the topsoil (5, 10 cm) environmental factors (Figs. 6A—6D). The extreme
drought decreased the correlation between the Ts and CH, fluxes (Figs. 6A-6B), and
the extreme drought decreased the correlation between the SWC and CHy4 fluxes (Figs.
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Figure 5 Relationships between CH, fluxes and (A) 5 cm, (B) 10 cm, and (C) 20 cm soil temperature,
and the relationships between CH, fluxes and (D) 5 cm, (E) 10 cm, and (F) 20 cm SWC in the different
treatments. CK, control; D, extreme drought. P < 0.05 indicates a significant difference between CH,
fluxes and environment factors (Ts, SWC). Pyope < 0.05 indicates a significant difference in the slopes be-
tween control and drought treatment.

Full-size &l DOI: 10.7717/peerj.8874/fig-5

6C—6D). There was a stronger relationship between the SWC and CH, fluxes than between
the Ts and CHy fluxes (Figs. 6A—6D).

DISCUSSION

The influence of extreme drought in relation to the variation of CH, fluxes has been
recognized in earlier studies (Wang, Ding ¢ Wang, 2003; Harriss, Sebacher ¢» Day, 1982;
Borken et al., 2006; Stiehl-Braun et al., 2011; Hartmann, Buchmann ¢ Niklaus, 201 1;

Goodrich et al., 2013). For instance, CH,4 fluxes measured by the eddy covariance method at
Mer Bleue bog in Canada suggested that the total CH4 emitted during the growing season
with extreme drought was less than that during the previous wetter year (Brown et al.,
2013). Meanwhile, three drought scenarios (gradual, intermediate, and rapid transition into
drought) at 18 freshwater wetlands investigated in Everglades National Park, USA revealed
that more CH, was emitted than net carbon uptake could offset as the relative humidity

increased (Malone et al., 2013). Our study used a control experiment to simulate an extreme

drought event for the reason that the controlled experiment had better consistency in soil

and vegetation conditions. We analyzed the effects of extreme drought on CH,4 fluxes
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and the relationship between CHy4 fluxes and environmental factors in a typical alpine
peatland. The results clearly showed that extreme drought significantly decreased the CH,4
fluxes of the peatland ecosystem (Fig. 3B), which was consistent with previous studies
(Goodrich et al., 2013; Brown et al., 2013; Malone et al., 2013; Korres et al., 2017). With the
decrease of SWC and anaerobic degree, the transition from anaerobic environment to
aerobic environment decreased the generation of methane and increased the thickness of
the oxide layer, and the produced methane was oxidized by more methanogens (Smith
et al., 2003; Webster et al., 2012; Tiemeyer et al., 2016). Extreme drought can also decrease
the anaerobic environment of CH4 production and reduce the activity of methanogenic
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bacteria and anaerobic microsites, thus, decreasing the emission of CHy (Tiemeyer et al.,
2016; Tian et al., 2012; O’Connell, Ruan ¢ Silver, 2018).

Extreme drought also had potential effects on different soil physical and chemical
properties (Fenner & Freeman, 2011; Yuste et al., 2011; Smith et al., 2015; Jiang, Wang &
Dong, 2010). Across the observed content of the soil organic matter, our results indicated
that the soil content of TN, TC, and SOC in the control treatment were higher than that
under extreme drought (Figs. 4D—4F). As previously reported, one possible explanation for
this observation is that drought might alter the distribution and transformation of carbon
in the soil via the movement of water and solutes through the pore matrix; thus, this might
result the decrease of these matters (Smith et al., 2015). Additionally, with the vegetation
coverage up to 90% and abundant rainfall during the growing season in the Zoige alpine
peatland, the large amount of methanol released from dead plants will provide the substrate
for methanogens, but the active conditions for methanogens changes with the changing
water conditions of the alpine peatland, resulting in reduced CH, emission (Jiang, Wang
¢ Dong, 2010). Our results also found that the soil contents of TN, TC, and SOC of the
subsoil (20 cm) were lower than that of the topsoil (5, 10 cm) (Figs. 4D—4F). In contrast,
our results also showed that there was a higher belowground biomass in the subsoil (Fig.
4B) than the topsoil. Moreover, a higher SWC in the subsoil (20 cm) was found relative to
the topsoil (Fig. 4C), and this might have been because plants will allocate more roots to
absorb more water and nutrients in deeper soils, thus leading to a decreased SWC and soil
organic matter (Johnson et al., 2014).

Some prior studies have reported that environmental factors, including Ts and SWC,
might influence CHy fluxes (Morishita, Hatano ¢ Desyatkin, 2003; Wei et al., 2012; Krause,
Niklaus & Schleppi, 2013). Across the study period, our results found that Ts had a
significant negative relationship with CH, fluxes under control treatments at depth of
10 and 20 cm in the Zoige peatland ecosystem, with the CH, fluxes decreasing with the
increasing of Ts (Figs. 5B-5C). This negative relationship was in agreement with several
studies (Conrad, 1996; Butterbach-Bahl ¢ Papen, 2002; Koch, Tscherko ¢ Kandeler, 2007),
which suggested that CH,4 oxidation rates increased faster with increasing temperature
when compared to CHy4 production, leading to the decrease of CHy fluxes. In addition,
the alpine peatland is low-temperature and anoxic all year round, but the oxygen content
and temperature are increased greatly in the peak period of plant growth, which provides
an environment for methane oxidation and enhances the activity of methane oxidative
bacteria (Wei et al., 2012). Additional results from this study indicated that the correlation
between subsoil (20 cm) Ts and CHy fluxes was better than with the topsoil (5, 10
cm) Ts under these two treatments. This might have been due to the subsoil not being
easily disturbed by changes in the external environment, making it more suitable for the
survival of microorganisms related to methane production and oxidation (Koch, Tscherko
¢ Kandeler, 2007). Another founding in this research was that extreme drought decreased
the correlation of CHy fluxes and Ts (Figs. 6A—6B). One possible explanation for this
could be that extreme drought releases sulfate into the soil solution, and this increase could
stimulate sulfate-reducing bacteria, which could compete with methanogens for access to
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organic substrates that might sever to reduce the influence of Ts on CHy fluxes (Dowrick
et al., 2006).

In addition to Ts, CHy fluxes are sensitive to the SWC, and previous studies have shown
a strong relationship between the water table and CH4 emissions (Dowrick et al., 2006).
Here, we compared the relationship between CH,4 fluxes and the SWC at different depths
and found that there was a significant negative relationship between CH, fluxes and SWC
in the Zoige peatland ecosystem (Fig. 5). This might have been due to the increase of
SWC hindering the diffusion of CHy into soil pores (Luan et al., 2018). By comparing
the slope of CH, fluxes under extreme drought and control treatments, we found that
extreme drought significantly decreased the sensitivity of CH, fluxes towards the SWC
(Figs. 5D-5F). A possible explanation for this could be that extreme drought significantly
decreased the SWC and changed the hydrothermal conditions of the soil, which could
affect the production and oxidation of CHy fluxes (Borken ¢ Matzner, 2010; Wu et al.,
2010). CH4-oxidizing microorganisms are able to be retrained under extreme drought
conditions, resulting in a higher CH4 consumption during a drought, which could lead
to the observed decreased sensitivity (Einola, Kettunen ¢ Rintala, 2007). In addition, we
found a better correlation between CH, fluxes and subsoil SWC than for topsoil (Figs.
6C—6D). This might be due to the correlation of CH4 emissions and the concentration of
CHy, dissolved in the pore water, which was controlled by rhizospheric oxidation of CHy
driven by plant photosynthesis (Ding, Cai ¢ Tsuruta, 2004). With more water, the subsoil
could provide a beneficial environment for higher methanogen activity (Tian et al., 2011).
However, a detailed analysis of the microbes and enzyme data is needed to explore these

possible mechanisms in the future studies.

CONCLUSIONS

We found that the condition of extreme drought significantly decreased the CHy fluxes in
the Zoige peatland on the Tibetan Plateau. The Ts and SWC had negative relationships with
CH, fluxes under the extreme drought and control treatments. Extreme drought decreased
the correlation of the CHy fluxes relative to the SWC and weakened the sensitivity of
CHy, fluxes towards the SWC. The correlation coefficient between the subsoil (20 cm)
environmental factors and CHy4 fluxes were higher than it was with the topsoil (5, 10 cm)
environmental factors under the extreme drought and control treatments. These findings
indicated that extreme drought might reduce the contributions of CH4 emissions from
high-altitude peatland into the atmosphere and decrease the global warming potential.
However, the mechanism of CHy fluxes affected by extreme drought remains unclear.
As such, our further work will focus on the response of soil enzyme activity and soil
microorganisms to extreme drought events and the coupling of microbial process and

macroscopic phenomenon.
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