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Abstract

We point out complications inherent in biodiversity inventory metrics when applied to large-scale
datasets. The number of samples in which a species is detected saturates, such that crucial numbers of
detections of rare species approach zero. Any rare errors can then come to dominate species richness
estimates, creating upward biases in estimates of species numbers. We document the problem via
simulations of sampling from virtual biotas, illustrate its potential using a large empirical dataset (bird
records from Cape May, New Jersey, USA), and outline the circumstances under which these problems
may be expected to emerge.
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Abstract

We point out complications inherent in biodiversity inventory metrics when applied to large-
scale datasets. The number of samples in which a species is detected saturates, such that crucial
numbers of detections of rare species approach zero. Any rare errors can then come to dominate
species richness estimates, creating upward biases in estimates of species numbers. We
document the problem via simulations of sampling from virtual biotas, illustrate its potential
using a large empirical dataset (bird records from Cape May, New Jersey, USA), and outline the
circumstances under which these problems may be expected to emerge.

Introduction

Biodiversity measurements have important implications for conservation efforts (Sousa-
Baena, Garcia & Peterson, 2014). Biodiversity metrics provide information about community
composition, numbers of species, and similarity or dissimilarity of species composition among
sites (Colwell & Coddington, 1994), and can allow researchers to separate well-inventoried sites
from partially-inventoried sites for macroecological analyses (Lobo et al., 2018). Biodiversity
inventories have been implemented at scales ranging from local to global (Moreno & Halffter,
2000; Ballesteros-Mejia et al., 2013), to evaluate and understand biotic responses to changing
environmental conditions.

Tracking species richness in biodiversity inventories was originally achieved via visual
assessment of asymptotic behavior of species accumulation curves (Karr, 1980), and then with
the quantitative assist of non-linear regressions (Clench, 1979; Soberén & Llorente, 1993).
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40 However, for the past 20+ years, non-parametric estimators of numbers of species have been

41 used to estimate species richness, particularly a set of estimators based on sampling theory

42 (Chao, 1987). Diverse data origins and variable data quality pose significant challenges for such
43 analyses, particularly when data are drawn from publicly accessible databases, rather than

44  collected individually by the researcher (Soberon et al., 1996; Lobo, 2008).

45 However, those same publicly accessible databases offer exciting opportunities for novel
46 analyses (e.g., Cameron et al., 2018; Peterson et al., 2015). Primary biodiversity data connect a
47 particular species with a place and a point in time (Sullivan et al., 2014), and availability of such
48 data records has grown massively, now exceeding 10° records (e.g., Global Biodiversity

49 Information Facility, http://www.gbif.org, serving 1,017,227,764 records as of 22 Aug 2018).
50 Although these data are heavily biased in terms of their spatial and temporal distributions, being
51 concentrated massively in Europe and North America and a few other, scattered regions (Yesson
52 etal., 2007; Peterson & Soberon, 2018), the promise of genuine, macroscale, synthetic insights
53 remains, and is growing.

54 In this contribution, we report on a complication in application of the customary statistics
55 for measuring species richness (Colwell & Coddington, 1994) to very large-scale (e.g., 10°

56 records or larger) biodiversity incidence datasets (i.e., records only of presence, and not of

57 abundance). Biodiversity datasets have long been of modest dimensions only, and the field has
58 Dbeen built on metrics and methods equipped for those dimensions. In the course of studies of
59 avifaunal change over recent decades in North America that are pending publication, we noted
60 that species richness estimates are affected significantly by what would seem to be negligible
61 numbers of errors among the real data records (see Fig. 1, for an example from a site that is

62 sampled massively by birdwatchers). We present a brief conceptual summary and a

63 demonstration of the problem via a simple simulation; we conclude with an exploration of how
64 such problems can be avoided or mitigated.

65
66 Conceptual background
67 The problem of estimating species richness from samples has been approached via

68 methods that can be separated into three groups according to the statistical approach used to

69 derive a species richness estimator: (1) extrapolating species accumulation curves to their

70 asymptotes (Clench, 1979), (2) fitting parametric distributions of relative abundances (Efron &
71 Thisted, 1976), or (3) using nonparametric techniques based on distribution of individuals among
72  species (or the distribution of species among samples) (Colwell & Coddington, 1994; Colwell,
73 2013; Chao & Chiu, 2016). We focus on asymptotic versions of these methods sensu Chao and
74  Chiu (2016), as we are interested in full inventories of species present at sites; see discussion in
75 Peterson and Slade (1998). Two kinds of data are used in these richness studies: incidence data,
76 in which only presences and absences are recorded for each species and each sample, and

77 abundance data, in which numbers of individuals of each species are recorded within each

78 sample (Gotelli & Colwell, 2011). Abundance data can always be converted to incidence data,
79 whereas the reverse is not generally possible.
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The nonparametric approach has been preferred greatly, since it does not make
assumptions about underlying distributions of abundances or detection rates of species (Chao &
Shen, 2004; Chao & Chiu, 2016). We focus on th@nonparametric species richness estimators
based on replicated incidence data that estimate numbers of species actually present at a site but
not observed in the reference sample. All of the estimators correct observed richness (which is by
default a lower bound for a species richness estimator) by adding a term estimating the number
of species present but not detected based on numbers of species represented in one sample
(uniques), two samples (duplicates), or a few samples only (Gotelli & Colwell, 2011; Colwell et
al., 2012).

The reference sample for replicated incidence data consists of a species-by-sample matrix
in which each element (m;;) corresponds to either the presence or absence of species 7 in sample ;.
The number of columns in this matrix, 7, is the number of sampling units in the sample; the
number of rows is the observed number of species, S,,;. Oy is the number of species present in
exactly £ sites of the sample, so the number of species present in the assemblage but not included
in the sample (undetected species) is Q,, the number of species unique to a single sample is Q;,
the number of duplicates is (,, and so on.

Chao (1984) originally derived an estimator of species richness S, for abundance based
data that is now called Chaol, which she later recast for incidence data (Chao, 1987). This latter
estimator, now called Chao2, is

. Sobs t 29, if @2>0
— 2
Schaoz = 7-11:(0;-1) ’ (1)

Sobs T [T]Z(Q2+ 1)’ if Q=0

where T is the sample size available for the overall calculation. The first expression of equation
(1) reflects the classic Chao?2 estimator; however, this estimator is undefined when O, = 0. The
second expression in equation (1) is a corrected form that is always obtainable and defined.

A second estimator of interest, the incidence coverage-based estimator (ICE), is based on
the concept of sample coverage: the proportion of the total number of incidences in a set of
sampling units that belong to the species represented in the sample. Sample coverage is a
measure of the information available regarding occurrence of relatively rare species in the
sample (Chao & Chiu, 2016): its estimator depends on the complement of the proportion of
singletons, in relation to the total number of incidences of the infrequent species (Colwell, 1994).
A third type of species richness estimator is based on the statistical method of jackknifing, a bias
reduction technique involving removing subsets of the data and recalculating the estimator with
the reduced sample (Chao & Chiu, 2016). Finally, we explored the method developed by Chiu
and Chao (2016) for microbial molecular diversity data to account for inflation of numbers of
singletons by sequencing errors (akin to identification errors); this method estimates the true
value of Q; based on 0,, 0, and Q,, and uses the adjusted value in asymptotic diversity

Peer] reviewing PDF | (2019:09:41193:0:0:NEW 13 Sep 2019)


Arturo
Nota adhesiva
four? Chao-2, ICE, jackkinfe, expanded Chao-2 (Chao & Chiu)


PeerJ

117
118
119
120
121
122
123
124
125
126
127
128

129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156

estimates. It is important to notice that this method defaults to the classic Chao2 estimator when
both 03, and Q, are equal to zero, otherwise the estimator of Q; (the true number of uniques)
would be undefined. Therefore, its application is onl@ a certain window of conditions.

Note that, for each of the estimators described above, the estimator does not take
advantage of the full frequency distribution of detections for species in an inventory effort—
indeed, this partial use of the frequency distribution is the focus of this contribution. Three of
these estimators, as well as their corresponding variances and confidence intervals, can be
computed using EstimateS (Colwell & Elsensohn, 2014) and a new version implemented in R
(Chao & Chiu, 2016); the final estimator can be computed using the R version only. We used
EstimateS (version 9.1.0; Colwell & Elsensohn, 2014) for the older three nonparametric
estimators, as that platform is that which has seen the greatest use by the biodiversity
community, and the R version for the latter estimator.

Materials & Methods

We developed a simple simulation based on large samples from a virtual community of
100 “real” speci@)y using a log-normal distribution of mean abundances, with parameters u =
1.5 and o = 2.0 (the mean and standard deviation of the variable’s natural logarithm,
respectively). An initial simulation served to illustrate how crucial values (Q;, 05, etc.) approach
zero as the frequency distribution of detections of species shifts to higher frequencies of
observation, and saturates beyond the few detections on which the inventory estimators focus.
Then, to simulate effects of very rare errors in the form of misidentifications or incorrect
geographic coordinates on inventory results for sites, in a second phase of simulation, we added
10 “error” species that were designed to mimic occasional, rare errors; this latter set of species
had a mean abundance 6 orders of magnitude lower than the 100 real species. To understand
sensitivity to distributional assumptions, we also explored log-normal distributions of
abundances with parameters u = 0.3 and 0 = 1.2 and # = 1.0 and 0 = 0.5, and gamma
distributions with parameters ¢ = 1.8 and § =1.0,a=2.5and f =2.0,and e =3.0and f = 1.2
(where a is the shape parameter, and £ is the scale parameter).

We sampled occurrences of the 100 real species in R version 3.2.3 (https://www.r-
project.org/) (R Core Team, 2015). To avoid recycling samples and consequent serial
dependency among samples, we created independent random samples for each sample size (5, 7,
10, 15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 300, 400, 500, 600, 700, 800, 900, and 1000
sam . We used default settings of EstimateS (Colwell & Elsensohn, 2014) to calculate the
ChaoZ, 1CE, jackknifel, and jackknife2 estimators for the 100 replicates x 21 nurgs of
samples = 2100 simulated popula . Next, we used customized scripts in Python 2.7.11 to
separate individual replicate result sets from the combined EstimateS output files, and to select
and isolate the final lines from each replicate, to create a final table of results from each
simulated population. All code for these analyses is available at
http://hdl.handle.net/1808/25686.
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Results

The simulation results showed clearly that the estimators converged well on the true
value (100 species) in the error-free simulations, and that Q; and O, approached zero in
increasingly large samples (Fig. 2). The effects of adding the very rare “error” species were also
quite clear: early samples lacked error species entirely, as they were just too rare to show up in
relatively small samples. Only late in the simulation, after 400-1000 replica@ did these species
begin to appear in the analysis datasets (red bars in Fig. 2).

The results of the first phase of the simulation showed that, with ~150 samples, estimates
of numbers of species in the community settled at 100 species, which is the correct number of
species (Fig. 3, top). However, when rare species were introduced at minuscule abundances
compared to the “real” species, even though the results settled initially on the correct answer of
100 species, later—when the rare species begin to appear—a consistent upward bias was noted
(Fig. 3, bottom).

The Chiu and Chao (2016) method showed consistent underestimation of true species
numbers for modest numbers of days of sampling (Fig. 4), although this bias disappeared with
large sample sizes. At modest sampling levels, although analyses of the simulated data with error
better approximated the true number of species (100; Fig. 4), the consistent underestimation in
error-free analyses suggests that this outcome may represent a balance between downward bias
in error-free estimates and upward bias introduced by the errors.

The remaining estimators showed behavior similar to that of Chao2: ICE, Jackknifel (first-
order), and Jackknife2 (second-order) analyses, in the first simulation phase, settled on 100
species at ~100 samples, but in the second phase were biased upwards markedly by 150-250
samples (see Supporting Information). Finally, we explored different abundance distributions for
the simulation—indeed, in all log-normal and gamma distributions that we assessed, biases were
clear, just as in the results we have presented above.

Discussion

This contribution centers on how inventory statistics need to evolve in the face of larger
and larger magnitudes of biodiversity data sets. That is, we have shown that any errors in the
data (e.g., misidentifications, misspellings), even at very minor frequencies, can easily end up
dominating the estimation process with the common and long-used nonparametric estimators,
such as Chao2; the older species accumulation curve approach also would clearly overestimate
numbers, given that “error” species would appear as species documented in the inventory. These
biodiversity inventory statistics are important, offering crucial additional information to the
process of biotic inventories; therefore, updating and amending these approaches to approaches
that are less vulnerable to bias, or at least being cognizant of the potential for problems in
estimation for big(ger) datasets, is important.

What solutions are available to a researcher with a big data set and the desire to develop
detailed analyses of species richness and inventory completeness? Quite simply, a diversity of
types of errors is found in pretty much every large-scale biodiversity dataset (Lamb et al., 2009),
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and large-scale datasets (see, e.g., Fig. 1) will by nature have more such errors, at least on an
absolute scale. A crucial first step is that of reducing spurious and erroneous species names in the
dataset (Chapman, 2005). Such names may be misspellings, which can be detected easily by
comparison of observed species lists with authority lists (Gueta & Carmel, 2016); this sort of
error is well-known to inflate species richness estimates in inventories (Sousa-Baena, Garcia &
Peterson, 2013). However, these names may also be real names chosen by accident from
controlled pick-lists—such errors may be very hard to detect owing to the fact that they are valid
names, but just not represented at the site in question. Similar contrasts in detectability of
different error types have recently been documented for ecological niche modeling and species
distribution modeling (Simoes & Peterson, 2018).

Finally, and particularly for the case of birds and a few other taxa for which species are
well documented, a third class of problems regarding species names may arise. Specifically, rare
visitors, often termed vagrants, are valid species names, and the species may genuinely be
present at the site at some (rare) point in time (see Fig. 1). However, depending on the specific
definition of the biota under consideration, these species may not be relevant. That is, detection
and documentation of such species depends on continuous, intensive presence of observers or
collectors, and also on the presence of the “experts” who will be experienced enough to detect
and report such records, and whose records of such species will be believed and accepted. Such
dependencies will easily create biases that may make certain sites appear richer in species, when
in actuality they are richer only in high-level observers (Dittmann & Lasley, 1992). More
generally, this point serves to indicate that biotic inventories need to be defined carefully in
terms of a particular point or span of time and space.

The method presented by Chiu and Chao (2016) was developed for application to
microbial molecular diversity data to account for inflation of singletons by sequencing errors,
which is closely akin to problems created by identification errors in species inventories. This
method estimates the true value of Oy, based on Q,, 03, and (4, and uses the adjusted value in
asymptotic diversity estimates. This estimator, in our simulation-based assessments,
underestimated true species numbers in the absence of error, but estimated the true species
number closely when errors were introduced—as such, the Chiu-Chao estimator may offer a
useful solution to the problems identified in this contribution for biodiversity inventory
estimates.

Conclusions

In summary, in this note, we point out and document a complication with application of
the commonly used species inventory statistics, as biodiversity data sets grow to be large. The
base observation is that fauna sizes are finite, but sampling effort can grow without limit, which
shifts distributions of frequencies of observations of species towards larger and larger numbers—
this phenomenon has the effect of rarefying the numbers of relatively rare species that inform
inventory statistics. Two processes are involved: (1) estimators depend on the frequencies of
detection of the rarer species, which decline to nil in very large datasets; and (2) erroneous
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reports come to dominate the estimation process because errors are rare and real species
accumulate much larger numbers of observations, such that estimates can come to be based
entirely on noise rather than on signal. The first point is a simple consequence of massive-scale
sampling of finite biotas; the second, however, derives from the dependence of inventory
statistics on information from rare species. Solutions to these problems must involve detailed
cleaning and quality control of data, and careful definition of the relevant species pool that is
under study. Exploration of new estimators that take into account species with greater numbers
of records or that correct for biases in O; (Chiu & Chao, 2016)—may provide solutions to these
problems.
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Figure 1

Example of an intensively sampled site, Cape May National Wildlife Refuge, NJ, USA.

This example shows how the frequency histogram of number of detections per species
reflects large numbers of observations of a finite biota. This histogram summarizes
12,144,561 records for the site, and 436 species detected. We have identified the species
having the lowest frequencies of detection, among which can be noted several species that
are probably not occurring there naturally, such as An@ anser, Eupsittula canicularis, and

Melopsittacus undulatus, all of which are likely there as escapes from captivity.
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Figure 2

Summary of frequencies of species in inventory samples used in simulation exercises.

The great bulk of these samples had large numbers of detections (the tall bars along the left
and back of the figure). Note that by 50-100 days of sampling, no samples are left in the 1-2
detections categories that feed into the Chao2 estimator analyses. Note also the appearance

of rare species in the analysis (red bars at front right) when samples became very large.
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Figure 3

Summary of the two phases of simulation results.

Graphics show simulation of accumulation of species in simulated inventories, showing the
scatter of individual inventory simulations (black circles) and the median of results (red line).
Top: 100 real species, with no error species included. Bottom: 100 real species, with 10 rare

species included to simulate errors in identification or geographic references.
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Figure 4

Exploration of the estimation method of Chiu and Chao (2016), which takes into account
Q1, Q2, Q3, and Q4.

Note that, at larger sample sizes, the Chiu-Chao estimator (blue points) defaults to the Chao2
estimator (green points; Chiu and Chao 2016). We provide (to@anel) the results for Chao2
(no error) for purposes of comparison, and then the results from the new estimator in

simulations without (middle panel) and with (bottom panel) errors included.
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