
Submitted 11 September 2019
Accepted 9 March 2020
Published 5 May 2020

Corresponding author
Zhujie Xie, xiezj8@163.com

Academic editor
Rita Zrenner

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj.8870

Copyright
2020 Liu et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Transcriptomic profiling of purple
broccoli reveals light-induced anthocyanin
biosynthetic signaling and structural
genes
Chunqing Liu1,*, Xueqin Yao1,*, Guangqing Li1, Lei Huang2 and Zhujie Xie1

1 Shanghai Academy of Agricultural Sciences, Institute of Horticulture, Shanghai, China
2 School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, China
*These authors contributed equally to this work.

ABSTRACT
Purple Broccoli (Brassica oleracea L. var italica) attracts growing attention as a func-
tional food. Its purple coloration is due to high anthocyanin amounts. Light represents a
critical parameter affecting anthocyanins biosynthesis. In this study, ‘Purple Broccoli’,
a light-responding pigmentation cultivar, was assessed for exploring the mechanism
underlying light-induced anthocyanin biosynthesis by RNA-Seq. Cyanidin, delphinidin
and malvidin derivatives were detected in broccoli head samples. Shading assays and
RNA-seq analysis identified the flower head as more critical organ compared with
leaves. Anthocyanin levels were assessed at 0, 7 and 11 days, respectively, with further
valuation by RNA-seq under head-shading and light conditions. RNA sequences were
de novo assembled into 50,329 unigenes, of which 38,701 were annotated against
four public protein databases. Cluster analysis demonstrated that anthocyanin/phenyl-
propanoid biosynthesis, photosynthesis, and flavonoid biosynthesis in cluster 8were the
main metabolic pathways regulated by light and had showed associations with flower
head growth. A total of 2,400 unigenes showed differential expression between the
light and head-shading groups in cluster 8, including 650 co-expressed, 373 specifically
expressed under shading conditions and 1,377 specifically expressed under normal
light. Digital gene expression (DGE) analysis demonstrated that light perception
and the signal transducers CRY3 and HY5 may control anthocyanin accumulation.
Following shading, 15 structural genes involved in anthocyanin biosynthesis were
downregulated, including PAL, C4H, 4CL, CHS, CHI, F3H and DFR. Moreover,
six BoMYB genes (BoMYB6-1, BoMYB6-2, BoMYB6-3, BoMYB6-4, BoMYBL2-1 and
BoMYBL2-2) and three BobHLH genes (BoTT8_5-1, BoTT8_5-2 and BoEGL5-3)
were critical transcription factors controlling anthocyanin accumulation under light
conditions. Based on these data, a light-associated anthocyanin biosynthesis pathway
in Broccoli was proposed. This information could help improve broccoli properties,
providing novel insights into the molecular mechanisms underpinning light-associated
anthocyanin production in purple vegetables.
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INTRODUCTION
Broccoli (Brassica oleracea L. var. italica) represents a nutritious plant whose flower heads
are rich in vitamins A, B2 and C, minerals, and antioxidant phytochemicals such as
glucoraphanin (Moreno et al., 2010). Purple broccoli serves as a functional food with
significant anthocyanin production in the head, leaves and seeds. In Brassica species,
purple/red color conferred by anthocyanin accumulation is tightly associated with the
induction of structural genes and transcription factors (Song et al., 2018). A previous study
showed that insertion of Harbinger transposon of BoMYB2 results in its upregulation,
which then together with BobHLHs upregulates the downstream genes of anthocyanin
biosynthesis in purple cauliflower (Chiu et al., 2010). In red cabbage, TT8 and MYB2
upregulate structural genes in the anthocyanin pathway (Yuan, Chiu & Li, 2009) as well as
the structural genes F3’H, DFR and ANS in kale (Zhang et al., 2012; Neugart, Krumbein &
Zrenner, 2016). In addition, deletion or substitution in the coding sequences of BoMYBL2-1
leads to purple color accumulation of cabbage (Song et al., 2018). In Kohlrabi, BoPAP1
promotes purple coloration in a light dependentmanner as well as BoCHSwhile BoTT8 and
BoPAP2 are light-independent (Zhang et al., 2015). Some candidate genes controlling color
formation have also beenmapped in Brassica crops. In broccoli, a major locus (qPH.C01-2)
and two minor loci (qPH.C01-4 and qPH.C01-5) for purple sepal trait of the flower head
were mapped onto chromosome C01 (Yu et al., 2019). In ornamental kale, single genes
for pink or purple leaf traits were mapped onto chromosome C03 (Zhu et al., 2016) and
C09 (Liu et al., 2017), respectively. The change in color of inner and outer flower head
(from green to purple) in broccoli is induced by light. However, the mechanism underlying
purple color formation remains largely undefined in broccoli.

Anthocyanins comprise the largest subclass of hydrosoluble pigments conferring red,
orange, purple, and blue colorations to flowers, fruits, seeds, and vegetables in plants
(Cominelli et al., 2008; Espley et al., 2007; Li et al., 2017). Anthocyanins play important
roles in furnishing flowers and fruits for attracting pollinations and dispersers, protecting
plants from various biotic and abiotic stressors (Harborne & Williams, 2000; Ahmed et al.,
2014). In addition, the health benefits of anthocyanins attract growing attention due to
their antioxidant activities (Pojer et al., 2013). Genetic parameters, developmental stages
and environmental conditions control anthocyanin accumulation, including high-light,
UV-light, cold temperature, nutrient availability and infection (Dixon & Paiva, 1995;
Chalker-Scott, 1999). Based on the above, a comprehensive understanding of regulation
of anthocyanin biosynthesis should be investigated to obtain anthocyanin-rich foods via
breeding and/or environmental control.

Anthocyanin biosynthesis has been assessed in various species such as Arabidopsis,
petunia, tobacco, and fruit plants (Liu, Osbourn & Ma, 2015). The genes of the anthocyanin
biosynthetic pathway are well-conserved across species (Holton & Cornish, 1995; Zhang,
Butelli & Martin, 2014; Guo et al., 2014). Anthocyanin synthesis starts with phenylalanine,
and is catalyzed stepwise by phenylalanine ammonia lyase (PAL), 4-coumarate-CoA ligase
(4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxyl enzyme
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(F3H), flavonoid 3′-hydroxylase (F3’H), dihydroflavonol reductase (DFR) and anthocyanin
synthase (ANS) or leucoanthocyanidin dioxygenase (LDOX).

These structural genes are transcriptionally controlled by the MBW complex composed
of R2R3-MYB, basic Helix-Loop-Helix (bHLH) and WD repeat protein (WDR). In
Eudicots, R2R3-MYB transcription factors (TFs) are primarily implicated as positive
regulators to initiate and activate the MBW complex in leaves under stress and
young flowers/fruits. It was reported for the first time in maize that R2R3-MYB TFs
C1 regulates anthocyanin synthesis (Paz-Ares et al., 1986), and co-action of bHLH
proteins and Leaf color (Lc) was found recently (Ludwig et al., 1989). AtMYB75/PAP1,
AtMYB90/PAP2, AtMYB112, AtMYB113 and AtMYB114 contribute to anthocyanin
production in Arabidopsis (Gonzalez et al., 2008; Lotkowska et al., 2015). In petunia, AN1
and AN2 contribute to anthocyanin synthesis and vacuolar acidification (Koes, Verweij &
Quattrocchio, 2005); meanwhile, PyMYB10 and PyMYB10.1 bind to bHLH for enhancing
anthocyanin production in pears (Feng et al., 2015). However, some MYB TFs, such as
AtMYB3/4/6 /60 (Jin et al., 2000) andAtMYBL2 (Matsui, Umemura & Ohme-Takagi, 2008),
FaMYB1 and FcMYB1 (Aharoni et al., 2001;Zhang et al., 2018),VvMYB4/C2 (Matus, Aquea
& Arce-Johnson, 2008), and MdMYB16 /17 /111 (Lin-Wang et al., 2011), exert inhibitory
effects. These negative regulators interact with the bHLH protein, thereby competing with
R2R3-MYB activators. The bHLH proteins controlling anthocyanin production have been
described in multiple species, including Arabidopsis (GL3, EGL3 and TT8) (Payne, Zhang
& Lloyd, 2000; Zhang et al., 2003; Nesi et al., 2000), petunia (PhAN1, PhJAF13) (Spelt et
al., 2000; Quattrocchio et al., 1998), apple (MdbHLH3/MdbHLH33) (Espley et al., 2007),
grape (VvMYC1) (Hichri et al., 2010) and peach (PpbHLH3/PpbHLH33) (Ravaglia et al.,
2013). The various transcriptional modulators control anthocyanin production as well as
their modifications and translocation into vacuoles via glutathione S-transferases (GSTs),
the ATP-binding cassette (ABC) and multidrug and toxic compound extrusion (MATE)
proteins (Wang et al., 2017).

Multiple parameters including genetic, developmental and environmental factors
control anthocyanin biosynthesis. Light indexes, including intensity and quality, represent
critical factors affecting anthocyanin accumulation (Albert et al., 2009). In lettuce and
turnip, UV-A and UV-B increase anthocyanin contents via upregulation of DFR and
CHS in the anthocyanin biosynthetic pathway (Zhou et al., 2007; Park et al., 2007). In
the presence of light, photoreceptors are activated, including PHYs (PHYA to E) that
absorb red/far-red light; CRYs (CRY1 to 3) and PHOTs (PHOT1 and 2) that sense
blue/UV-A light, and UVR8 that absorbs UV-B (Zoratti et al., 2014), interacting with the
ubiquitin E3 ligase COP1 (CONSTITUTIVE PHOTOMORPHOGENIC1) that controls
the degradation of target transcription factors, including ELONGATED HYPOCOTYL5
(HY5). HY5 is associated with induced CHS, CHI and flavonoid production under light
and UV-B radiation conditions in Arabidopsis (Shin, Park & Choi, 2007). It also binds
the MYB75/12/111 promoter to increase their expression and modulate anthocyanin
biosynthesis (Stracke et al., 2010; Shin et al., 2013; Nguyen et al., 2015).

The present work aimed to assess the global transcription of regulatory, structural and
hormone signal transduction genes which might positively or negatively regulate broccoli’s
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anthocyanin biosynthetic pathway. The light sensitivity of pigment biosynthesis makes the
broccoli ‘Long Jing’ an optimal plant for evaluating anthocyanin synthesis and explore
the underpinning mechanisms under light conditions. Indeed, anthocyanin accumulation
accompanied with broccoli head growth and development under natural light conditions.
However, broccoli heads show reduced coloration under shading conditions. Here, the
‘Long Jing’ cultivar was employed for analyzing light-associated anthocyanin biosynthesis
and the underlying mechanisms by RNA-seq. Based on the association of shading time
with anthocyanin amounts, anthocyanin accumulation was assessed at 0 d, 7 d (highest
production rate) and 11 d (peak amounts). The present findings provide insights into the
molecular mechanisms underpinning light-associated anthocyanin production in broccoli,
facilitating genetic engineering for increasing anthocyanin amounts in vegetables.

MATERIALS & METHODS
Plant materials and RNA preparation
The purple broccoli cultivar ‘Long Jing’ was assessed as the experimental material. After
flower head formation, a total of seven stages were defined as 0, 3, 5, 7, 9, 11, and 14 days.
Flower heads were collected for phenotype observation and anthocyanin level measurement
at each developmental stage of the head under light and dark (shading using a sunshade net
over the whole heads or leaves) conditions. In addition, light and darkness treated heads
at 0, 7 and 11 days, and darkness treated leaves at 7 days were collected for RNA-Seq from
the flower heads of the purple cultivar, respectively. Three biological replicate specimens
were obtained. All specimens underwent snap freezing in liquid nitrogen and storage at
−80 ◦C. To assess cells displaying purple coloration, head flowers underwent transverse
sectioning by hand and analysis under a Zeiss Axioscope photo microscope.

Quantification of total anthocyanin amounts
Total anthocyanin amounts were determined by the pH differential method (Lee, Durst
& Wrolstad, 2005) with some modifications. Briefly, 100 mg of fresh flowers were soaked
in 500 µl acidified methanol (1% v/v formic acid), sonicated (15 min × 3 times), and
centrifuged for 5 min at 4,000 rpm. The precipitate was extracted twice. All supernatants
were collected and stored at −20 ◦C. Then, 200 µl samples were mixed with 800 µl KCl
(pH 1) and 800 µl NaAc (pH 4.5), respectively. After incubation at room temperature for
20 min in the dark, optical density was read at 510 and 700 nm. The following equation was
employed to derive anthocyanin amounts: total anthocyanin amounts (mg C3G/g FW)=A
×MW×DF× V /(ε × 1×m), where A= (A510 nm–A700 nm)pH 1.0–(A510 nm–A700
nm)pH 4.5; A510 and A700 are absorbance values at 510 and 700 nm, respectively; MW=
449.2; DF = 5; V is the total volume of supernatants; ε = 26900; m is fresh sample weight.
Five replicates were assessed per biological specimen.

Qualitative analysis of anthocyanin compounds by high- performance
liquid chromatography (HPLC)
For HPLC, specimens underwent freeze-drying and pulverization in liquid nitrogen. Then,
100 mg of each specimen was thoroughly mixed for 5 min in 2 ml of 5% formic acid (v/v)
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in ultrapure water, and submitted to sonication (20 min). Upon centrifugation (12,000
rpm, 10 min), the supernatants underwent filtration with 0.45 µm PTFE filters (Toyo
Roshi Kaisha, Japan). Anthocyanin amounts were assessed on an Agilent 1200 series HPLC
(Agilent Technologies, USA), on a reverse phase Kromasil C18 column (5µm;C18 80A, 250
× 4.60mm;Kromasil) at 40 ◦C. Samples were injected at 10µl, and a flow rate of 1mlmin−1

was adopted.Mobile phases A (1.6% formic acid) andB (methanol containing 0.01% formic
acid) were employed as eluents: 0–5 min, 85% A+15% B; 5–10 min, 80% A+20% B; 10–20
min, 72% A+28% B; 20–35 min, 40% A+60% B; 35–35.1 min, 100% B; 35.1–50 min, 100%
B; 50–50.1 min, 85% A+15% B; 50.1–60 min, 85% A+15% B. Detection was performed at
530 nm. Individual anthocyanins were quantitated (mg g-1 dry weight) via comparisons of
areas under theirHPLCpeaks with those of known standards (delphinidin-3-O-galactoside,
delphinidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, malvidin-
3-O-galactoside and malvidin-3-O-glucoside).

RNA purification and library generation for transcriptomics
Total RNA was extracted from head flowers in purple broccoli at different times under
both light conditions with mirVana miRNA Isolation Kit (Ambion) as directed by the
manufacturer. RNA integrity was assessed on an Agilent 2100 Bioanalyzer (Agilent
Technologies). Specimens with RNA Integrity Number (RIN) ≥7 were further evaluated.
The libraries were generated with TruSeq Stranded mRNA LT Sample Prep Kit (Illumina,
USA) as instructed by the manufacturer.

Transcriptome sequencing, de novo assembly and functional
annotation
The obtained libraries underwent sequencing by the PE strategy on a HiSeqTM 2500 or
Illumina HiSeq X Ten; cDNA fragments approximated 125 or 150 bp. The raw reads
obtained underwent pre-processing with Trimmomatic; those with ploy-N or showing
low quality were excluded, leaving clean reads. These clean reads underwent assembly into
contigs and de novo assembly into transcripts using Trinity (version: 2.4) (Grabherr et al.,
2011) by the paired end method. The longest transcripts were selected as unigenes for
further assessment. Original sequencing data were deposited in SRA (Short Read Archive;
accession number PRJNA560282).

Unigene quantification, assessment of differentially expressed genes
(DEGs) and gene annotation
Fragments per kilobase of transcript per Million (FPKM) and read counts for each unigene
were assessedwith Bowtie 2 and eXpress. DEG identificationwas carried out with theDESeq
functions estimate Size Factors and negative binomial Test. P < 0.05 and fold Change >2
or <0.5 were thresholds for determining significant differential expression. Hierarchical
clustering of DEGs was carried out to assess the transcripts’ expression patterns. The
assembled unigenes were assessed with R according to hypergeometric distribution.

GO and KEGG pathway analyses of DEGs
The assembled unigenes underwent annotation by alignment in protein databases,
including the NCBI non redundant (NR), SwissProt (http://www.expasy.ch/sprot),
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and Clusters of orthologous groups for eukaryotic complete genomes (COG) databases
(https://www.ncbi.nlm.nih.gov/COG/) with Blastx (E<10−5). Proteins best matching the
unigenes were employed for assigning functions. Based on the SwissProt annotation, GO
classification was carried out using the Blast2GO software (Du et al., 2010; Conesa et al.,
2005). Unigenes were mapped to the KEGG database (http://www.genome.jp/kegg) for
determining the associated metabolic pathways (Kanehisa et al., 2008).

Real-time quantitative reverse transcription-PCR
To confirm the results of Illumina analysis, qRT-PCR was performed for multiple genes.
Total RNA isolation from specimens collected in various developmental stages under light
or dark conditions was carried out. Reverse-transcription used PrimeScript RTMaster Mix
Perfect Real Time Kit (Takara) as directed by the manufacturer. Finally, qRT-PCR was
carried out on a QuantStudio 5 Real-Time PCR System (Fisher Scientific, USA) with SYBR
Premix Ex Taq (TaKaRa, Japan) in triplicate. Data were normalized to Actin 2 amounts,
and the comparative CT method was employed for analysis.

RESULTS
Phenotypic characterization of purple broccoli responding to light
during anthocyanin production
The color of purple broccoli cultivar ‘Long Jing’ head is affected by pigment types
and contents in flower buds as well as light during the developmental stages. Firstly,
pigment types in broccoli heads were evaluated. Anthocyanin amounts were assessed
by HPLC multistage tandem mass spectrometry (Fig. 1A). Peaks 1, 2, 3, 4, 5 and 6
were identified as delphinidin-3-O-galactoside, delphinidin-3-O-glucoside, cyanidin-
3-O-galactoside, cyanidin-3-O-glucoside, malvidin-3-O-galactoside and malvidin-3-O-
glucoside, respectively.

To study light-response factors in anthocyanin production in the broccoli cultivar ‘Long
Jing’, we shaded the whole head and leaves using a sunshade net during the developmental
stages of the head from 0 d to 14 d, with light conditions employed as a control treatment.
In comparison with controls, flower buds grown under head- and leaves-shading all faded,
with head shading exerting more pronounced effects (Fig. 1C). The relative amounts of
total anthocyanin were measured, and the head-shading treatment group showed lower
levels compared with the leaf-shading treatment group, and both of these groups had
lower values than the control group (Fig. 1B; Table S1). In addition, decrease in relative
anthocyanin levels wasmore pronounced under head-shading (2.04mg g−1 FW) compared
with leaf-shading (1.47 mg g−1FW), indicating that shading during the head development
in broccoli significantly affected the relative contents of total anthocyanin.

Quantitative analysis was further conducted to identify the key developmental stage
under light during anthocyanin production. Spectra were obtained at 200–600 nm, and
chromatograms at 520 nm (Fig. 1B). In the control group, relative anthocyanin amounts
rose during head development (0 d to 11 d), showed a peak growth rate at 7 d, and then
remained steady after 11 d, while in shaded plants they increased slowly during head’s
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Figure 1 Accumulation of anthocyanins under head-shading, leaves-shading and normal light (CK)
treatment in Broccoli. (A) Mass spectrometry assessment of anthocyanin levels by HPLC; (B) Relative an-
thocyanin amounts during head flower development; (C–E) Various shading treatments; (F–H) Respec-
tive head phenotypes under various treatments; (I–K) Anthocyanin levels in various parts of purple head
flowers revealed by hand section.

Full-size DOI: 10.7717/peerj.8870/fig-1

developmental stages from 0 d to 14 d. Therefore, 0 d, 7 d and 11 d were considered critical
times for response to light during anthocyanin production.

Microscopic examination of sections of flower buds from head shading, leaf shading and
control plants revealed that the prominent purple color extended to more bud tissue cells,
with anthocyanins accumulating closer to the outer layer of buds (Fig. 1D), in accordance
with previously published data on purple Graffiti cauliflower (Chiu & Li, 2012). Compared
with the control treatment, head and leaves shading conditions resulted in lighter purple
pigments in upper epidermal layers. The above results suggested light had a pivotal function
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in anthocyanin production, and shading treatment significantly repressed anthocyanin
accumulation during head development in broccoli.

Organ responses to light during anthocyanin biosynthesis
In order to assess differences in organ response to light during anthocyanin production in
broccoli, RNA-Seq was performed under head-shading, leaves-shading and normal night
conditions at the fastest point (7 d), respectively. The flowers were collected to construct
nine libraries for transcriptomics in three biological replicates.

Comparing the expression amounts of differently expressed genes (DEGs) under
head-shading and leaves-shading treatment, a total of 2,223 and 2,558 DEGs were up- and
down-regulated, respectively. To identify the functions of these down-regulated DEGs,
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
were carried out (Du et al., 2010; Conesa et al., 2005; Kanehisa et al., 2008). Thirty GO
terms were found as enriched biological processes based on the DEGs (Table S2; Fig. S1):
‘‘nucleus’’, ‘‘response to abscisic acid’’, ‘‘DNA-binding transcription factor activity’’,
‘‘response to water deprivation’’ and ‘‘sequence-specific DNA binding’’, which were the
major GO terms. The significantly enriched pathways were identified using KEGG analysis
(Fig. 2A). Among the significantly enriched pathways, ‘‘Starch and sucrose metabolism’’,
‘‘Plant hormone signal transduction’’ and ‘‘Protein processing in endoplasmic reticulum’’
were the major public pathway-related database.

Comparing the expression amounts of differently expressed genes (DEGs) under shading
and normal light treatment, a total of 378 and 660 DEGs were up- and down-regulated
under head-shading treatment, respectively. For DEGs under leaf-shading treatment, we
found that a total of 1532 and 1628DEGswere up- anddown- regulated, respectively (Tables
S3 and S4; Fig. S2 and S3). In GO analysis, DEGs encoding proteins related to response
to ‘‘light stimulus’’, ‘‘chloroplast and photosystem I’’ were down-regulated under both
head- and leaf-shading treatments. In KEGG analysis, DEGs were grouped in 20 functional
classes. Under leaf-shading treatment, DEGs were significantly enriched in ‘‘amino acid
biosynthesis’’, ‘‘carbon metabolism’’, ‘‘sulfur metabolism’’, ‘‘cysteine and methionine
metabolism’’, and ‘‘photosynthesis-antenna proteins’’ (Fig. 2B), while downregulatedDEGs
with previously described functions were associated with ‘‘photosynthesis’’, ‘‘peroxisome’’
and ‘‘flavonoid biosynthesis’’, indicating such pathways/processes might be affected by
head shading (Fig. 2C). The KEGG analysis showed the critical pathways in response to
light. The above results indicated that photosynthesis and anthocyanin biosynthetic process
were markedly inhibited by head shading while photosynthesis and carbon-nitrogen-sulfur
metabolism were significantly repressed by leaf shading by transcriptional regulation in
response to light.

According to flower head phenotypes, pigment synthesis and associated DEGs, the
head might constitute the main organ showing a response to light during anthocyanin
biosynthesis, in accordance with previous data on chrysanthemum in which the capitulum
was the key organ responding more to light compared with the leaf during anthocyanin
production (Hong et al., 2015).
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Figure 2 KEGG function classification of DEGs in B53WJ-vs-A53WJ (A), A53WJ-vs-B53CK (B) and
B53WJ-vs-B53CK (C). B53WJ-vs-A53WJ refers to the number of DEGs at 7 d between head-shading and
leaf-shading treatments; A53WJ -VS-B53CK refers to the number of DEGs at 7 d between leaf-shading
and light treatments; B53WJ -VS-B53CK refers to the number of DEGs at 7 d between head-shading and
light treatments.

Full-size DOI: 10.7717/peerj.8870/fig-2

Overall transcriptomic analysis under head shading and control
treatments
To assess how light induces anthocyanin production in broccoli, RNA-Seq was performed
for three triplicate groups at 0 d, 7 d and 11 d under head-shading and normal light
treatments, respectively (Fig. 3A). Averagely 20 million clean reads were produced per
sample, including 81∼85%which were mapped to the Brassica oleracea genome (Table S5).
Cumulatively, 90231 transcripts were detected across all six treatments with an FPKM ≥1.
The full annotation and the expression levels of all genes (FPKM values) are found in
Tables S6 and S7.

Thousands of genes are activated in broccoli in response to light
To identify genes responding to light, differential gene expression analyses were performed
at 0 d, 7 d and 11 d under both head-shading and control treatments. Transcriptomics
revealed 1461 (7 versus 0 day) and 5132 (11 versus 0 day) DEGs under control treatment,
and 1752 (7 versus 0 day) and 1859 (11 vs. 0 day) DEGs under head-shading treatment.
The number of shared DEGs increased over time, probably due to the total number of
DEGs increasing between treatments. Relative to the control treatment, 378 upregulated
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Figure 3 Differentially expressed genes (DEGs) in the broccoli head treated with head-shading and
normal light conditions. (A) Head-shading treatment and corresponding head flower phenotypes dur-
ing head flower development at 0 d (A53), 7 d (B53) and 11 d (C53); (B) Changes in gene expression at 7
d and 11 d. B53WJ -VS-B53CK refers to the number of DEGs at 7 d between the head-shading and light
treatments. C53WJ-VS-C53CK refers to the amounts of DEGs at 11 d between the head-shading and light
treatments.

Full-size DOI: 10.7717/peerj.8870/fig-3

and 660 downregulated DEGs (P < 0.05) were detected at 7 d, while 512 upregulated and
924 downregulated DEGs were found at 11 days, respectively (Fig. 3B).

To gain a deeper understanding regarding the associated biological processes, transcripts
were assigned to nine clusters per treatment group (Figs. S4 and S5). Then, KEGG analysis
was performed for identifying biological pathways enriched in clusters of comparably
regulated genes (Figs. 4A and 4B). Cluster 1, 6 and 8were under both light and head-shading
treatments. Cluster 1 encompassed genes downregulated throughout the study, including
those controlling Plant hormone signal transduction, Starch and sucrose metabolism,
Glycero-phospholipid metabolism and Fructose and mannose metabolism. Cluster
6 comprised genes positively regulated throughout the entire study, including those
associated with Carbon metabolism, Nitrogen metabolism and Fatty acid metabolism.
Cluster 8 contained genes significantly upregulated from 0 d to 7 d, many of which were
involved in Phenylpropanoid biosynthesis, Photosynthesis, and Flavonoid biosynthesis.
These findings indicated that cluster 8 DEGs were expressed in early phases of light
induction and played roles in regulating anthocyanin biosynthesis. As many as 2400 DEGs
showed differential expression between the light and shading libraries in cluster 8, in
which 373 and 1377 individual DEGs showed specific expression under head-shading
and normal light conditions, respectively, and 650 genes were co-expressed under both
conditions (Fig. 4C; Table S8, S9 and S10). Thus, we focused on the 650 co-expressed and
373 specifically expressed under head-shading, whichmost likely represented light-induced
genes.

Different expression patterns of anthocyanin biosynthesis structural
genes
The expression profiling of structural genes was performed to assess their roles in
anthocyanin biosynthetic pathway after shading. In this study, fifteen such genes, e.g.,
PAL, C4H, 4CL, CHS, CHI, F3H and DFR were regulated by light (Fig. 5). Most of the
genes had comparable expression profiles; their expression amounts were low in the A53CK
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Figure 4 Clustering of differentially expressed genes with marked expression level differences and
KEGG pathway analysis after head-shading treatment (A–D) and light treatment (E–G); (H) Overlap of
DEGs in cluster 8 in response to light.

Full-size DOI: 10.7717/peerj.8870/fig-4

sample at 0 d, and gradually increased in the B53CK sample exposed to normal light for
7 d, peaking in the C53CK sample treated by normal light for 11 d. The expression levels
of all transcripts were suppressed in the head-shading treatment group, corroborating the
reduced anthocyanin amounts in plants under head-shading. Most genes showed higher
expression levels in the C53WJ group treated by head-shading for 11 d compared with
the B53WJ group treated by head-shading for 7 d, except assembly18039 (PAL), assembly
39669 (C4H ) and assembly 52832 (CHS), which showed higher expression levels in the
B53WJ group. Thus, these genes were considered critical structural genes associated with
the effects of light on anthocyanin production.

Expression of genes associated with light signal perception and
transduction
Photoreceptors (PHYA, PHYB, PHYC, PHYD, PHYE), cryptochromes (CRY1, CRY2,
CRY3), phototropins (PHOT1, PHOT2) and UV RESISTENCE LOCUS8 (UVR8) are
four classes of photoreceptors contributing to light response (Chaves et al., 2011; Christie,
2007; Jenkins, 2014). Compared with head shading samples, flower head response to
light was mediated by three CRY3 photoreceptors, including assembly 37255, assembly
86925 and assembly 18166 (Table 1), which were all downregulated under head-shading
treatment. Under light conditions, the expression levels of assembly 37255 and assembly
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Figure 5 The flavonoid biosynthetic pathway associated with anthocyanin biosynthesis. The
expression patterns of various structural genes contributing to anthocyanin production in A53CK,
B53WJ, C53WJ, B53CK and C53CK are arranged from left to right. A53CK, B53WJ, C53WJ, B53CK and
C53CK indicate samples treated by head-shading for 0 d, 7 d and 11 d, and normal light for 7 d and 11 d,
respectively. The color scale reflected the log-transformed FPKM values.

Full-size DOI: 10.7717/peerj.8870/fig-5

18166 gradually increased and showed highest values in C53CK under light treatment,
while assembly 86925 showed the highest value in B53CK under light treatment.

HY5 induces photomorphogenesis under all light conditions and exerts direct regulatory
effects on light-responsive genes (Chattopadhyay et al., 1998). Here, we found BoHY5
(assembly 42644) was downregulated under head-shading treatment in comparison with
light conditions. Assembly 42644 showed rapid upregulation in the B53CK group, peaking
in C53CK, with reduced amounts under head-shading treatment.

DEGs Encoding Transcription Factors and their interaction with
Hormone-Related Genes
To assess the complex network of signaling pathways in light-induced anthocyanin
biosynthesis, we further compared the expression profiles of transcription factors. A total
of 133 genes were assigned to the MapMan ‘‘transcription factors’’ bin and more than half
were down-regulated (Fig. 6). Members of the GATA, Trihelix, bZIP and C3H families were
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Table 1 Genes expression related to photoreceptors and light signal transduction.

Accession Gene description (blast NR) FPKM value

A53CK B53WJ C53WJ B53CK C53CK

photoreceptors
assembly37255 CRY3 0.16 0.41 0.21 3.05 5.01
assembly86925 CRY3 0.00 0.87 0.00 3.32 2.12
assembly18166 CRY3 0.00 0.57 0.17 2.18 3.48

genes related to light signal transduction
assembly42644 HY5, TED 5 5.57 8.08 22.31 17.71 58.64

Notes.
CRY, Cryptochrome; HY5, HYPOCOTYL 5.

downregulated and HD-ZIP, MIKC_MADS, CAMTA, G2-like families were upregulated,
while other TF families were regulated in both directions. Of these TFs, MYB and bHLH
constituted the largest family with 22 and 20 members, followed by the HD-ZIP, ERF,
bZIP, AP2, GRF, LBD, MIKC_MADS, WRKY, NF-YA and CAMTA families, with 10,
10, 8, 5, 4, 4, 4, 4, 4, 4 members, respectively. Most of the MYB and bHLH TFs were
downregulated, including MYB90, MYB114, EGL3 and TT8, which are key regulators of
anthocyanin biosynthesis.

The interaction partners of these TFs activated as molecular responses are key
components of signal transduction pathways that take place during anthocyanin
biosynthesis. To investigate the functions of plant hormones in light-induced anthocyanin
biosynthesis, the expression patterns of genes involved in plant hormone response as
receptors and response factors were assessed by heat map analysis (Fig. 7). The results
showed that multiple genes involved in abscisic acid, auxin, salicylic acid, ethylene and
jasmonic acid signaling pathway were mostly upregulated in samples treated for 11 d in
comparison with those treated for 0 d and 7 d.

In the auxin transduction pathway, the expressions levels of genes encoding auxin
influx carrier/auxin-responsive protein IAA (AUX/IAA) (assembly 37159 and assembly
75889) and auxin responsive GH3 gene family (GH3) (assembly 40896) peaked in the
C53WJ sample treated by head-shading for 11 d. Meanwhile, the other two GH3 genes
(assembly45596 and assembly 87995) were significantly up-regulated in the C53CK
sample treated by normal light for 11 d. In the abscisic acid transduction pathway, genes
encoding protein phosphatase 2C (PP2C) (assembly 49106), serine/threonine protein
kinase SRK2n (SnRK2) genes (assembly17083) and ABRE binding factors (ABF) (assembly
77239) were downregulated under head-shading conditions in comparison with normal
light conditions. In the jasmonic acid transduction pathway, the transcriptional level of
jasmonate ZIM (JAZ) domain-containing gene (assembly133) was highest in the B53WJ
sample treated by headed-shading for 7 d, while gene encoding jasmonic acid resistant
1 (JAR1) (assembly23539) was highly expressed in the C53WJ sample treated by head-
shading for 11 d. In the salicylic acid (SA) signaling pathway, SA receptors Non-Expresser
of Pathogenesis Related Gene 1 (NPR1) genes (assembly 66422), TGA factor (assembly
89977) and pathogenesis-related 1 (PR-1; assembly 26640) genes were upregulated in
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Figure 6 Statistical column diagram showing transcription factors between up- and down-regulated
differentially expressed genes (DEGs).

Full-size DOI: 10.7717/peerj.8870/fig-6

Figure 7 Heat map representation of the expression patterns of DEGs related to the phytohormone
biosynthesis and signaling pathways during light-responsive reactions. A53CK, B53WJ, C53WJ, B53CK
and C53CK indicate samples treated by head-shading for 0 d, 7 d and 11 d, and normal light for 7 d and
11 d, respectively. The color scale reflected the log-transformed FPKM values.

Full-size DOI: 10.7717/peerj.8870/fig-7

Liu et al. (2020), PeerJ, DOI 10.7717/peerj.8870 14/29

https://peerj.com
https://doi.org/10.7717/peerj.8870/fig-6
https://doi.org/10.7717/peerj.8870/fig-7
http://dx.doi.org/10.7717/peerj.8870


the C53WJ sample treated by head-shading for 11 d. These results indicated that gene
expression patterns in plant hormone signal transduction pathways showed alterations in
broccoli during the shading treatment.

Different expression patterns of anthocyanin biosynthetic regulatory
genes
To classify and assess the potential functions and evolutionary characteristics of BoMYB
proteins in broccoli, a phylogenetic tree was generated for the 125 AtMYBs of Arabidopsis.
Thirteen broccoli R2R3-MYBs were clustered together with AtMYBs and grouped into 8
MYB sub-categories (Fig. 8). In the present study, there were one BoMYB in subfamily 1 (S1;
assembly 42475), one in S4 (assembly 12461), four in S6 (assembly 69910, assembly 31800,
assembly 11776 and assembly 78650), two in S7 (assembly 87693 and assembly 1968), one
in S9 (assembly 76864), one in S12 (assembly 37020), one in S14 (assembly 9195), one in
S20 (assembly 43358), and one in unknown class (assembly 43358). Then, phylogenetic
analysis was carried out to identify probable candidate MYBs involved in anthocyanin
regulation in purple broccoli. Notably, S6 molecules were found to modulate flavonoid
and/or anthocyanin metabolic pathways. The first S6 group genes, i.e., assembly 69910,
assembly 31800, assembly 11776 and assembly 78650, were renamed BoMYB6-1, BoMYB6-
2, BoMYB6-3 and BoMYB6-4, respectively, while assembly 75153 and assembly 75155 were
renamed BoMYBL2-1 and BoMYB2-2, respectively. Phylogenetic analysis indicated that
BoMYB6-1, BoMYB6-2, BoMYB6-3 and BoMYB6-4 were assigned to the positive-regulator
group, while BoMYBL2-1 and BoMYB2-2 belonged to the negative-regulator category.

Using the same methods, a total of twenty broccoli BobHLHs and 152 Arabidopsis
bHLHs were employed to generate a phylogenetic tree, and divided into eight subfamilies,
including 1, 4, 5, 10, 14, 15, 24 and 25. As shown in Fig. 9, subfamily 5 was associated with
flavonoid and/or anthocyanin biosynthesis, including three BobHLHs (assembly 11924,
assembly 11925 and assembly 88651, renamed BoTT8_5-1, BoTT8_5-2 and BoEGL5-
3, respectively). Phylogenetic analysis showed BobHLH clustering with Arabidopsis
anthocyanin bHLH regulator, BoTT8_5-1 and BoTT8_5-2 showed a more distant
association with Arabidopsis AtTT8; BoEGL5-3 had more distant associations with
Arabidopsis AtGL3 and AtEGL3. These results suggested that BoTT8_5-1, BoTT8_5-2
and BoEGL5-3 played roles in regulating anthocyanin synthesis.

Validation of the expression of genes of the Anthocyanin Biosynthetic
Pathway
To confirm gene expression data revealed by transcriptomics, seven regulatory genes
(BoMYB6-1, BoMYB6-2, BoMYB6-3, BoMYB6-4, BoTT8_5-1, BoTT8_5-2 and BoEGL5-3)
and two structural genes (PAL1, 4CL-1) contributing to anthocyanin production in broccoli
underwent amplification from specimens obtained in head’s developmental stages under
shading and light conditions, respectively, by RT-qPCR (Fig. 10), with Actin2 employed as
a reference gene. All 9 genes displayed identical expression trends obtained by RNA-seq.
Most of the transcription factors assessed also showed identical expression trends as
determined by transcriptomics. Moreover, the light and shading groups were significantly
different (P < 0.05).
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Figure 8 Phylogenetic relationship of BoMYBs with other R2R3-MYBs. The UPGMA method was em-
ployed for tree generation using 1,000 bootstrap values with Mega 6.0. Putative modulatory functions of
respective R2R3-MYB proteins are shown. (A) Evolutionary relationships of 125 AtMYBs and BoMYBs;
(B) Phylogenetic relationships of BoMYBs controlling anthocyanin production and those of other species.
Triangles indicate the putatively encoded BoMYB TFs.

Full-size DOI: 10.7717/peerj.8870/fig-8

DISCUSSION
Broccoli head is the key light-response receptor in anthocyanin
production
The purple broccoli has abundant flavonoids and other bioactive molecules in addition
to glucosinolate-derived isothiocyanates, vitamins and minerals, indicating a great
nutritional value for this plant (Moreno et al., 2010). In the present study, delphinidin-
3-O-galactoside, delphinidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-
glucoside, malvidin-3-O-galactoside and malvidin-3-O-glucoside were identified in
broccoli head, in accordance with previously published data on broccoli sprouts, purple
Graffiti cauliflower and red cabbage (Moreno et al., 2010; Chiu et al., 2010; Yuan, Chiu
& Li, 2009). Light represents a predominant environmental stimulus controlling plant
anthocyanin production (Liu et al., 2018). As shown above, shading reduced anthocyanin
production in broccoli. Under light conditions, anthocyanins were produced in a rapid
manner (Fig. 1). In this study, the relative contents of total anthocyanins under head-
shading were more reduced than those obtained under leaves shading and normal light
conditions. This was similar to anthocyanin accumulation in chrysanthemum under
head-shading and leaf shading conditions as reported by Hong et al. (2015).

Usually, more focus is placed on fresh broccoli heads which provide economic benefits
directly; however, purple broccoli varieties with purple or green leaves are variable in
leaf pigmentation. In order to illustrate this mechanism, RNA-seq was performed under
head-shading and leaves-shading treatment. DownregulatedDEGs, GO andKEGG analyses
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Figure 9 Phylogenetic associations of BobHLHwith other bHLHs. The UPGMA method was employed
for tree generation using 1,000 bootstrap values with Mega 6.0. Putative modulatory functions of respec-
tive BobHLH proteins are shown. (A) Evolutionary relationships of 152 AtbHLHs and BoHLHs; (B) Phy-
logenetic relationships of BoHLHs controlling anthocyanin production in subfamily 5 and those of other
species. Triangles indicate the putatively encoded bHLH TF.

Full-size DOI: 10.7717/peerj.8870/fig-9

were carried out. GO analyses showed that, ‘‘nucleus’’, ‘‘response to abscisic acid’’, ‘‘DNA-
binding transcription factor activity’’, ‘‘response to water deprivation’’ and ‘‘sequence-
specific DNA binding’’ were the major GO terms. Moreover, KEGG analyses showed that,
‘‘Starch and sucrose metabolism’’, ‘‘Plant hormone signal transduction’’ and ‘‘Protein
processing in endoplasmic reticulum’’ were the major public pathway-related database.
ABA played positive role in modulating anthocyanin biosynthesis (Carvalho, Carvalho
& Duque, 2010). Starch degradation and Sucrose-specific contribute to anthocyanin
biosynthesis, while MdSnRK1.1 interacts with MdJAZ18 to induce sucrose-induced
anthocyanin and proanthocyanidin biosynthesis in apple (Liu et al., 2017), however
IAA might play an crucial role in anthocyanin accumulation regardless of sugar and
starch in ornamental kale (Ren et al., 2019). Endoplasmic reticulum likely function in
the biosynthesis and transport of anthocyanin pigments (Wagner, 1987). Therefore, the
downregulated genes in hormone signaling, starch and sucrose metabolism, endoplasmic
reticulum and transcription factors might affect the anthocyanin accumulation under
head-shading treatment in broccoli.

Although anthocyanin biosynthesis is well characterized, the associated light-response
receptors in broccoli are less clear. Photosynthesis was significantly repressed under
both head and leaves-shading conditions, suggesting that shading affects plants during
photosynthesis. The DEGs in ‘‘photosynthesis’’, ‘‘peroxisome’’, ‘‘flavonoid biosynthesis’’
were significantly repressed by head shading while ‘‘amino acid biosynthesis’’, ‘‘carbon
metabolism’’, ‘‘sulfur metabolism’’, ‘‘cysteine and methionine metabolism’’, and
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Figure 10 Validation of the expression of genes associated with anthocyanin biosynthesis in broccoli.
∗ represents significance at the 0.05 level.

Full-size DOI: 10.7717/peerj.8870/fig-10

‘‘photosynthesis-antenna proteins’’ were significantly suppressed by leaves shading via
transcriptional regulation. We can infer that under leaves-shading treatment, carbon
fixation and carbohydrate production were affected by less light indirectly leading to
less anthocyanin contents (Shao et al., 2014). Under head-shading conditions, some
photoreceptors and anthocyanin biosynthesis-associated genes downregulated directly
leading to decreased anthocyanin contents in response to light. Therefore, the head might
be the more critical role as light-response receptor in anthocyanin production.

Light-induced anthocyanin biosynthesis is mediated by signal
transduction pathways in ‘Long Jing’
Plants use many photoreceptors for coordinating responses to environmental light (Ma
et al., 2019). When broccoli flowers under head-shading conditions were compared with
those under normal light conditions, we found three CRY3 genes were downregulated,
in agreement with the tendency of anthocyanin production in broccoli head flower (Fig.
1B). These finding indicate that CRY3 may be an important photoreceptor in broccoli
head flower, with critical functions in regulating anthocyanin production (Opseth et al.,
2015). Li et al. (2017) and Li et al. (2018) characterized the eggplant photomorphogenic
factors CRY3 was upregulated by light. In the current study, HY5 was identified among
DEGs during head flower development and its transcription levels quickly rose under
light conditions but were reduced under head-shading treatment. In Turnip (Brassica
rapa), the upregulation of BrHY5 further induced BrPAP1 expression to produce more
anthocyanins under sunlight (Yang et al., 2017). Shin et al. (2013) has reported that HY5
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induced anthocyanin accumulation by directly binding the promoter of MYB75/PAP1
transcription factor in Arabidopsis. In apple, MdHY5 also bound on the 5′ upstream region
of MdMYBA in a yeast system (Peng et al., 2013). This suggests HY5 might represent an
inducer of broccoli head flower coloration by binding the promoter of MYB TFs under
light conditions (Stracke et al., 2010; Shin et al., 2013; Nguyen et al., 2015).

Transcription factors are involved in light-induced broccoli coloration
A set of TFs are considered to regulate anthocyanin biosynthesis at the transcriptional
level, including R2R3-MYB, bHLH and WD40, as well as members of several other TF
families. In this study, 133 transcription factors were differently expressed in response to
light which were classified into 23 families (Fig. 6). Among them, HY5 (Shin et al., 2013),
MYB90 (Bac-Molenaar et al., 2015), MYB114 (Gonzalez et al., 2008), MYBL2 (Dubos et
al., 2008), EGL3 (Nemie-Feyissa et al., 2015), TT8 (Li et al., 2017) and WRKY26 (Amato
et al., 2017), WRKY70 (Li et al., 2006) were recorded in the study, which were known
for their response to anthocyanin biosynthesis. As is well known, HY5 and MYB could
triggered expression of light-inducible genes CHS after light exposure (Chattopadhyay et
al., 1998). In our dataset, the differently expressed R2R3MYB TFs BoMYB6-1, BoMYB6-2,
BoMYB6-3, BoMYB6-4 as well as bHLH TFs BoTT8_5-1, BoTT8_5-2, BoEGL5-3, were
categorised into subfamily 6 and 5 respectively, which were found to modulate flavonoid
and/or anthocyanin metabolic pathways (Figs. 8 and 9). In ornamental cabbage, R2R3MYB
TFs BoPAP2, bHLH TFs BoTT8, BoEGL3.1 and BoMYC1.2 and WDR genes BoTTG1 were
identified as candidates involved in the anthocyanin biosynthesis pathway (Jin et al., 2018).
Ectopic expression of the R2R3 MYB TFs Pr-D allele in cauliflower induced tissue-specific
anthocyanin accumulation (Chiu et al., 2010). In the turnip seedlings, PAP1 transcript
levels simultaneously depend on light spectra and hypocotyl localization, suggesting that
MYBs have critical functions in light spectrum- and location-dependent transduction of
light signals (Wang et al., 2012). In turnip, BrTT8, interacting with BrPAP1 and BrTTG1,
plays a positive role in anthocyanin biosynthesis via regulating expression of LBGs (BrDFR,
BrANS1, BrANS2, and BrUFGT ) in response to light (Yang et al., 2017). In addition,
many other differently expressed TFs response to light were detected in our datasets,
especially some MYB genes, MADS-box and NAC, suggesting their potential roles in
regulation of anthocyanin accumulation (Jaakola, Poole & Jones, 2010; Wang et al., 2018).
As a negative regulator, loss of BoMYBL2-1 expression led to the establishment of purple
color in cabbages (Song et al., 2018). Moreover, MYBL2 expression was inhibited by high
light-induced stress, which triggered strong accumulation of anthocyanins in Arabidopsis
(Dubos et al., 2008). At the present study, we screened numerous differently expressed TFs,
including 10HD-ZIPs, 10 ERFs, 8 bZIPs, 5 AP2, 4WRKYs, 4GRFs, 4 LBDs, 4MIKC_MADS,
4 NF-YAs and 4 CAMTAs families. Also, further studies are needed to ascertain their roles
in anthocyanin biosynthesis in response to light in broccoli.

Plant hormones are involved in light-induced broccoli coloration
Previous studies have shown that phytohormones controlling anthocyanin accumulation
can be affected by light (Loreti et al., 2008; Zhang et al., 2016a; Zhang et al., 2016b).
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Endogenous application of auxins can inhibit the expression of anthocyanin-related
genes (Deikman & Hammer, 1995). In this study, the expressions levels of IAAs and one
GH3 genes were higher in the C53WJ sample treated by head-shading for 11 d. However,
two GH3s were upregulated in the C53CK sample treated by normal light for 11 d. These
distinct expression patterns indicate that auxin signaling has different functions in the
regulation of anthocyanin biosynthesis in broccoli through various transduction pathways.
In purple ornamental cabbage, Jin et al. (2019) suggested that ABA might increase the
intensity of purple pigmentation of the inner leaves. Carvalho, Carvalho & Duque (2010)
provided evidence that ABA plays a positive role in modulating anthocyanin biosynthesis
in hormone mutants after exogenous application (Carvalho, Carvalho & Duque, 2010).
We observed significant upregulation of genes encoding ABA-responsive elements, such
as PP2C, SnRK2 and ABF in the normal light treatment (Fig. 7). Thus, we speculate
that these ABA signaling factors might promote the expression of anthocyanin-related
genes. Wang et al. (2019) indicated that ethylene acts as a negative regulator in red
light-regulated anthocyanin biosynthesis in cabbage. Ethylene suppresses the anthocyanin
biosynthesis via binding to ETRs in Arabidopsis (Jeong et al., 2010) and peel (Ma et al.,
2019). Similarly, we observed that the expression levels of ETR were higher under the
head-shading treatments. Previous studies have shown ethylene treatment significantly
lowers anthocyanin accumulation, while SA alleviates these effects in canola plants
(Brassica napus L.) (Tirani, Nasibi & Kalantari, 2013). ABA, JA and SA pre-treatments
could increase anthocyanin accumulation in turnip (Brassica rapa ssp. rapa) and Brassica
juncea L. (Thiruvengadam et al., 2016; Sharma et al., 2018). Horváth et al. (2007) reported
exogenously applied SA increases the accumulation of anthocyanin in UV-B exposed
T. aestivum. Endogenous application of jasmonate can also increase the production of
anthocyanin (Memelink). However, we found that all genes encoding JAZ, JAR1 andNPR1
in jasmonic acid signalling pathway as well as TGA and PR-1 in the salicylic acid signaling
pathway were upregulated under head-shading treatment, which implies that SA and JA
play negative roles in light-induced anthocyanin accumulation in broccoli. In general,
some form of hormonal cross-talk may be present in pigment accumulation of broccoli
flower head.

CONCLUSIONS
Overall, comprehensive gene expression analysis was performed for exploring the
mechanisms underlying light-associated anthocyanin accumulation in broccoli, and
the following regulatory sequence was proposed. Under light conditions, the expression
levels of CRY3 and HY5 contributing to light signal perception and transduction are
closely associated with anthocyanin production in broccoli head flower. HY5 activates
the downstream MYBs related to anthocyanin biosynthesis. Strikingly, the above results
revealed that BoMYB6-1, BoMYB6-2, BoMYB6-3, BoMYB6-4, BoMYBL2-1, BoMYBL2-
2, BoTT8_5-1, BoTT8_5-2 and BoEGL5-3 affect anthocyanin production and regulate
structural genes such as PAL, C4H, 4CL, CHS, CHI, F3H and DFR. In addition, HD-ZIP,
ERF, bZIP, AP2, GRF, LBD, MIKC_MADS, WRKY, NF-YA, CAMTA transcription factors
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and abscisic acid, auxin, salicylic acid, ethylene, jasmonic acid signaling pathway involved
in the anthocyanin biosynthesis in response to light. This study provides novel insights
into the functions of these genes in regulating light-associated anthocyanin production.
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