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ABSTRACT
Seagrass beds provide a variety of ecosystem services, both within and outside the
bounds of the habitat itself. Here we use environmental DNA (eDNA) amplicons to
analyze a broad cross-section of taxa from ecological communities in and
immediately surrounding eelgrass (Zostera marina). Sampling seawater along
transects extending alongshore outward from eelgrass beds, we demonstrate that
eDNA provides meter-scale resolution of communities in the field. We evaluate
eDNA abundance indices for 13 major phylogenetic groups of marine and estuarine
taxa along these transects, finding highly local changes linked with proximity to
Z. marina for a diverse group of dinoflagellates, and for no other group of taxa.
Eelgrass habitat is consistently associated with dramatic reductions in dinoflagellate
abundance both within the contiguous beds and for at least 15 m outside, relative to
nearby sites without eelgrass. These results are consistent with the hypothesis that
eelgrass-associated communities have allelopathic effects on dinoflagellates, and
that these effects can extend in a halo beyond the bounds of the contiguous beds.
Because many dinoflagellates are capable of forming harmful algal blooms (HABs)
toxic to humans and other animal species, the apparent salutary effect of eelgrass
habitat on neighboring waters has important implications for public health as well as
shellfish aquaculture and harvesting.

Subjects Ecology, Genetics, Marine Biology
Keywords Eelgrass, Harmful algal bloom, Dinoflagellates, Environmental DNA, Zostera marina,
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INTRODUCTION
Seagrass species are ecosystem engineers throughout the world’s coastal zones (Jones,
Lawton & Shachak, 1994), generating and sustaining habitat for a multitude of associated
taxa (Duffy, 2006). These marine macrophytes also provide a wide variety of essential
ecosystem services that directly benefit humans, such as provision of nursery habitat for
food species (Heck, Hays & Orth, 2003) and coastal protection through sediment accretion
and stabilization (Potouroglou et al., 2017; reviewed in Nordlund et al. (2016)).
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Additionally, seagrasses temporarily sequester carbon (Fourqurean et al., 2012), and have
been predicted to serve as local buffers of pH, particularly for sensitive calcifying taxa
under ocean acidification regimes (Hendriks et al., 2014; but see Cyronak et al. (2018) and
Koweek et al. (2018)). Seagrass habitat is therefore a globally important resource, with
far-reaching positive economic effects.

In addition to these broad ecological and chemical functions, such habitats demonstrate
important antimicrobial properties. Seagrass meadows have been shown to reduce
exposure to bacterial pathogens affecting humans and marine life, relative to areas lacking
such meadows (Lamb et al., 2017). Additionally, seagrass tissue itself is a source of diverse
secondary metabolites capable of killing bacteria responsible for a variety of serious
infections (Kannan, Arumugam & Anantharaman, 2010; reviewed in Zidorn (2016)).
Finally, specific bacteria associated with seagrasses are known to kill or inhibit the growth
of taxa that produce harmful algal blooms (HABs) (Inaba et al., 2017; reviewed in Imai
(2015)), which can cause shellfish poisoning, fish kills, and mass de-oxygenation events,
among other detrimental effects (reviewed in Grattan, Holobaugh & Morris (2016),
Hallegraeff et al. (2017) and Rabalais et al. (2014), respectively). Thus, the antimicrobial
properties of seagrass and associated organisms also yield benefits for human and local
ecosystem health.

Eelgrass (Zostera marina) is the dominant seagrass along temperate coasts of the
Northern Hemisphere (Short et al., 2007). Recent worldwide declines in this species and
other seagrass taxa are alarming (Orth et al., 2006; but see Shelton et al. (2017)), and
have been met with local protection measures in some cases, such as designation of
seagrass as a “Habitat Area of Particular Concern” (NOAA Fisheries, 2019), as well as a
“Vital Sign” indicator species (Puget Sound Partnership, 2019), and are the object of “no
net loss” policies (NOAA Fisheries, 2014). Frequently, a tradeoff between eelgrass and
aquaculture is presumed when eelgrass habitat and associated conservation efforts
compete with shellfish seeding grounds (Hosack et al., 2006; Dumbauld & McCoy, 2015);
depending on the specific practices used to plant and harvest shellfish, such aquaculture
can cause significant physical and ecological disturbance to eelgrass beds (Tallis et al.,
2009). However, bivalves are in fact often proximally associated with seagrass even in the
absence of aquaculture, and mutualisms between the two groups have been described
(Peterson & Heck, 2001; Van der Heide et al., 2012, but see Kelly & Volpe (2007)). For these
reasons, the effects of eelgrass habitat on the abundance of shellfish and associated species
are of particular interest in the region of study, and in the many locations worldwide
where members of these taxa co-occur.

Given the critical functions of seagrass globally and Z. marina eelgrass locally, we
aimed to characterize the biological community associated with this ecosystem engineer,
comparing the presence and relative abundance of organisms within contiguous beds
to points along transects extending outward to bare substrate. Although there is an existing
literature on eelgrass communities, such studies often maintain a relatively narrow
taxonomic focus and do not make explicit comparisons with immediately adjacent habitat
types, perhaps owing to the survey methodology available (Nelson, 1979, 1997). Here we
use environmental DNA (eDNA) metabarcoding with universal eukaryotic primers to

Jacobs-Palmer et al. (2020), PeerJ, DOI 10.7717/peerj.8869 2/20

http://dx.doi.org/10.7717/peerj.8869
https://peerj.com/


quantify Z. marina-associated changes across hundreds of taxa simultaneously at five
sites and three time-points within the estuarine waters of Washington State, USA. Because
of the close ties between shellfish and eelgrass in the study region, we predict that
Z. marina habitat may modulate the relative abundance of shellfish and/or associated
planktonic organisms, in particular, although our methods are capable of identifying
significant changes across a diversity of organisms from over a dozen eukaryotic phyla.

METHODS
eDNA sample collection
Environmental DNA sequenced at a single genetic locus can provide an assay of
community composition consisting of many taxa. The design of the particular PCR
primers used largely determines the taxonomic composition, but it is not uncommon to
sequence hundreds of taxa from dozens of phyla in a given sampling effort. Here, we
targeted a ca. 313 bp fragment of COI using a primer set (Leray et al., 2013) known to
amplify a broad range of marine taxa including diatoms, dinoflagellates, metazoans,
fungi and others; this primer set is broadly used in ecological applications sampling dozens
of phyla simultaneously (Leray & Knowlton, 2015) as well as those concerned with specific
taxonomic groups of interest (Gibson et al., 2014).

To determine the biological community composition within Z. marina beds and the
surrounding habitat from eDNA, we sampled seawater from five sites in Puget Sound:
Port Gamble, Case Inlet, Nisqually Reach, Skokomish and Willapa Bay (Fig. 1).
We surveyed each location at three timepoints during late spring and summer, in May, July
and August of 2017. Specifically, we collected 1 L of seawater using a bleach-cleaned
plastic bottle held immediately under the water surface, within 0.6 m of the eelgrass canopy
in a total water depth of 0.3–1 m. We collected samples from eelgrass (located at the
approximate center of contiguous beds, 47–90 m inside the edge), from each point in a
transect extending alongshore at 1, 3, 6, 10 and 15 m outside the edge of the contiguous
beds, and from a final location over bare substrate (located 16–670 m outside the edge
of the contiguous beds). The bed edge was defined as the point at which shoot density
fell below 3 shoots/m2; see Fig. S1 for a transect schematic and Table S1 for precise
transect locations by site. All transects ran alongshore, with samples for a given transect
gathered at a uniform tidal height (−0.3 to −1 m mean lower low water level). Due to
local geography and conditions, it was not always possible to gather all transect
samples during each sampling event; a comprehensive list of samples gathered is given in
Table S1. We kept samples on ice and in the dark until processing within 4 h by filtering
500 mL from each sample under vacuum pressure through a cellulose acetate filter with
47-mm diameter and 0.45-mm pore size and stored the filter at room temperature in
Longmire’s buffer (Renshaw et al., 2015). The final dataset consisted of 84 water samples.

Extraction and amplification
To extract DNA from the sample filters, we used a phenol:chloroform:isoamyl alcohol
protocol (Renshaw et al., 2015). We incubated filter membranes at 65 �C for 30 min before
adding 900 mL of phenol:chloroform:isoamyl alcohol and shaking vigorously for 60 s.
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We conducted two consecutive chloroform washes by centrifuging at 14,000 rpm for
5 min, transferring the aqueous layer to 700 mL chloroform, and shaking vigorously for
60 s. After a third centrifugation, 500 mL of the aqueous layer was transferred to tubes
containing 20 mL 5 molar NaCl and 500 mL 100% isopropanol, and frozen at −20 �C for
approximately 15 h. Finally, all liquid was removed by centrifuging at 14,000 rpm for
10 min, pouring off or pipetting out any remaining liquid, and drying in a vacuum
centrifuge at 45 �C for 15 min. We resuspended the eluate in 200 mL water, and used 1 mL
of diluted DNA extract (between 1:10 and 1:400) as template for PCR.

To survey the eukaryotic organisms present in our samples, we ran and sequenced in
triplicate PCR reactions from each of the 84 biological samples to distinguish technical
from biological variance. To sequence many samples and their replicates in a single run
while avoiding amplification bias due to index sequence, we followed a two-step PCR
protocol (O’Donnell et al., 2016). In the first step, we used a PCR reaction containing
1X HotStar Buffer, 2.5 mM MgCl2, 0.5 mM dNTP, 0.3 mM of each primer, and 0.5 units
of HotStar Taq (Qiagen Corp., Valencia, CA, USA) per 20 mL reaction. The PCR protocol
for this step consisted of 40 cycles, including an annealing touchdown from 62 �C to
46 �C (−1 �C per cycle), followed by 25 cycles at 46 �C. In the second step, following the
2-step PCR protocol given in O’Donnell et al. (2016), we added six base-pair nucleotide

Figure 1 Nearshore sampling locations in Puget Sound and outer coast, Washington, USA. GPS
coordinates are given in Table S1. Full-size DOI: 10.7717/peerj.8869/fig-1
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tags to both ends of our amplicons prior to sequencing, allowing us to sequence multiple
samples on the same MiSeq run. We allowed for no sequencing error in these tags; only
sequences with identical tags on both the forward and reverse read-directions survived
quality control. This gave us high confidence in assigning amplicons back to individual
field samples.

Finally, we generated amplicons with the same replication scheme for positive controls,
comprised of extractions from either kangaroo (genus Macropus) or ostrich (genus
Struthio) tissue. We selected these organisms because they are absent from the sampling
sites and common molecular biology reagents, but amplify well with the universal
primer set used in this study. Additionally, they can be used to identify possible cross-
contamination: reads from other taxa that appear in these positive control samples
allow us to estimate and account for the proportion of sequences that are present in the
incorrect PCR reaction (see “Bioinformatics” below). We also amplified negative controls
(molecular grade water) in triplicate alongside environmental samples and positive
controls, and verified by gel electrophoresis that these PCR reactions contained no
appreciable amount of DNA.

Sequencing
To prepare libraries of replicated, indexed samples and positive controls, we followed
manufacturers’ protocols (KAPA Biosystems, Wilmington, MA, USA; NEXTflex DNA
barcodes; BIOO Scientific, Austin, TX, USA). We then performed sequencing on an
Illumina MiSeq (250–300 bp, paired-end) platform in four different sets of samples: two
MiSeq V.2 runs and two MiSeq V.3 runs. We processed each batch separately through the
initial bioinformatics analysis (see below). We employed hierarchical clustering on
transects containing six PCR replicates sequenced across two different runs (three
technical replicates per run derived from the same sampled bottle of water) and found that
these samples were each other’s nearest neighbors (Fig. S2); thus sequencing-run-level
effects were negligible and we combined the data from the four sequencing runs.

Bioinformatics
We followed updated versions of previously published procedures for bioinformatics,
quality control, and decontamination (Kelly, Gallego & Jacobs-Palmer, 2018). This
protocol uses a custom Unix-based script (Gallego, 2019) calling third-party programs
to perform initial quality control on sequence reads from all four runs combined,
demultiplexing sequences to their sample of origin and clustering unique variants into
amplicon sequence variants (ASVs) (Martin, 2011; Callahan et al., 2016). The output is a
dataset including counts of each ASV per PCR replicate; ~28 million sequence reads from
19370 ASVs emerged from this step.

To address possible cross-sample contamination (Schnell, Bohmann & Gilbert, 2015;
Kelly, Gallego & Jacobs-Palmer, 2018), we subtracted the maximum proportional
representation of each environmental ASV across all positive control samples (sequenced
from extraction of kangaroo or ostrich tissue) from the respective ASV in field
samples; 27 million reads from 19320 ASVs passed this step. After removing the two
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PCR replicates with an extremely low number of reads, we estimated the probability of
ASV occurrence by performing site-occupancy modeling (Royle & Link, 2006; Lahoz-
Monfort, Guillera-Arroita & Tingley, 2016). Following Lahoz-Monfort, Guillera-Arroita &
Tingley (2016) and using the full Bayesian code for package rjags (Plummer, 2013)
provided by those authors, we modeled the probability of occupancy (i.e., true presence)
for each of the unique sequence variants in our dataset. We treated replicate PCR reactions
of each water bottle as independent trials, estimating the true-positive rate of detection
(P11), false-positive rate (P10) and commonness (psi) in a Bayesian binomial model.
We then used these parameters to estimate the overall likelihood of occupancy (true
presence) for each ASV; those with low likelihoods (<20%) were deemed unlikely to be
truly present in the dataset, and therefore culled. 25 million reads from 3143 ASVs
survived this step.

Lastly, we removed samples whose PCR replicates were highly dissimilar: we calculated
the Bray–Curtis dissimilarity amongst PCR replicates from the same bottle of water and
discarded those with distance to the sample centroid outside a 95% confidence interval.
Of 84 bottles of water collected, 3 technical replicates survived QC in 72 cases (86%),
two replicates in 9 cases (11%), one replicate in 2 cases (2%), and zero replicates in a single
case (1%) (Table S1). The final dataset of 24 million reads from 3142 ASVs comprised 83%
of the original sequence reads.

All bioinformatic and analytical code is included in GitHub repositories (Gallego, 2019;
Kelly, 2019), and provides the details of parameter settings in the bioinformatics pipelines
used. Sequence and annotation information are included as well, and the former are
deposited and publicly available in on the NCBI sequence read archive (SRA accession
PRJNA606519).

Taxonomy
To assign taxonomy to each ASV sequence, we followed the protocol detailed in
Kelly, Gallego & Jacobs-Palmer (2018). Briefly, this protocol uses “blastn” (Camacho et al.,
2009) on a local version of the full NCBI nucleotide database (current as of 13 February
2019), recovering up to 100 hits per query sequence with at least 85% similarity and
maximum e-values of 10−30 (culling limit = 5), and reconciling conflicts among matches
using the last common ancestor approach implemented in MEGAN 6.4 (Huson et al.,
2016). Within MEGAN, we imposed an additional more stringent round of quality control
to ensure sufficient similarity between query and database sequences by requiring a bit
score of at least 450 (ca. 90% identical over the entire 313-bp fragment). Of the 24 million
total reads in our dataset, we were able to annotate 4.1 million to the level of phylum or
lower; the majority of the remaining reads had no BLAST hits meeting our criteria
(7.6 million) or else did not receive taxonomic assignment due to insufficient similarity or
conflicting BLAST hits (12.1 million). We use the annotated sequences in our taxonomic
analyses below.

Our analysis revealed strong habitat associations for dinoflagellates and not for other
taxa (see “Results”). To examine patterns specifically within the phylum Dinoflagellata, we
further refined our annotations for these ASVs. Specifically, we considered the geographic
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range of taxa involved (restricting possible annotations to those taxa known from the
North Pacific) and assigned taxonomy conservatively to the level of family (and genus,
when possible) only in cases of >95% sequence identity between the subject and query
sequence; ASVs we could not confidently assign to the level of family we excluded from
further analyses. Multiple dinoflagellate sequences with identical amino-acid translations
occurred within Heterocapsa, Kareniaceae, Gymnodinium and Hemotodinium; to
avoid pseudoreplication, we treated these as a single taxonomic unit (this choice did not
affect the trends or significance of results).

Statistical analysis
Community composition
To confirm the spatial resolution of our eDNA communities, we used non-metric
multidimensional scaling (nMDS) ordination of eDNA indices for all ASVs within each
technical replicate (Port et al., 2016). To derive this index, we first normalized
taxon-specific ASV counts into proportions within a technical replicate, and then
transformed the proportion values such that the maximum across all samples is scaled to
1 for each taxon (Kelly, Shelton & Gallego, 2019). Such indexing improves our ability to
track trends in abundance of individual taxa in time and space by correcting for both
differences in read depth among samples and differences in amplification efficiency among
sequences; mathematically, it is equivalent to the Wisconsin double-standardization
for community ecology as implemented in the vegan package for R (Oksanen et al., 2013).
Using this index, we generated a single Bray–Curtis dissimilarity matrix for
sequenced transect samples from every unique site/month combination and performed
ordinations for each using the metaMDS function of vegan (Oksanen et al., 2013;
R Core Team, 2016) using a maximum of 1,000 random starts. We then created a
single Bray–Curtis dissimilarity matrix for our entire dataset and apportioned variance
by site, month, transect distance, and sample on the communities present using a
PERMANOVA test (implemented with the adonis function in vegan (Oksanen et al.,
2013)).

Taxon-Habitat Associations
To examine the relative abundance of phyla in eelgrass habitat relative to bare substrate,
we determined eDNA indices for the sum of sequences within each phylum at the two
transect extremes (within-eelgrass versus bare), calculating a relative eDNA abundance
measure by subtracting the mean eDNA abundance index over bare substrate for each
site-month combination from the corresponding mean eDNA abundance index in
the eelgrass habitat. Positive values of this measure thus denote higher abundance in
eelgrass, while negative values of this index indicate higher abundance over bare substrate.
To assess the statistical significance of these phylum-level differences between habitat
types, we compared the distributions of mean eDNA abundance indices for individual
phyla in samples taken from eelgrass relative to their counterparts taken over bare
substrate, using a paired Wilcoxon signed-rank test with Bonferroni correction for
multiple comparisons.
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Dinoflagellate distributions
To resolve the fine-scale patterns of dinoflagellates with respect to eelgrass, we focused on
transects in which individual dinoflagellate taxa had overall high-abundance. To identify
these transects, we took the grand mean of dinoflagellate taxon-specific eDNA indices
for each technical replicate along transects at a given time and place, and used the k-means
function of the R stats package (R Core Team, 2016) with k = 2 to separate transects
from all present dinoflagellate taxa into two groups, high- and low-abundance, using
unsupervised machine learning (Fig. S3). Plotting data for individual taxa across transects
for each site-month revealed episodic abundance of dinoflagellate sequences in time
and space, as expected (Fig. S4). A phylogeny built of dinoflagellate taxa from the
high-abundance transects (Fig. S5) confirmed that family- and genus-level taxonomic
groups occupied monophyletic clades.

Eight transects identified by unsupervised clustering indicate high-abundance events.
For these focal transects, we first compared the eelgrass habitat and bare substrate using a
paired Wilcoxon signed-rank test of mean eDNA abundance index for each dinoflagellate
taxon (here, having identified sequences to the level of family or genus, rather than
grouping dinoflagellates together, as we have done above). Next, to determine whether
dinoflagellate abundance measures at intermediate alongshore transect samples (1, 3, 6, 10
and 15 m) were more closely associated with eelgrass habitat or bare substrate, we
additionally performed Gaussian mixture modeling with two groups (Scrucca et al., 2016).
We then used a Wilcoxon rank-sum test to assess the significance of differences in the
dinoflagellate eDNA abundance index distribution in the two groups produced by
model-based clustering. To ensure that these groups did not result simply from spatial
autocorrelation, we calculated Bray–Curtis dissimilarity based on eDNA abundance
indices of all ASVs from adjacent points on each full transect. We tested the null
hypothesis that spatial distance does not significantly influence Bray–Curtis dissimilarity
using a Kruskall–Wallace test (Fig. S6).

RESULTS
Community composition
We assigned over 3,000 unique ASVs to 13 eukaryotic phyla comprising a diverse set of
single- and multicellular taxa including Arthropoda (arthropods), Annelida (annelid
worms), Bacillariophyta (diatoms), Chlorophyta (green algae), Chordata (chordates),
Cnidaria (cnidarians), Dinoflagellata (dinoflagellates), Echinodermata (echinoderms),
Heterokonta (stramenopiles), Mollusca (molluscs), Nemertea (ribbon worms), Ocrophyta
(brown algae) and Rhodophyta (red algae). This represents a broad—although by no
means comprehensive—survey of eukaryotic communities in and around our sampled
eelgrass beds.

Ordination via nMDS revealed consistent differentiation between eDNA communities
across transects within a sampling site and date; technical replicates consistently clustered
together. An example plot of samples gathered along the transect from eelgrass to bare
substrate at Willapa Bay in July (Fig. 2; all site/date plots shown in Fig. S7) shows that
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the eelgrass community is quite dissimilar from other transect points along both axes.
Moving away from eelgrass, most technical replicates of each sample bottle are fully
distinguishable from those of other sample bottles (non-overlapping in ordination).
For the instances in which complete transects were sampled at a given time and place
(10) and all three technical replicates of a sample were available for analysis (60), 44
samples (73%) were similarly non-overlapping in ordination with all remaining transect
points, demonstrating that despite proximity at the scale of meters, bottles of water
contained eDNA evidence of distinct biological communities the majority of the time.
Put differently, within-sample variance (reflecting laboratory-driven processes) was
smaller than between-sample variance (reflecting biological as well as laboratory
processes), hence providing resolution of communities at the scale of meters.

PERMANOVA apportioned the variance in Bray–Curtis distance among samples as
follows: site (R2 = 0.186, p = 0.001), month (R2 = 0.079, p = 0.001), and transect distance
(R2 = 0.026, p = 0.001) each explain a significant portion of the variance in the dataset.
Thus, despite strong effects of location and time, these results confirm that we can
consistently distinguish nearshore eDNA communities (as sampled by our primers) at
spatial scales of meters for each site and month of sampling. Moreover, we see a highly
significant effect of proximity to eelgrass on the complement of organisms present.

Figure 2 Example ordination plot of samples along a single transect from bare to eelgrass
positions at Willapa Bay in July, 2017. Technical replicates of each biological sample are grouped
as triangles. The sample taken above eelgrass (located 47–90 m inside the edge of the contiguous beds)
is shown in green (Eg), alongshore transect samples are shown in white and labeled with distance from
the contiguous eelgrass bed in meters, and the sample taken above bare substrate (located 16–670 m
outside the edge of the contiguous beds) is shown in brown (Ba).

Full-size DOI: 10.7717/peerj.8869/fig-2
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Taxon-Habitat Associations
To determine the habitat preference of major taxa in our dataset at a coarse spatial scale,
we classified ASVs to the level of phylum and plotted an index of their relative sequence
abundance in eelgrass versus bare positions (Fig. 3). Positive indices denote greater
abundance in eelgrass, and negative indices in bare substrate. Across all sites and months,
only dinoflagellates show a consistent and strong bias towards one habitat or another;
they are nearly universally more abundant over bare substrate. Indeed, the negative
association of dinoflagellates with eelgrass beds is the only significant change in
phylum-specific abundance between the two habitat extremes after Bonferroni correction
for multiple comparisons (p = 0.004; paired Wilcoxon signed-rank test). Other
single-celled microalgae such as diatoms (Bacillariophyta) and green algae (Chlorophyta)
have no significant relationship with eelgrass.

Dinoflagellate distributions
When dinoflagellates are plentiful relative to background levels, it becomes possible to
identify detailed spatial trends in the abundance of individual taxa with respect to eelgrass
habitat. To restrict our analysis to such periods, we used unsupervised machine learning
(k-means clustering) to define a set of high- and low-abundance transects for each

Figure 3 Habitat associations of sequences assigned to each phylum. Phyla are ordered and colored by
mean relative eDNA abundance index (Eg–Ba: eDNA abundance index in eelgrass minus eDNA
abundance index over bare substrate). Greener samples on the left exhibit greater relative abundance in
eelgrass, and browner samples on the right exhibit greater relative abundance on bare substrate.
The central zero-line indicates no bias in abundance between habitat types. The violins are scaled to a
fixed maximum width, and display the density of points within the interquartile range (shown by the
violin area). The significance of dinoflagellate habitat associations is denoted with an asterisk (paired
Wilcoxon signed-rank test; p = 0.004). Full-size DOI: 10.7717/peerj.8869/fig-3
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dinoflagellate sequence across all sites and months (Fig. S3; between group sum of squares/
total sum of squares = 67.7%); eight transects from eight dinoflagellate taxa appeared in
the high-abundance group. Their distributions are indeed highly local and episodic at the
scale of our sampling, as expected (Fig. S4).

In this subset of high-abundance transects, the negative interaction of eelgrass and
dinoflagellates is taxonomically universal. The taxa represented include two unique
variants from the genus Heterocapsa, single variants from the genera Karlodinium,
Alexandrium, Protoceratium and Gymnodinium, and two Kareniaceae family variants of
unknown genus, all of which contain known or suspected HAB species (UNESCO, 2019).
All are also heavily biased towards bare substrate, relative to eelgrass (Fig. 4; Wilcoxon
signed-rank test, p < 0.002).

After demonstrating a preference of all dinoflagellate taxa towards the bare substrate
extreme (when highly-abundant), we then characterized their patterns as a function of
distance from the edge of the contiguous eelgrass beds, using data from entire transects
(Fig. 5). Examining all points alongshore—and hence, controlling for substrate depth—we
found that dinoflagellate eDNA abundance indices at the 1, 3, 6, 10 and 15 m positions

Figure 4 Habitat preferences of dinoflagellate sequences at site-months in which each taxon occurs
at high abundance. eDNA abundance indices from eelgrass samples are shown in green, and those from
bare samples are shown in brown. Each set of points and associated line depict one high-abundance
dinoflagellate taxon. The significance of paired differences in eDNA abundance indices for these transect
extremes is denoted with an asterisk (Wilcoxon signed-rank test; p < 0.002).

Full-size DOI: 10.7717/peerj.8869/fig-4
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grouped with those at the eelgrass position but not the bare position in model-based
clustering (Fig. 5 “A” versus “B”). Additionally, the eDNA abundance index of all
high-abundance dinoflagellate taxa at these six transect points together differed
significantly from bare substrate (Wilcoxon signed-rank test, p < 0.02; Fig. 5 “A” versus
“B”). These patterns are not simply due to spatial autocorrelation, as overall Bray–Curtis
dissimilarity (from all ASVs) shows no pattern associated with geographic distance across
full transects (Fig. S6; Kruskall–Wallis rank-sum test, p > 0.85).

DISCUSSION
In a broad-spectrum eDNA survey of the organisms living in and near to eelgrass, we track
the relative abundance of a diverse group of taxa from thirteen phyla. We demonstrate
the ability of eDNA to distinguish communities represented in samples taken only
meters apart, and to reveal a significant axis of variance based on proximity to habitat type,
despite strong influences of geography and time across sampling events. One major and
significant pattern emerges in our analysis: dinoflagellate taxa are more common over
bare substrate than within eelgrass beds when highly-abundant, and this effect extends at

Figure 5 Dinoflagellate eDNA abundance indices plotted for all sites and months combined at each
point along the transect from eelgrass to bare substrate. The sample taken above eelgrass (located
47–90 m inside the edge of the contiguous beds) is shown in green (Eg), alongshore transect samples are
shown in white and labeled with distance from the contiguous eelgrass bed in meters, and the sample
taken above bare substrate (located 16–670 m outside the edge of the contiguous beds) is shown in brown
(Ba). The violins are scaled to a fixed maximum width, and display the density of points within the
interquartile range (shown by the violin area) around the median (central horizontal line). The two
clusters produced by model-based clustering and differentiated by Wilcoxon signed-rank test of dino-
flagellate eDNA abundance index (p < 0.02) are labeled “a” and “b”.

Full-size DOI: 10.7717/peerj.8869/fig-5
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least 15 m beyond the edge of the contiguous beds themselves. Because ours was an
observational field study, rather than an experiment, we cannot rigorously distinguish
among plausible mechanisms for the observed dinoflagellate distributions. Instead, we use
the patterns in our own data as well as the relevant scientific literature to evaluate a number
of potential hypotheses.

One plausible mechanism is that of an ecological edge effect acting in nearshore zones at
the interface between eelgrass and non-eelgrass habitat. “Edge effects” are changes in the
distribution or abundance of a species at a boundary between habitats (defined in
Boström et al. (2011) and see, for example, Ries & Sisk (2004),Macreadie et al. (2010)), or in
a broader sense, these same effects across many species, observed at a community level.
As patch size in a habitat decreases, edge effects become increasingly important factors
influencing the distribution of a species. Here, we observe dinoflagellates at increased
abundances in sites with bare substrate 16–670 m away from the edge of contiguous
eelgrass beds, and not closer (1–15 m). If dinoflagellates were preferentially living at habitat
edges, we would expect higher abundance of these taxa at intermediate distances. If, by
contrast, the dinoflagellate pattern arose from a community-wide set of interactions in
which eelgrass- and non-eelgrass-associated species overlap at habitat edges, we would
expect to see community richness peak at or near the habitat boundary. We observe
neither of these patterns in our data (Fig. 5; Fig. S9).

A second plausible mechanism is that slower flow-rates cause plankton deposition
within eelgrass beds, but not outside (in parallel with sediment deposition (Potouroglou
et al., 2017)), such that planktonic cells are recovered at lower levels in our surface
water samples. Here, too, we would expect to see a continuum of dinoflagellate abundance
as a function of eelgrass thinning with distance from the contiguous beds, and we would
expect this to be universal among planktonic species of roughly the same size. Instead,
we observe a halo of lowered dinoflagellate abundance even when shoot densities are a few
per square meter or lower, and do not see this same pattern for other single-celled
algae such as taxa within the groups Chlorophyta or Bacillariophyta. Additionally, we
recover eDNA from multiple benthic families (e.g., Dendrasteridae, Tellinidae and
Veneridae). It therefore seems unlikely that physical factors driving particle deposition
alone produce the observed pattern.

A third possibility is that predatory taxa exist in greater abundance within eelgrass
beds and thereby consume dinoflagellates in larger quantities within this habitat
(e.g., benthic macrofauna, Hosack et al., 2006). This mechanism appears unlikely for
two reasons. First, many organisms that eat dinoflagellates also consume diatoms and
other single-celled algae; as stated above, we do not observe the same patterns of reduced
abundance in and around eelgrass beds for these other taxa. Additionally, a test of habitat
associations at the family level reveals no predators of dinoflagellates with significantly
higher abundance in eelgrass habitat relative to bare substrate.

We find greater support for the hypothesis that allelopathy from within the eelgrass bed
excludes dinoflagellates. A specific allelopathy against microalgal species by Z. marina was
first described over 30 years ago (Harrison & Durance, 1985). More recent evidence
suggests this negative interaction applies to multiple HAB taxa that cause paralytic or
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diarrhetic shellfish poisoning (including Alexandrium, a genus observed in this study),
and is mediated locally by a variety of strains of eelgrass-associated algicidal and
growth-inhibiting bacteria, particularly from Erythrobacter, Teredinibacter, Gaetbulibacter
and Arthrobacter genera (Inaba et al., 2017) (though the eDNA primers employed
here amplify eukaryotes almost exclusively and therefore do not allow us to test this
mechanism). However, in our dataset the repressive effect of eelgrass notably does not
extend at the phylum level to other phytoplankton such as diatoms (Bacillariophyta)
and green algae (Chlorophyta), despite reports that Z. marina habitat can deter members
of these taxa as well (reviewed in Gross (2003)). If we are witnessing patterns associated
with an allelopathic interaction between microalgae and eelgrass mediated by bacterial
species, it is possible that local variation in the Z. marina microbiome (such as that
described in Bengtsson et al. (2017)) could produce disparate patterns for various
microalgal community members. Regardless of mechanism, the taxonomically broad
pattern of lowered dinoflagellate abundance within contiguous eelgrass beds and in a halo
of influence up to 15 m in radius surrounding the habitat demands explanation.

Dinoflagellates with consistent patterns of abundance-decrease within and around
eelgrass habitat in our dataset include species from the genera Heterocapsa, Alexandrium,
Karlodinium, Protoceratium, Gymnodinium and unknown taxa from the Kareniaceae
family, each of which have at least one member included in local microscopy-based
monitoring programs (Trainer et al., 2016; Kolb, Hannach & Swanson, 2016); our eDNA
methodology thus agrees broadly with previous visual identification of microalgae in
this region. Of particular interest are dinoflagellate taxa that include HAB-forming
members: the resident species of Alexandrium (A. catanella) causes paralytic shellfish
poisoning via production of saxitoxin (STX; Wiese et al. (2010)), species from the genus
Protoceratium (e.g., P. reticulatum) produce yessotoxins (YTXs), whose effects on human
consumers of contaminated shellfish are complex and unclear (reviewed in Tubaro et al.
(2010)), and some species within the family Kareniaceae produce ichthyotoxic karlotoxins
Bachvaroff et al. (2008). Saxitoxin, yessotoxins and karlotoxins impact aquaculture and
harvest industries directly; detection of STX at concentrations greater than 80 mg
STXequiv/100 g is routinely responsible for regional harvest closures (Moore et al., 2009),
shellfish containing more than 0.1 mg YTX equiv/100 g may not be sold to markets
within the European Union, although this toxin is not currently regulated within the US
(Trainer et al., 2013), and karlotoxins can cause millions of dollars in losses for fisheries
in single bloom events (Hallegraeff et al., 2017). In summary, the dinoflagellate taxa
with low abundance in and around eelgrass habitat in this study have high relevance
for local shellfish management decisions, particularly as HABs (including Alexandrium)
are intensifying with recent ocean warming in the North Pacific (Gobler et al., 2017), and
are associated with an increase in the number of shellfish harvesting closures (Trainer
et al., 2003; Moore et al., 2009).

CONCLUSIONS
In order to understand the relationship of Z. marina to ecosystem and human health, as
well as to shellfish farming and harvest, it is critical to consider our addition of a possible
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“action-at-a-distance” element to the existing eelgrass-dinoflagellate interaction model.
Given the protected status of Z. marina habitat on the Pacific Coast of the United States,
the goals of the shellfish industry and eelgrass conservation are often perceived as being in
conflict (Forrest et al., 2009) and policies prohibit shellfish farming and harvesting
within or near beds. For example, in Washington State, required buffer zones between
shellfish aquaculture and eelgrass range from 3 to 8 m, depending on the agency
involved (National Marine Fisheries Service West Coast Region, 2017). However, our
work demonstrates that Z. marina habitat may have a protective effect against harmful
dinoflagellates within these buffer zones, reducing the potential for shellfish to accumulate
HAB toxins from the surrounding waters. Likewise, filter feeders can mitigate microbial
disease in adjacent environments, and Magallana (Crassostrea) gigas, in particular, has
recently been shown to lessen the effects of eelgrass wasting disease on Z. marina
(Groner et al., 2018). Eelgrass and oysters may thus provide critical support to one another
in changing marine ecosystems worldwide. Future work will examine their multi-faceted
mutualism, characterizing the taxonomic breadth of potential seagrass and shellfish
partnerships, as well as defining the molecular mechanisms underlying the roles of both
beneficial and detrimental microbial intermediates.
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