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ABSTRACT
Allium tenuissimum L. is a widely distributed perennial herbaceous species in temperate
and desert steppes. Relative to other wild Allium species, it produces unique sweet
flavors, more biomass in arid and cold environments, and has generated greater interest
for crop production. Successful crop establishment, however, will depend on rapid and
uniform seed germination. Our study aimed to characterize seed germination of A.
tenuissimum under various temperature regimes (11, 15, 20, 24 and 28 ◦C) and water
potential levels (0, −0.2, −0.4 and −0.6 MPa), and model germination by hydrotime
(HT) and hydrothermal time (HTT) analysis. Final germination percentage (FGP)
increased within the range of 11 to 20 ◦C, yet it declined within the range of 24 to
28 ◦C and generally decreased as water potential became more negative within each
temperature setting.MaximumFGPwas observed at 20 ◦C at all water potential settings
and ranged from 55.0 ± 5.3 to 94.8 ± 1.4%. According to HT and HTT models, the
base (T b) and optimum temperatures (T o) for seed germination were 7.0 and 20.5 ◦C,
respectively. In addition, base water potential for the fraction of germination within
the seed lot (9b(g)) shifted to 0 MPa as temperature increased from T b to ceiling
temperature (T c). For obtaining 50 % seed germination, 9b(50) and T c(50) were
estimated to be −0.67 MPa and 27.2 ◦C, respectively. These values for T b and 9b(50)
suggest seed germination of A. tenuissimum is both cold and drought tolerant and
suitable for production in semi-arid regions. Our characterization of the ideal sowing
conditions for A. tenuissimum, i.e., 20.5 ◦C and soil water potential less negative than
−0.67MPa offers information to forecast suitable settings to enhance crop production.

Subjects Agricultural Science, Plant Science
Keywords Seed germination, Allium tenuissimum, Drought tolerant, Crop production,
Hydrothermal time model

INTRODUCTION
Seed germination is an essential process in establishing stable plant populations and is
regulated by many environmental factors (Atashi et al., 2015; Juan-Vicedo et al., 2016).
Among these factors, temperature and moisture conditions strongly regulate germination
dynamics (Bakhshandeh & Gholamhossieni, 2019), and characterizing the base, optimum,
and ceiling temperatures is one way of describing how temperature influences seed
germination dynamics (Bakhshandeh et al., 2013; Bewley et al., 2013). Furthermore,
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thermal time (TT) models can be applied to predict seed germination dynamics across a
range of temperatures (Mccartan, Jinks & Barsoum, 2015; Bidgolya et al., 2018; Trudgill
et al., 2005) and have proven useful in estimating germination under the dynamic
temperatures of field seedbeds (Rawlins et al., 2012; Izquierdo et al., 2013). However,
TT models may inaccurately predict seed germination responses under supra-optimal
temperature ranges (Bakhshandeh et al., 2015; Bradford, 2002).

Germination is also very sensitive to moisture conditions and water deficiency-induced
osmotic stress is known to prevent seed germination or slow germination rates (Tobe et
al., 2001). Accordingly, water status is typically reported as osmotic water potential, and
hydrotime (HT)models are typically applied to simultaneously account for changes in both
final germination percentage and germination rate across variable water potential levels
(Soltani et al., 2017; Bakhshandeh & Gholamhossieni, 2018). Furthermore, the combination
of HT and TT models have produced hydrothermal time (HTT) models (Alvarado &
Bradford, 2002; Gummerson, 1986) capable of determining the hydrothermal accumulation
for seed germination at various temperature and water potential conditions and predict
the time course of seed germination even across sub-optimal (Gummerson, 1986) and
supra-optimal temperature ranges (Alvarado & Bradford, 2002). Consequently, parameters
of HTT models can be used to characterize the physiological status of seed populations
in response to variable temperature and water potential and have been widely applied to
predict germination dynamics in numerous crops such as safflower (Carthamus tinctorius)
(Bidgolya et al., 2018; Torabi et al., 2016), sesame (Sesamum indicum) (Bakhshandeh et al.,
2017), zucchini (Cucurbita pepo) (Atashi et al., 2015), and watermelon (Citrullus vulgaris
cv. ‘Crimson sweet’) (Bakhshandeh et al., 2015) and other wild species (Abdellaoui et al.,
2019; Fakhfakh, Anjum & Chaieb, 2018; Horn, Nettles & Clair, 2015).

Allium tenuissimum L. is a perennial herbaceous species distributed in temperate and
desert steppes of north-central Asia (He, 2008; Li & Zhang, 2011). Within these ecosystems,
it plays a critical role in sand fixation and conservation of water and soil due to having awell-
developed fibrous root system and high tolerance of environmental stresses (Zhao, 2010). It
is also recognized as a high-quality forage for herbivores (Song, Niu & Wan, 2016) and has
economic importance due to its distinctive and tasty flavor (Li & Zhang, 2011;Zhang & Liu,
2012). Consequently, it is highly valued as a vegetable or food seasoning (Li & Zhang, 2011;
Liu et al., 2016) and has generated interest in exploring new harvesting methods (Zhang,
Li & Zheng, 2014), potential ways to extract essential oil from its flowers (Zhang & Liu,
2012), and identifying the unique volatile flavor compounds in flowers of A. tenuissimum
(Xu et al., 2017). Despite these favorable qualities, establishing crops of A. tenuissimum on
large-scales is not feasible by propagation of bulb tillers, but may become economically
viable through propagation by seeds (Li et al., 2013; Zhao, Li & Badema, 2011). Therefore,
exploring seed germination dynamics under variable environmental conditions is an
important step toward industrialized production. In this study, we aimed to focus on the
response of seed germination to various temperatures and water potential conditions in
A. tenuissimum: (i) characterizing seed germination dynamics of A. tenuissimum using HT
and HTT models, and (ii) defining cardinal temperatures and base water potentials for
A. tenuissimum seeds based on model parameters.
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MATERIALS & METHODS
Seed germination
Seeds of A. teniussimum were collected from a temperate desert steppe area in Dongsu
County (43◦51′36′′N, 113◦40′02′′E, 1,060 m a.s.l. (meters above sea level)), Inner Mongolia
during October 2015 (approved by Yuping Rong, China Agricultural University). After
that, the seeds were naturally dried, surface cleaned and put into a sealed glass container,
and then stored at 4 ◦C in a refrigerator until needed for experimentation (April 2016).

Germination assays were conducted in a growth chamber (SPX-250-GB, Hengyu,
China) located at the Grassland Science Department, China Agricultural University,
Beijing, China with an 8 h light/16 h dark day/night lighting pattern. The light intensity
and relative humidity were set as 6000 lx and 50%. Mature Seeds were sterilized for 5 min
with 10% NaClO and then washed with distilled water (Rong, Li & Johnson, 2015). For
the germination tests, 100 seeds were placed in glass Petri dishes (90 mm inner diameter)
containing two layers of filter paper (1001-090, Whatman, UK) saturated with distilled
water (9 = 0MPa) or solutions of different water potential levels (9 =−0.2,−0.4 and−0.6
MPa). Petri dishes were then transferred to the chamber and germination was characterized
at four constant temperature settings (11, 15, 20, 24 and 28 ◦C), each replicated four times
for each water potential level. Different water potential levels were produced by mixing
aqueous solutions of polyethylene glycol (PEG) 6000 with distilled water according to
Michel & Kaufmann (1973). A vapour pressure osmometer (Model 5100C, Wescor, Inc.,
Logan, UT, USA) was used to measure 9 of solutions and create desired levels for all
temperature settings. To maintain constant 9 and avoid fungal attack, seeds incubated on
PEG 6000 solutions were transferred to fresh solutions every 2 d. Germination was scored
daily by observing radicle protrusion. Seed germination was defined depend on the length
of radicle. Normally seeds were regarded as germinated when the length of radicle was more
than 2 mm (Saleem et al., 2019). To avoid errors in recording germination, germinated
seeds were removed after being counted. Furthermore, germination tests were terminated
when no new germinated seeds were counted for three consecutive days.

Germination analysis
Germination rates (GRg) were calculated using the equation: GRg = 1/tg, where tg is the
duration to radicle emergence. Estimations of germination rate for the 50th percentile
(GR50) in each replicate were calculated by interpolation using curves fit to the time course
data. To determine the optimal germination temperature, germination rates at 20 and
24 ◦C were compared. If final germination percentage at 20 ◦C was significantly greater
than germination at 24 ◦C, the optimal temperature was assumed to be 20 ◦C.

HT model
The relationship between GRg and 9 was described by using the following equation:

θH=
[
9−9b(g)

]
tg (1)

where θH is the hydrotime (MPa d) constant of the seeds required for germination, 9b(g)
is the theoretical threshold or base 9 that will prevent the germination of fraction g. The
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parameters in the HT model were estimated according to the equation:

Probit(g)=
[(
9−θH/tg

)
−9b(50)

]
/σ9b (2)

where 9b(50) is the base water potential for attain the 50th percentile of germination, and
σ9b is the standard deviation of9b(g) in seed lots. To examine whether parameters of this
model can be accurately used to quantify the sensitivity of seed populations to the variation
of 9, the [1-(9/9(g))] tg factor derived from Bradford (1990) was applied to normalize
germination time courses at reduced 9 in this study. Germination time course can be
normalized by this factor at any 9 to the corresponding time course that would occur in
water for the seed population using the parameters from the HT model. All normalized
data from different temperature conditions were plotted on a common thermal time scale,
using the estimated Tb at 0 MPa.

HTT model
The HTT model describes seed germination patterns when T and 9 both vary; Alvarado
& Bradford, 2002. The relationship between GRg and variable conditions of T and 9 are
described by Eq. (3) for sub-optimal T, and modified Eq. (4) for supra-optimal T :

θHT= (T−Tb)
[
9−9b(g)

]
tg (3)

θHT=
{
9−9b(g)− [KT(T−To)]

}
(T−Tb)tg (4)

where θHT is the hydrothermal constant and Tb is the base temperature. In Eq. (4), [KT(T
− To)] applies only in the supra-optimal range of T and KT is the slope of the relationship
between 9b(50) and temperatures when T > To; To is the optimum temperature. The
value of 9b(g) is set equal to the distribution of 9b(g) at To, and (T − Tb) is equal to (To

− Tb). Parameter values in above models can be obtained by probit analysis according to
Eqs. (5) and (6) for sub- and supra-optimal T, respectively.

Probit(g)=
[(
9−θHT/(T−Tb)tg

)
−9b(50)

]
/σ9b (5)

Probit(g)=
[(
9−θHT/(T−Tb)tg

)
−KT(T−To)−9b(50)

]
/σ9b (6)

As described in Alvarado & Bradford (2002), the values of KT and To were varied for
germination time courses at T >To until a fit was obtained that resulted in values of θHT,
9b(50) and σ9b matching those obtained at or below To.

Statistical analyses
A two-way analysis of variance (ANOVA) was carried out using SPSS 19.0 for Windows
(SPSS Inc., Chicago, IL, USA) to evaluate the influence of T, 9, and their interactions
on seed germination variables of A. teniussimum. The results showed with mean and SE
value of four replicates. All probit analyses of HT and HTT models were fitted in SAS 8.2
statistical package (SAS Institute, Cary, NC, USA) using the PROC PROBIT routine, which
employs a maximum-likelihood weighted regression method (Bradford, 1990; Dahal &
Bradford, 1994).
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Figure 1 Mean (± standard error) final germination percentage of A. tenuissimum seeds under vari-
able temperature (T = 11, 15, 20, 24, and 28 ◦C) and water potential (9= 0,−0.2,−0.4, and−0.6 MPa)
levels.

Full-size DOI: 10.7717/peerj.8866/fig-1

RESULTS
Seed germination in response to temperature and water potential
Results of analysis of variance indicated that the final germination percentage (FGP) of A.
tenuissimum seeds was significantly influenced by T (F = 587.9, P <0.0001),9 (F = 643.0,
P < 0.0001), and their interactions (F = 24.2, P < 0.0001) (Fig. 1, Table S1). When values
of 9 remained constant, FGP increased as T increased within sub-optimal ranges (11 to
20 ◦C), while it declined within supra-optimal ranges (24 to 28 ◦C). In distilled water (i.e.,
9 = 0 MPa), FGP changed from 72.0 ± 1.4 to 94.8 ± 1.4% over various T conditions.
Maximum FGP was observed at 20 ◦C under all levels of 9 and ranged from 55.0 ± 5.3
to 94.8 ± 1.4%. For all T settings, FGP decreased with decreasing 9 levels. Few seeds
germinated under the combination of −0.6 MPa and 11 ◦C. In contrast, FGP reached
94.8 ± 1.4% when seeds were incubated in water at 20 ◦C, indicating that the seeds in this
analysis were non-dormant.

Hydrotime analysis
Parameters generated by the HT model are presented in Table 1. Values of θH decreased
from 6.4 MPa d at 11 ◦C to 4.4, 4.2, 3.0 and 3.0 MPa d at 15, 20, 24 and 28 ◦C, respectively.
This suggests that the time required for germination declined as T increased within
sub-optimal ranges, while it remained constant at supra-optimal ranges. Values of 9b(50)
increased as T increased from 11 to 28 ◦C. Notably, estimated values of 9b(50) increased
more positively at supra-optimal temperatures, rising from −0.40 MPa at 24 ◦C to −0.16
MPa at 28 ◦C. Values of σ9b varied from 0.20 to 0.37 MPa across all regimes of T.
Specifically, values of σ9b were nearly constant within the range of 15 to 24 ◦C, indicating
that the variation in 9b among all seeds in this A. tenuissimum population was small.
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Table 1 Parameters of the hydrotimemodel characterizing germination of A. tenuissimum seeds
across a range of temperatures. The hydrotime time model (Eq. (2)) was fitted to data from four water
potential levels (0,−0.2,−0.4 and−0.6 MPa) at five temperature regimes (11, 15, 20, 24 and 28 ◦C).

Temperature (◦C) θH (MPa d) 9b(50) (MPa) σ9b (MPa) R2

11 6.4 −0.74 0.20 0.95
15 4.4 −0.60 0.29 0.97
20 4.2 −0.49 0.27 0.92
24 3.0 −0.40 0.28 0.90
28 3.0 −0.16 0.37 0.94

Notes.
θH, hydrotime constant;9b(50), base water potential for 50% seed germination; σ9 b, standard deviation for9b(g); R2, coef-
ficient of determination.

The curves in Figs. 2A–2E are germination time courses predicted by HTmodel based on
the9b(g) threshold distributions (Figs. 2F–2G) and the estimated parameters (Table 1). At
each T setting, the predicted curves closely matched actual seed germination data under the
various 9 levels (Figs. 2A–2E). Normalization of germination time courses across various
9 levels at sub- and supra-optimalT levels incorporated into a common curve are shown in
Fig. 3. At sub-optimal T, the difference between groupings of normalized observations and
common curve is indistinct (Fig. 3A). However, the grouping of normalized observations
at 28 ◦C did not resemble the profile from the common curve and fell into a distinct group
(Fig. 3B). This indicates that the estimates of HT model interacted with T. Furthermore,
these HT estimates consistently showed the largest shift in 9b with increasing T (Figs.
2F–2G) and the grouping of normalized observations accurately predicted seed germination
in this population.

Hydrothermal time analysis
Parameters for the HTT model, estimated in the sub- and supra-optimal T ranges, are
shown in Table 2. The hydrothermal time requirement (θHT) for seed germination was 43.9
MPa ◦C d. Values Tb and9b(50) were estimated to be 7.0 ◦C and−0.67 MPa, respectively.
FGP increased until 20.5 ◦C (To), then it declined towards ceiling temperatures (Tc(g)),
at which germination theoretically ceased when T exceeded To. In addition, Tc(50), the
ceiling temperature for germination of 50%, was 27.2 ◦C. The estimates for KT was 0.1 MPa
◦C−1, indicating that 9 declined by 0.1 MPa for every degree that T exceeds To. Applying
the HTT models using the A. tenuissimum germination data resulted in high R2 values at
both sub-optimal (R2

= 0.89) and supra-optimal (R2
= 0.81) T ranges, indicating a high

degree of congruency between predicted and observed germination responses.

DISCUSSION
Seed germination of A. tenuissimum in response to various
temperature and water availability conditions
Successful establishment of cultivated plants depends on rapid and uniform seed
germination (Fakhfakh, Anjum & Chaieb, 2018; Bidgolya et al., 2018); however, suitable
water availability and temperature conditions for seed germination are only available
during a short period in most arid and semi-arid regions (Fakhfakh, Anjum & Chaieb,
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Figure 2 Germination time courses of A. tenuissimum seeds across a range of water potential and tem-
perature (A–E) and normal distributions of the relative frequencies of base water potential at each tem-
perature (11, 15, 20, 24 and 28 ◦C) (F–G). Symbols represent actual data and lines indicate values pre-
dicted by probit analysis using the parameters presented in Table 1.

Full-size DOI: 10.7717/peerj.8866/fig-2

2018; Belo et al., 2014; Watt & Bloomberg, 2012). Here, we presented a comprehensive
study of seed germination responses to different temperatures and water potential levels
in A. tenuissimum, an important wild onion species from temperate-desert steppes of
north central Asia (He, 2008; Li & Zhang, 2011). Our results showed that final germination

Xiao et al. (2020), PeerJ, DOI 10.7717/peerj.8866 7/17

https://peerj.com
https://doi.org/10.7717/peerj.8866/fig-2
http://dx.doi.org/10.7717/peerj.8866


Figure 3 Normalized time courses of the sub- and supra-optimal hydrotimemodels. (A) Germination
data from Figs. 2A–2C is plotted on a normalized thermal time scale showing the predicted time courses
in water according to the parameters of sub-optimal T shown in Table 2. (B) Germination data from Figs.
2D–2E are plotted on a normalized time scale showing the predicted time courses in water according to
the parameters of supra-optimal T shown in Table 2. (C) Germination time courses across all T and9
shown in Figs. 2A–2E merged into a single normalized thermal time scale.

Full-size DOI: 10.7717/peerj.8866/fig-3

Table 2 Parameters of the hydrothermal timemodel characterizing germination of A. tenuissimum
seeds at sub-optimal and supra-optimal T.

Hydrothermal timemodel parameters Sub-optimal T Supra-optimal T

Tb (◦C) 7.0 7.0
θHT (MPa ◦C d) 43.9 43.9
9b(50) (MPa) −0.67 −0.67
σ9b (MPa) 0.28 0.32
R2 0.89 0.81
To(◦C) – 20.5
Tc(50) (◦C) – 27.2
KT(MPa ◦C−1) – 0.1

Notes.
Tb, base temperature; To, optimal temperature; θHT, hydrothermal time constant;9b(50), base water potential for 50% seed
germination; σ9 b, standard deviation for9b(g); R2, coefficient of determination; KT, the slope of the relationship between
9b(50) and temperatures when T exceeds To; Tc(50), ceiling temperature to germination of 50%. The value of Tc(50) was cal-
culated by parameters found after fitting the HTT model at supra-optimal T (Eq. (6)).

percentage of A. tenuissimum strongly depended on the interaction of these two factors.
Furthermore, applying HTT models to our dataset provided insights into suitable
conditions to enhance consistent germination responses of this valuable native species.
Later, we discuss in detail the nuances of our results that underpin this methodological
approach and expedite industrialization of wild species under stressful environmental
conditions.
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Numerous studies have illustrated how temperature-dependent seed germination is
related to the geographical and ecological distribution of a particular species such as
common vetch (Vicia sativa) (Liu, 2010), Stipa species (Ronnenberg, Wesche & Hensen,
2008) and temperate sedges (Carex) (Schütz & Rave, 1999). For A. tenuissimum, the final
germination percentage was quite high (i.e., 92.5 to 94.8%) in the temperature range
of 15 to 20 ◦C (Fig. 1). In some mediterranean grassland species, 15 ◦C and 20 ◦C
also were found to be the best temperature for seed germination (Herranz, Ferrandis &
Martínez-Sánchez, 1998; Marques & Draper, 2012). In contrast, the lower temperatures for
preferable germination of A. tenuissimum seeds was consistent with a prior study of wild
species of Allium distributed in temperate desert steppe (Zhao, Li & Badema, 2011). In any
constant temperatures, final germination percentage declined when seeds were incubated
at reduced water potential levels (Fig. 1). This response is likely associated with enzyme
activity and oxygen availability of seeds, which are known to decrease when germinated
at unfavorable temperatures and limiting moisture conditions (Bewley & Black, 1994).
Furthermore, higher incubation temperatures and more negative values of water potential
during germination likely induced secondary dormancy of seeds, leading to prolonged
seed germination over non-optimal temperatures and more negative water potential levels
(Fig. 2).

Predicting seed germination with mathematical models
Mathematical models to predict and quantify the influence of environmental factors on
seed germination are essential when little information is known about the ideal conditions
for potential agronomic species such as zucchini (Cucurbita pepo) (Atashi et al., 2015),
red brome (Bromus rubens) and cheatgrass (Bromus tectorum) (Horn, Nettles & Clair,
2015), and safflowers (Carthamus tinctorius) (Bidgolya et al., 2018). While accounting for
the influence of only temperature, TT models can successfully predict germination time
courses in sub-optimal temperature ranges, but they become less effective at predicting
germination in supra-optimal temperature ranges (Bradford, 2002; Bewley et al., 2013),
which spurred the development of hydrothermal models combine the influences of
temperature and water availability on seed germination (Windauer et al., 2012). Such HT
and HTTmodels have been widely applied and accurately describe seed germination across
variable temperatures and water potential levels (Alvarado & Bradford, 2002; Bakhshandeh
et al., 2015; Bakhshandeh et al., 2017). In addition, normalizing thermal time scales, as
we did for the germination time courses of A. tenuissimum (Bradford, 1990; Bradford,
2002), accurately described the influences of temperature and water availability (Fig. 3A).
However, the grouping of normalized observations at 28 ◦C fell into a distinct group
instead of resembling the profile from the common curve (Fig. 3B). Similarly, previous
studies documented that HT analysis was unable to predict the germination time courses
at supra-optimal temperatures (Bakhshandeh et al., 2017; Rowse & Finch-Savage, 2010),
suggesting that HT estimates were not consistent across variable temperatures. In other
words, grouping of normalized observations resulted in large shifts in the theoretical
threshold or base water potential (9b(g)) that can prevent the fraction of germination as
temperature increases (Rong, Li & Johnson, 2015). Furthermore, when the distribution of
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9b(g) overlaps with 0 MPa at a given temperature, germination of some seeds may be
inhibited (Alvarado & Bradford, 2002; Larsen et al., 2004;Watt, Bloomberg & Finch-Savage,
2011). For this reason, Alvarado & Bradford (2002) developed the HTT model to account
for the linear increase of 9b(g) value as temperature increased above To in order to
eliminate the positive shift in 9b(g) values at supra-optimal temperatures. This modified
model can quantify and predict both final germination percentage and germination rate
across different temperatures and water potential levels at which seed germination occurs
(Bakhshandeh et al., 2015; Rowse & Finch-Savage, 2010) as we observed for germination
time course of A. tenuissimum seeds at supra-optimal temperatures, which were well
described by HTT model (i.e., R2

= 0.81).

Model parameters and their biological roles
Because changes in dormancy state are related to9b (Meyer, Debaenegill & Allen, 2000) and
high temperatures often induce secondary dormancy, soil water availability is critical for
seed germination at supra-optimal temperatures (Hills, Staden & Thomas, 2003). Likewise,
values of 9b(50) (−0.74 to −0.16 MPa) determined in our analysis revealed that seeds
of A. tenuissimum are relatively sensitive to water restrictions at temperatures above To.
Thus, seeds of A. tenuissimum should be germinated at sub-optimal temperatures to
enhance crop establishment in arid and semi-arid regions. Results from HT analysis also
indicated that the minimum value of 9b(50) was observed at 11 ◦C and then increased,
particularly in supra-optimal temperature ranges. Similar to our results, the linear increase
of 9b(50) has been observed in zucchini (Atashi et al., 2015), watermelon (Bakhshandeh
et al., 2015), and sesame (Bakhshandeh et al., 2017). In general, the 9b(50) value of a seed
lot gives an indication of its tolerance to water stress. If water potential levels are more
negative than 9b(50), germination times will be extended and germination rates will be
reduced (Bradford, 2002). This could be caused by a decrease in both enzyme activity and
oxygen availability during the seed germination period, particularly when germinated at
supra-optimal temperatures (Bewley et al., 2013). When soil temperature approaches To,
less negative water potential levels will cause an increase in the activity of enzymes and
water uptake rate (Kebreab & Murdoch, 1999).

Base water potential coefficient (σ9b) is related to life history strategy of various species
(Bradford, 1990) and indicates the uniformity of seed germination among individual seeds
within a seed lot. A smaller value of σ9b represents an increasingly uniform germination
among seed population (Bradford & Still, 2004; Bidgolya et al., 2018). The values of σ9b we
estimated for A. tenuissimum seeds varied from 0.20 to 0.37 MPa, indicating that there was
less variation in 9b among individual seeds and that uniform germination was observed.
This pattern is likely a reflection of survival adaptations to harsh environments. Under
initial favorable soil temperature and water availability, faster and uniform germination
will allow plants to possibly dominate a plant community in space and time (Wang et al.,
2009). In contrast, most plant populations must adopt a different germination strategy to
mitigate the harsh environment-induced damage on germination by allowing a few seeds
to rapidly germinate, and then delaying germination until consistent suitable environment
conditions are reached before the remaining seeds germinate (Bradford, 1990; Batlla et al.,
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2009; Watt, Bloomberg & Finch-Savage, 2011; Rong, Li & Johnson, 2015). Consistent with
our results, the variation of 9b was small and σ9b varied from 0.16 to 0.31 MPa among
Vicia sativa seeds (Liu, 2010), indicating that the long-term cultivation and domestication
can result in uniform germination.

The hydrotime (MPa d) constant of the seeds required for germination (θH) represents
the inherent speed of seed germination in a seed lot (Bradford & Still, 2004). Our results
showed that θH declined from 6.4 to 3.0 MPa d as temperature increased from 11 ◦C to
24 ◦C, indicating that germination rate was faster at higher temperatures (Fig. 2, Table 1).
Similarly, other studies reported that θH was constant in supra-optimal temperature
ranges, but it increased as temperature declined in the range of sub-optimal temperatures
(Bakhshandeh et al., 2015; Dahal & Bradford, 1994). Thus, seed germination was greatly
altered with decreasing temperature.

Seed germination responses to temperature are commonly characterized with three
cardinal temperatures ( Tb, To and Tc) estimated according to the HTT model (Bewley
et al., 2013). These cardinal temperatures of A. tenuissimum seeds were Tb = 7.0 ◦C, To

= 20.5 ◦C, and Tc(50) = 27.2 ◦C, respectively. In practical terms, these values suggest A.
tenuissimum seeds should not be sown in soils where temperature do not exceed 7.0 ◦C.
Maximum final germination percentage would be observed as soil temperature approaches
20.5 ◦C, a value when some seeds within the population will probably germinate quickly if
they are not exposed to water stress or dormancy induction within optimal ranges (Rong,
Li & Johnson, 2015; Windauer et al., 2012). In addition, because seeds of A. tenuissimum
germinated in a relatively narrow range of temperature according to estimations of Tc(50),
seeds of A. tenuissimum are likely unable to tolerate high soil temperature. From a crop
production standpoint, our results document that seed germination of A. tenuissimum
occurs over a soil temperature range of 7.0 to 27.2 ◦C, but 20.5 ◦C is the optimal temperature.
These estimated cardinal temperatures are consistent with wild Allium species (Zhao, Li &
Badema, 2011).

CONCLUSIONS
Themathematical models or the estimated value of parameters can be used to quantitatively
predict the seed germination of A. tenuissimum under various T and 9 conditions. Soil
temperature for seed germination of A. tenuissimum should be at the range of 7.0 ◦C to 27.2
◦C, and the optimum temperature is 20.5 ◦C. The water potential should be less negative
than −0.67 MPa. The relatively lower Tb and more negative 9b(50) indicate that this wild
Allium species might be established in arid and semi-arid regions, while relatively narrow
threshold in response to T and 9 variations might sufficiently delay or even prevent seed
germination in extreme arid or harsh desert regions.
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