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ABSTRACT
Background. Luteolin (LUT) is a flavonoid found in vegetables and fruits that has
diverse functions. Doxorubicin (DOX) is an anthracycline antibiotic that is frequently
used for the treatment of various cancers. Unfortunately, the clinical efficacy of DOX
is limited by its dose-related cardiotoxicity. In this study, we aimed to investigate the
potential mechanism through which LUT attenuates cardiotoxicity in vivo.
Methods. We evaluated the body weight, heart weight, electrocardiogram, and
pathological changes before and after administration of LUT. Moreover, the effects
of LUT (50 mg/kg in the low dose group, 100 mg/kg in the high dose group)
on biochemical parameters (brain natriuretic peptide, creatine kinase MB, cardiac
troponin T, and dehydrogenation of lactate enzyme) and oxidative stress parameters
(malondialdehyde and superoxide dismutase) were studied in the sera of cardiotoxicity
model rats. We also identified the apoptotic mediators whose expression was induced
by LUT by quantitative real-time reverse transcription-polymerase chain reaction (RT-
qPCR) evaluation. In addition, we used network analysis to predict DOX-induced
cardiotoxicity and protection afforded by LUT. Western blotting was used to detect
the expression of associated proteins.
Results. LUT significantly improved DOX-induced cardiotoxicity in a dose-dependent
fashion. LUT ameliorated DOX-induced weight loss and heart weight changes, as
well as changes in biochemical parameters and oxidative stress parameters in heart
injury model rats. LUT’s protective effect was observed via regulation of the apoptotic
markers Bcl-2, Bax, and caspase-3 mRNA and protein expression levels. Network
analysis showed that the AKT/Bcl-2 signalling pathway was activated; specifically,
the PH domain leucine-rich repeats protein phosphatase 1 (phlpp1) was involved
in the AKT/Bcl-2 signal pathway. LUT inhibited the activity of phlpp1 leading to
positive regulation of the AKT/Bcl-2 pathway, which attenuated doxorubicin-induced
cardiotoxicity.
Conclusions. These results demonstrate that LUT exerted protective effects against
DOX-induced cardiotoxicity in vivo by alleviating oxidative stress, suppressing phlpp1
activity, and activating the AKT/Bcl-2 signalling pathway.
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INTRODUCTION
Doxorubicin (DOX, Fig. 1A) is widely used in the treatment of a variety of malignancies,
in particular, solid tumours (Hu et al., 2018). However, it has also been reported to
induce toxicity, including myelosuppression (Chen et al., 2017), gastrointestinal reaction
(Tomiyasu et al., 2010), and cardiotoxicity (McGowan et al., 2017), thereby, limiting its
clinical use (Chung & Youn, 2016; McGowan et al., 2017). The mechanisms underlying
anthracycline-induced cardiotoxicity are not fully understood. Studies in recent years
have demonstrated that anthracyclines trigger excessive mitochondrial reactive oxygen
species (ROS) production in cardiomyocytes, subsequently inducing calcium overload,
mitochondrial dysfunction, autophagy dysregulation, and eventually apoptotic and
autophagic cell death (Bartlett, Trivedi & Pulinilkunnil, 2017; Cappetta et al., 2016; Ghigo,
Li & Hirsch, 2016; Hu et al., 2019; Wang et al., 2019). Dexrazoxane (DZR) is the only drug
in clinical use that can protect against DOX-induced cardiotoxicity (Cvetković & Scott,
2005; Zhang et al., 2019). Although DZR effectively reduces the incidence of DOX-induced
chronic heart failure (Jones, 2008), it reduces the anti-tumuor effect of anthracyclines
(Silber, 2004) and increases the incidence of secondary malignancies (Shaikh et al., 2015).
Thus, there is growing interest in the use of new treatments that can delay or treat
anthracycline-induced cardiotoxicity. In particular, many studies have indicated that
natural products can be potentially used for this purpose (Psotová, 2004; Zhang et al.,
2019). Themechanism of cardiotoxicity is multifactorial, and the disease progression is very
complicated. A large number of studies have found that doxorubicin causes myocardial
damage by blocking the mechanism of antioxidant cells, causing the accumulation of
reactive oxygen species and increasing the apoptosis of myocardial cells (Wallace, 2003).
Therefore, flavonoids and polyphenols, which are strong antioxidants, have great potential
as therapies to alleviate DOX-induced cardiotoxicity.

Luteolin (LUT, Fig. 1B) is an abundant flavonoid found in vegetables and fruits such
as celery, broccoli, carrots, and peppers (Pandurangan & Esa, 2014). Luteolin has various
biological functions such as anti-inflammatory (Nabavi et al., 2015), antiatherogenic (Kim
et al., 2012), and antitumour (Huang, Jin & Lan, 2019) effects. Domitrović et al. (2013)
also suggested LUT as an effective nephroprotective agent; specifically, they reported
its potential to reduce Pt accumulation in the kidneys and ameliorate cisplatin-induced
nephrotoxicity. It has been suggested that cardiotoxicity caused by DOXmay be due to the
occurrence of oxidative stress. Because LUT is a flavonoid, it has a strong antioxidant effect.
Additionally, a large number of studies have found that LUT exerts a protective effect in
other heart injury models. Li et al. (2019) suggest that LUT protects heart tissues in STZ-
induced diabetic mice by modulating Nrf2-mediated oxidative stress and NF-κB-mediated
inflammatory responses. In another study, Yan et al. (2019) demonstrated LUT’s protective
effects during long-term heart preservation in a dose-dependent manner, which may be
accomplished by inhibiting hypoxia-dependent L-type calcium channels. Yao et al. (2016)
also showed Luteolin-7-O-Glucoside cardioprotective effects by inhibiting the DOX-
induced intracellular level of ROS and apoptosis, potentially acting as a therapeutic agent
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Figure 1 The experimental scheme and the effects of LUT on body weight and heart weight in DOX
induced-cardiotoxicity model rats. (A) chemical structure of Luteolin; (B) chemical structure of Doxoru-
bicin; (C) the experimental protocol used to induce cardiotoxicity, followed by the administration of LUT.
DOX tail vein injection; (D) body weights; and (E) heart weight. ∗ p< 0.05 vs. control group; # p< 0.05
vs. the DOX group. LUT, Luteolin; DOX, Doxorubicin.

Full-size DOI: 10.7717/peerj.8845/fig-1

for preventing DOX-induced cardiotoxicity. However, because LUT and Luteolin-7-O-
Glucoside are two different compounds, it is still unclear whether LUT has pharmacological
activity against DOX-induced cardiotoxicity.

Although various biological functions of LUT have been studied, pharmacological
analysis of DOX-induced cardiotoxicity with LUT has not been performed. Therefore,
we investigated the cardiotoxicity inhibitory effects of LUT in a rat model of DOX-
induced cardiotoxicityWe then used pharmacological network analysis to assess the overall
regulatory mechanism of LUT. Moreover, we identified potential target genes associated
with cardiotoxicity to determine the mechanism by which LUT exerted cardioprotective
effects.

MATERIALS & METHODS
Animals
Male Wistar (seven-weeks-old) rats were purchased from the Animal Experimental Center
of Jilin University (Changchun, China) and maintained under controlled conditions on
12 h light/dark cycle, 22 ◦C ± 2 ◦C, and 55% ± 15% humidity. This study was performed
in the School of Pharmacy at Jilin University according to the Guide for the Care and Use
of Laboratory Animals. It was approved by the Animal Care and Use Committee of Jilin
University [20170503].

Induction of cardiotoxicity and drug treatment
Cardiotoxicity was induced using doxorubicin (DOX, Shenzhen Main Luck Pharmaceu-
ticals Inc., Shenzhen, China) as previously described (Argun et al., 2016; Mohan et al.,
2006). We used sterile water for injection to dissolve DOX and CMC-Na to dissolve LUT
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for subsequent experiments. Briefly, all groups of rats except the saline (control) group
were injected directly into the tail vein with DOX (4 mg/kg, weekly, cumulative dose:
16 mg/kg (Mohan et al., 2006)). This dose was based on the large number of studies that
have found that the cumulative dose of 16–20 mg/kg DOX in rats can induce cardiac
toxicity. In the previous preliminary experiments, we found that when the cumulative
dose reached 20 mg/kg, the mortality rate was increased. Therefore, 16 mg/kg was selected
for this experiment. It was also observed that DOX injections twice a week also increased
mortality. Based on the above preliminary experiments, we chose the modelling method
for this experiment. In this experiment, the dosage of LUT was mainly selected based on
previous experiments. Li et al. (2015) demonstrated that luteolin (50mg/kg and 100mg/kg)
is capable of improving diabetes-induced deficits in motor and sensory functions, which
could be attributed in part to its Nrf2-dependent antioxidant capacity. Zhen et al. (2016)
found pre-treatment with LUT (50 mg/kg and 100 mg/kg) suppressed seizure induction,
duration, and severity following PTZ injection. After one week of adaptive rearing, rats
were randomised into four groups (n= 8 per group): (1) control group; (2) DOX group;
(3) low-dose LUT group (DOX + LUT) with LUT (50 mg/kg) plus DOX injection; and
(4) high-dose LUT group (DOX + LUT) with LUT (100 mg/kg) plus DOX injection. The
experimental scheme is shown in Fig. 1C. The LUT groups were given the corresponding
dose of LUT one week in advance, and the gastric administration lasted for five weeks.
The remaining groups were intragastrically administered with a corresponding volume of
CMC-Na daily. The injection time of DOX started from 1 w to 4 w, and lasted for four
weeks, once a week. The control group was injected with the same volume of saline once a
week.

Measurement of body weight and heart weight
The body weight of the rats was measured at 0, 1, 3, and 5 weeks after DOX induction.
In this experiment, DOX injection was performed every Monday, and the body weight of
each group of rats was measured every Friday. After five weeks of treatment, the rats were
euthanised and blood samples were collected. The heart tissue was immediately removed
and weighed to calculate the heart. Half of the heart was used for histological analysis
after fixing in 10% buffered formalin, whereas the remaining tissues were frozen in liquid
nitrogen and stored at −80 ◦C until further use.

Histopathological analysis
The heart tissue was embedded in paraffin and serially sliced. Haematoxylin and eosin
(H&E) staining was performed to observe the cells and stroma. Histological changes
were examined by light microscopy (Olympus, Olympus Optical Co., Tokyo, Japan) and
photographed.

Electrocardiography
The IV lead electrocardiogram (ECG) was recorded in rats anesthetised by 7% chloral
hydrate using the BL-420E Biological Function Measurement System (Chengdu Taimeng
Science and Technology Co. Ltd.). Electrodes were inserted into the right upper limb, the
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lower right limb, and the lower left limb under the skin. Visual analysis of the recorded
ECG was performed by two experts to assess the heart rate and ECG abnormalities.

Measurement of biochemical indices
Determination of brain natriuretic peptide (BNP), creatine kinase MB (CK-MB), cardiac
troponin T (CTnT), malondialdehyde (MDA), dehydrogenation of lactate enzyme (LDH),
and superoxide dismutase (SOD) were evaluated using ELISA kits (Nanjing JianCheng
Biological Engineering Research Institute, Nanjing China) according to the manufacturer’s
instructions.

Identification of DOX-induced cardiotoxicity associated proteins and
LUT-associated target genes
Information on DOX-induced cardiotoxicity-associated gene targets and LUT related
genes were identified from the Comparative Toxicogenomics Database (CTD, http:
//ctdbase.org/), which is a robust, publicly available database that provides comprehensive,
user-friendly information on chemical-gene/protein interactions, and chemical-disease
and gene-disease relationships.

Network construction and analysis
To investigate the interaction between LUT and DOX-induced cardiotoxicity target genes,
a network was constructed using the network visualization software Cytoscape ver. 3.5.1
(Smoot et al., 2011). The software is used to visualize biological pathways and molecular
interaction networks as well as for data integration, analysis, and visualization/analysis of
complex networks. In the network, nodes represent compounds or target genes, and edges
represent compound-target gene interactions. After the network analysis, the database
(DAVID), ver 6.8 was used for annotation, visualization, and integration discovery.
Functional annotation of the gene was performed using DAVID 6.8 and the Kyoto
Encyclopedia of Genes and Genomes (KEGG).

Real-time quantitative RT-PCR analysis
Total RNA was extracted from the cardiac tissue using TRIzol reagent (Takara, Dalian,
China), reverse transcribed into cDNA, and amplified by PCR using TransScript Green
two-step qRT-PCR Supermix (TransGen Biotech, Beijing, China). Real-time quantitative
PCR was performed using a real-time PCR system. Aliquots of sample cDNA and equal
amounts of β-actin cDNA were amplified using a master mix containing DNA polymerase,
according to the manufacturer’s instructions. The PCR amplification cycle conditions were
50 ◦C for 2 min, 94 ◦C for 10 min, 95 ◦C for 15 s, and 60 ◦C for 1 min for 40 cycles. The
relative expression of the target gene was determined using the method of comparing Ct
(the number of threshold cycles at the intersection between the amplification curve and
the threshold), according to the manufacturer’s instructions. The sequences of the primers
and probes used are listed in Table 1.

Western blot analysis
Heart tissue protein levels were analysed by western blotting. Anti-phlpp1, anti-AKT, anti-
p-AKT, anti-cleaved-caspase-3, anti-Bcl-2, anti-Caspase-3, anti-GAPDH, anti-Bax and
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Table 1 Sequences of real-time PCR primers.

Gene Primer Sequence (5′–3′) Product
size (bp)

Accession Number

Bcl-2 F: GGGATGCCTTTGTGGAACTA
R: CTCACTTGTGGCCCAGGTAT

138 NM_016993.1

Bax F: TGTTTGCTGATGGCAACTTC
R: GATCAGCTCGGGCACTTTAG

104 NM_017059.1

Caspase-3 F:GGTATTGAGACAGACAGTGG
R:CATGGGATCTGTTTCTTTGC

393 NM_012922.2

β-actin F: GCCATGTACGTAGCCATCCA
R: GAACCGCTCATTGCCGATAG

374 NM_031632

secondary antibodies were purchased from Abcam (MA, USA). Briefly, heart tissue was
disrupted and then rapidly homogenised in 200µLRIPA lysis buffer. Protein concentrations
were determined by the BCAmethod. An equal amount of protein sample was separated by
sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
to a nitrocellulose membrane. The membrane was blocked with 5% milk in Tris buffered
saline (TBS) and then incubated with anti-Bax (1:1,000 dilution), anti-Bcl-2 (1:500
dilution), anti-pro-caspase 3 (1:1,000 dilution), anti-cleaved-caspase-3 (1:1,000 dilution),
anti-AKT (1:1,000 dilution), anti-p-AKT (1:1,000 dilution), anti-phlpp1 (1:1,000 dilution),
and anti-GAPDH (1:1,000 dilution) antibody. The membrane was incubated overnight at
4 ◦C, washed three times, and then incubated with the respective second antibody (1:5,000)
for 60-90 min. Protein bands were visualised using enhanced chemiluminescent reagents.
Protein expression levels were analysed using a digital gel imaging system (Alpha Imager
2200, Alpha Innotech Corporation, San Leandro, CA, USA).

Statistical analysis
All results are expressed as the mean ± standard error of the mean (SEM). Statistical
analysis was performed using one-way analysis of variance, multiple comparisons were
performed using Tukey’s multiple comparison test, and p < 0.05 was considered statistically
significant. Statistical analysis was performed using GraphPad Prism software version 5.0
for Windows.

RESULTS
LUT administration restored the heart and body weight in rats with
DOX-induced cardiotoxicity
To evaluate the cardioprotective effects of LUT on cardiotoxicity, we assessed the body
weight of rats for five weeks and the heart weight at euthanasia after DOX induction. As
shown in Figs. 1D and 1E, with DOX alone, the body weights of rats were significantly
decreased (p < 0.05) and the heart weights were significantly increased (p < 0.05) as
compared with those of rats in the control group. This showed that DOX could significantly
change the weight of the heart and affect heart function in vivo. However, LUT significantly
attenuated these effects (p< 0.05). These results demonstrated that LUT alleviated changes
in heart weight induced by DOX.

Zhang et al. (2020), PeerJ, DOI 10.7717/peerj.8845 6/17

https://peerj.com
http://www.ncbi.nlm.nih.gov/nuccore/NM_016993.1
http://www.ncbi.nlm.nih.gov/nuccore/NM_017059.1
http://www.ncbi.nlm.nih.gov/nuccore/NM_012922.2
http://www.ncbi.nlm.nih.gov/nuccore/NM_031632
http://dx.doi.org/10.7717/peerj.8845


Figure 2 Effects of LUT on the histopathological features, electrocardiogram, serum levels of cardiac
injury, and oxidative stress mediators in the heart tissue of DOX-induced cardiotoxicity model rats.
(A–D) Haematoxylin and Eosin staining (×200 magnification). (E–H) Electrocardiogram. (I) Represen-
tative brain natriuretic peptide levels (BNP). (G) Representative lactate dehydrogenase levels (LDH). (K)
Representative cardiac troponin T levels (CTnT). (L) Representative creatine kinase MB levels (CK-MB).
(M) Representative malondialdehyde (MDA) levels. (N) Representative superoxide dismutase (SOD) lev-
els. ∗ p< 0.05 vs. the control group; # p< 0.05 vs. the DOX group. LUT, Luteolin; DOX, Doxorubicin.

Full-size DOI: 10.7717/peerj.8845/fig-2

LUT treatment recovered the histopathological features of heart
tissue in DOX-induced cardiotoxicity
We investigated whether LUT could exert a therapeutic effect in vivo using a DOX-
induced rat model. Heart sections were stained with H&E (Figs. 2A– 2D). A regular
distribution of cardiomyocytes was observed in the control group without any significant
histopathological changes. As expected, DOX caused a significant increase in intracellular
space, cytoplasmic vacuolation, and myocardial cell disorders. However, pathological
changes in the myocardium were significantly attenuated in rats treated with different
doses of LUT. In particular, pre-treatment with LUT at a dose of 100 mg/kg attenuated
DOX-induced histopathological changes.

LUT improved electrocardiogram changes
Electrocardiograms of rats from each group were analysed (Figs. 2E–2H). Rats in the
control group showed no significant changes in the heart rate, limb voltage, and QRS
interval. Rats in the DOX (alone) group showed a lower heart rate, decreased R wave
voltage, and prolonged QT interval. Pre-treatment with LUT at a dose of 50 mg/kg or 100

Zhang et al. (2020), PeerJ, DOI 10.7717/peerj.8845 7/17

https://peerj.com
https://doi.org/10.7717/peerj.8845/fig-2
http://dx.doi.org/10.7717/peerj.8845


mg/kg showed a significant improvement in the heart rate, R wave amplitude, and QT
interval prolongation. In particular, LUT at a dose of 100 mg/kg significantly attenuated
these ECG changes.

LUT reduced serum marker levels of heart damage upon cardiac
injury
Serummarkers of heart damage are key enzymes in the heart that are released into the blood
when cardiomyocytes are damaged (Wang et al., 2018). Plasma BNP, CK-MB, CTnT, and
LDH activities were significantly elevated in the DOX alone group (p < 0.05), confirming
the cardiotoxicity of DOX (Figs. 2I–2L). However, serum marker levels of cardiac damage
in LUT-treated (50 mg/kg and 100 mg/kg) rats were significantly improved as compared
to those in the DOX-only treatment group (p < 0.05).

LUT inhibited DOX-induced oxidative stress
Some studies have reported that DOX-induced cardiotoxicity is associated with oxidative
stress (Cappetta et al., 2017).We examined the effect of LUT on SOD andMDA levels as the
primary parameter for assessing free radical metabolism (Figs. 2M and 2N). After exposure
to DOX, SOD levels were significantly reduced (p< 0.05) andMDA levels were significantly
increased (p < 0.05) compared to the control group. However, pre-treatment with LUT
significantly inhibited MDA levels and increased SOD levels in myocardial tissue (p <
0.05). The most significant increase in SOD levels was observed in the group pre-treated
with 100 mg/kg LUT (p <0.05), indicating that LUT has dose-dependent cardioprotective
and antioxidant functions in vivo.

LUT Treatment inhibited mRNA expression levels of apoptosis
mediators in DOx-induced cardiotoxicity rats
We examined the effect of LUT on the expression of apoptosis mediators (caspase-3, Bcl-2,
and Bax) in DOX-induced rat myocardial tissue. As shown in Figs. 3A–3C, after exposure
to DOX, the mRNA expression levels of caspase-3 and Bax and Bcl-2 were significantly
increased (p < 0.05) compared to the control group. However, pre-treatment with LUT
the mRNA expression levels of caspase-3 and Bax were significantly decreased (p < 0.05),
whereas those of Bcl-2 were significantly increased (p < 0.05) compared to the DOX group.

LUT treatment increased the Bcl2/bax ratio
Bcl-2 and Bax play antagonistic roles in apoptosis; Bcl-2 inhibits apoptosis, whereas Bax
promotes apoptosis. Therefore, the Bcl-2/Bax ratio is a key factor in regulating apoptosis.
Representative Bax and Bcl-2 western blots are shown in Figs. 3D–3F. Compared with the
control group, DOX treatment significantly reduced the Bcl-2/Bax protein ratio (p < 0.05).
Treatment with LUT, however, significantly increased the Bcl-2/Bax ratio (p < 0.05) in a
dose-dependent fashion.

LUT reduced the expression of caspase family proteins
Caspase family proteins induce apoptosis in cardiomyocytes. Representative images of
pro-caspase-3 and cleaved-caspase-3 protein levels are shown in Figs. 3G–3L. As expected,
DOX treatment significantly increased the level of cleaved-caspase-3 as compared to that
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Figure 3 Effects of LUT on the expression of apoptotic factors in the heart tissue of DOX-induced car-
diotoxicity model rats. (A) Representative Bcl-2 mRNA expression. (B) Representative Bax mRNA ex-
pression. (C) Representative Casp3 mRNA expression. (D–F) Representative Bcl-2 and Bax protein ratio.
(G–I) Representative pro-caspase-3 and GAPDH protein ratio. (J–L) Representative Cleaved-caspase-3
and GAPDH protein ratio. ∗ p< 0.05 vs. the control group; # p< 0.05 vs. the DOX group. LUT, Luteolin;
DOX, Doxorubicin.

Full-size DOI: 10.7717/peerj.8845/fig-3

in the control group (p< 0.05), and decreased the level of pro-caspase-3 (p< 0.05).
However, treatment with LUT resulted in increased pro-caspase-3 expression (p< 0.05),
and decreased expression of cleaved-caspase-3 as compared to the DOX group, indicating
reduced apoptosis (p< 0.05).

In silico network analysis and prediction of target genes and pathways
related to cardiotoxicity
To further elucidate the interaction between LUT and target genes, relationships were
investigated using network analysis. The LUT resulting network included 142 potential
target genes as shown in Table S1. We then used the network analysis to find the interaction
between DOX and target genes. The network for DOX included a total of 364 genes
(Inference Score ≥ 4), indicating a higher correlation with cardiotoxicity. A total of 50
genes were associated with LUT and DOX (Table S2).

To better understand the signaling pathways and functions of these target genes, we
performed functional enrichment analysis using DAVID software and the KEGG database.
Potential target genes were functionally related to various signal transduction pathways
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Figure 4 Chemicals-target gene network linking the protective effects of LUT against cardiotoxicity
to potential signalling pathways and related protein expression. (A) Blue circles represent the enriched
KEGG main pathway, and green rectangles represent the top putative target proteins. (B–D) Represen-
tative phlpp1 and GAPDH protein ratio. (E–G) p-AKT and AKT protein ratio. ∗ p< 0.05 vs. the control
group; # p< 0.05 vs. the DOX group. LUT, Luteolin; DOX, Doxorubicine.

Full-size DOI: 10.7717/peerj.8845/fig-4

(Fig. 4A; Table 2), particularly those regulated by p-AKT. Therefore, the expression of
p-AKT was detected in subsequent experiments.

LUT increased phlpp1 protein expression
When dephosphorylation occurs in phlpp1, phosphorylation of AKT is inhibited and
apoptosis is induced (Specific KEGG diagram: https://www.kegg.jp/kegg-bin/show_
pathway?rno04151+498949). Representative images of phlpp1 protein expression are
shown in Figs. 4B–4D. DOX treatment significantly decreased the level of phlpp1 as
compared to the control group (p < 0.05). However, treatment with LUT increased phlpp1
expression as compared to the DOX group (p < 0.05). This indicated that LUT could
inhibit the phosphorylation of phlpp1, thereby reducing the induction of apoptosis.

LUT increased p-AKT protein expression
Through network analysis, we found that AKT can regulate the expression of apoptotic
factors. Therefore, we assessed the expression of AKT and p-AKT. Representative images of
AKT and p-AKT protein expression are shown in Figs. 4E–4G. DOX treatment significantly
decreased the level of p-AKT as compared to that in the control group (p < 0.05), whereas
treatment with LUT increased p-AKT expression as compared to that in the DOX only
group (p < 0.05).

DISCUSSION
Doxorubicin is frequently used in chemotherapy against acute leukaemia, malignant
lymphoma, and several solid tumours. Although DOX has been frequently reported to
exhibit minimal cardiotoxicity at a single dose, there is still a risk of cardiomyopathy
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Table 2 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and target genes of LUT potentially responsible for the therapeutic ac-
tivities against cardiotoxicity.

Pathway Classification Pathway ID Term Target Gene

Signal transduction hsa04066 HIF-1 signaling pathway AKT1, CASP3, FAS, FGF2, EGFR, MAPK1, MAPK14,
VEGFA, MAPK3

Signal transduction hsa04152 AMPK signaling pathway AKT1, IGF1R, SLC2A4, PPARG, FASN, IGF1, ADIPOQ,
SIRT1

Signal transduction hsa04150 mTOR signaling pathway PRKCA, AKT1, MAPK1, TNF, MAPK3, IGF1
Inflammation-generating process hsa04668 TNF signaling pathway IL6, TNF, AKT1, MAPK1, CASP3, CASP8, MAPK3, IL1B,

FAS
Inflammation-generating process hsa04370 VEGF signaling pathway AKT1, MAPK1, PTK2, PTGS2, MAPK14, MAPK3, VEGFA,

RAC1, NOS3
Apoptosis hsa04151 PI3K-Akt signaling pathway AKT1, BCL2, IL4, IL6, TP53, MAPK1, VEGFA, MAPK3,

IL2
Apoptosis hsa04068 FoxO signaling pathway IL6, SOD2, AKT1, MAPK1, CDKN1A, SLC2A4, MAPK14,

MAPK3, CAT
Apoptosis hsa04210 Apoptosis AKT1, CASP3, TNF, BAX, BCL2, CASP8, FAS, ATM
Apoptosis hsa04115 p53 signaling pathway CASP3, BAX, CASP8, TP53, IGF1, CDK6, FAS, ATM
Apoptosis hsa04010 MAPK signaling pathway TNF, TP53, AKT1, MAPK1, CASP3, MAPK3, FAS, IL1A
Apoptosis hsa04014 Ras signaling pathway IGF1, HGF, AKT1, MAPK1, IGF1R, VEGFA, MAPK3,

RAC1, FGF1

when multiple doses are administered (Hallman et al., 2019). The pathophysiological
mechanisms underlying doxorubicin-induced cardiotoxicity include three interrelated
respects: accumulation of reactive oxygen species (ROS); dysfunction of topoisomerase II-
β and topoisomerase I; and mitochondrial imbalance of intracellular calcium (Burridge
et al., 2016). Among these, ROS play a critical role in that they can cause functional and
structural damage to the cell (Dai et al., 2018). Oxidative stress is considered the major
factor involved in DOX-induced cardiotoxicity. The organelle most significantly affected
is the mitochondria due to DOX accumulation at the inner membrane combining with
cardiolipin, an essential ingredient for the electron-transport chain, thereby fuelling the
production of ROS. Although it is generally accepted that ROS are the main cause of cell
apoptosis, it is known that apoptosis can occur independently of ROS after administration
of DOX (Octavia et al., 2012). Considering its mechanism, administration of antioxidant
supplements may be key components in cardio-oncology signaling (Lipshultz et al., 2013).
To investigate the efficacy of flavonoids for drug-induced cardiotoxicity, we attempted to
validate the efficacy of LUT in a DOX-induced cardiotoxicity rat model. Moreover, we
explored the potential molecular mechanisms of the LUT by using a systematic network
analysis approach and verified the predicted results by experimental pharmacological
analysis.

Myocardial histopathological alterations were attenuated to a notable extent in rats
treated with different doses of LUT. Pre-treatment with LUT at a dose of 50 mg/kg or 100
mg/kg showed marked improvements in heart rate, amplitude of R-wave, and prolonged
QT intervals. Cardiac markers such as CTnT, LDH, CK-MB, and brain BNP have been
used clinically as sensitive diagnostic markers of myocardial necrosis. The elevated levels
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of cardiac markers in the DOX group suggested that myocardial injury was induced by
DOX. However, when DOX was administered after LUT pre-administration, the serum
marker levels were reduced. In line with our findings, LUT has also been reported to play a
cardioprotective role in other disease models. For example, Zhang et al. (2017). found that
LUT prevented SI/R-induced myocardial damage by reducing oxidative stress-induced
injury in isolated rat hearts and cardiomyocytes.

In the present study, MDA levels were elevated, whereas SOD levels were decreased after
treatment with DOX, which indicated oxidative stress (Zhang et al., 2018). However, LUT
significantly reduced MDA and increased SOD levels, indicating that LUT has antioxidant
properties. A similar effect has been reported in a previous study in which LUT could
significantly decrease renal MDA and 8- OHdG levels, but significantly improved the SOD
and CAT activities in the I/R group (Hong et al., 2017).

Through our network analysis, we identified that key target genes of LUT were AKT,
CASP3, Bax, and Bcl, which play a key role in cardiotoxicity. These major nodes identified
by the KEGG pathway analysis are associated with apoptotic signalling and are known to
be associated with cardiotoxicity. AKT, a well-known pro-survival kinase, is activated by
phosphorylation at Ser 473. This activation is known to play a critical role in cell survival
(Li et al., 2013). When AKT is phosphorylated, it can promote cell survival by enhancing
the function of the antiapoptotic molecule Bcl-2 (Takada-Takatori et al., 2006). Bcl-2
inhibits apoptosis by preventing the release of cytochrome c and the subsequent activation
of caspases (Cory, Huang & Adams, 2003). Previous studies have shown that ketamine
induces neuronal apoptosis through down-regulation of Bcl-2 expression (Huang et al.,
2012). Liu et al. (2011) reported that 17b-estradiol exerts neuroprotective effects against
oxidative toxicity by up-regulating Bcl-2 expression. Recently, phlpp, a novel family of
Ser/Thr protein phosphatases, has been reported to be able to negatively regulate AKT
(Warfel & Newton, 2012). Phlpp members directly dephosphorylate AKT and terminate
the downstream signalling pathway. Chen et al. (2013) found that deletion of phlpp1 can
enhance AKT activation in neurons and astrocytes, and can significantly increase cell
survival and diminish infarct size after MCAO. Based on these findings, inhibition of phlpp
could be a therapeutic approach to minimize damage after focal ischaemia.

In this study, we also analysed the mRNA levels of the apoptotic markers Bax, Bcl-2,
and caspase-3. Treatment with DOX significantly increased Bax and caspase-3 mRNA, and
decreased Bcl-2 mRNA expression as compared to the control group. However, treatment
with LUT significantly reduced Bax and caspase-3 mRNA expression as compared to
the DOX alone group. These results indicated that LUT could reduce the expression of
apoptotic factors in the cytoplasm and prevent apoptosis.

We also observed changes in p-AKT, phlpp1, Bax, Bcl-2, and caspase-3 protein expression
levels after treatment with DOX and LUT. Treatment with DOX significantly increased
cleaved-caspase-3 protein expression and decreased p-AKT, phlpp1, and Bcl-2/Bax ratio
as compared to the control group. Treatment with LUT significantly increased the p-AKT,
phlpp1, Bcl-2/Bax ratio, and pro-caspase-3, but decreased the cleaved caspase-3 levels as
compared to the DOX only group. These results indicated that LUT could inhibit the
activity of phlpp1, leading to positive regulation of the AKT/Bcl-2 pathway, attenuating
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doxorubicin-induced cardiotoxicity. Collectively, the combined use of experimental
animal models and network analysis confirmed that LUT has beneficial therapeutic effects
on DOX-induced cardiotoxicity. Moreover, it identified intracellular signalling pathways
and target genes associated with therapeutic effects of LUT.

CONCLUSIONS
Overall, we find that LUT exerted its protective effect against doxorubicin-induced
cardiotoxicity injuries not only through inhibition of the ROS-mediated oxidative stress but
also through inhibition of phlpp1 activity, leading to positive regulation of the AKT/Bcl-2
pathway. Therefore, these findings suggest oral LUT administrationmay be a novel, natural
therapeutic to protect against chemotherapy-induced cardiotoxicity.
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