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ABSTRACT
Organic fertilizer application could have an impact on the nitrogen cycle mediated by
microorganisms in arable soils. However, the dynamics of soil ammonia oxidizers
and denitrifiers in response to compost addition are less understood. In this study, we
examined the effect of four compost application rates (0, 11.25, 22.5 and 45 t/ha) on
soil ammonia oxidizers and denitrifiers at soybean seedling, flowering and mature
stage in a field experiment in Northeast China. As revealed by quantitative PCR,
compost addition significantly enhanced the abundance of ammonia oxidizing
bacteria (AOB) at seedling stage, while the abundance of ammonia oxidizing archaea
was unaffected across the growing season. The abundance of genes involved in
denitrification (nirS, nirK and nosZ) were generally increased along with compost
rate at seedling and flowering stages, but not in mature stage. The non-metric
multidimensional scaling analysis revealed that moderate and high level of compost
addition consistently induced shift in AOB and nirS containing denitrifers
community composition across the growing season. Among AOB lineages,
Nitrosospira cluster 3a gradually decreased along with the compost rate across the
growing season, while Nitrosomonas exhibited an opposite trend. Network analysis
indicated that the complexity of AOB and nirS containing denitrifiers network
gradually increased along with the compost rate. Our findings highlighted the
positive effect of compost addition on the abundance of ammonia oxidizers and
denitrifiers and emphasized that compost addition play crucial roles in shaping their
community compositions and co-occurrence networks in black soil of Northeast
China.
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INTRODUCTION
Black soils, which are widely distributed in Northeast China, are one of the most important
soil types in China (Yang et al., 2017). However, due to extensive agricultural
intensification combined with the overuse of chemical fertilizers, reduction in soil fertility
have occurred over the past few decades (Liu et al., 2003; Yao et al., 2017). In order to
improve soil productivity, large amounts of inorganic and organic fertilizers have been
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frequently applied in this region (Ding et al., 2014). However, excessive and repeated input
of N has aggravated nitrate leaching and exacerbated the emission of greenhouse gases
such as N2O (Fowler et al., 2013; Robertson & Vitousek, 2009), with substantial effects on
soil N cycling.

Soil N cycling is a complex biogeochemical process with several rate limiting steps
including N-fixation, nitrification and denitrification (Kuypers, Marchant & Kartal, 2018;
He et al., 2007). The distribution and functional diversity of N genes for nitrification
(bacterial and archaeal amoA) and denitrification (nirK, nirS and nosZ) have previously
been used to assess N-cycling functional guilds across various ecosystems (Hallin et al.,
2009; Tao et al., 2018; Ai et al., 2013; Radl et al., 2015). Studies have shown that both
ammonia-oxidizing bacteria (AOB) and archaea (AOA) play key roles in ammonia
oxidation in agricultural soils (Jia & Conrad, 2009; He et al., 2007). However, AOA
and AOB belong to different domains with different cell metabolic and biochemical
process (Walker et al., 2010), they could theoretically respond differently to fertilizer
application strategy (Muema, Cadisch & Rasche, 2016). Several studies demonstrated that
application of organic manure or plant residues tend to increase AOA abundance and
change AOA community composition, while having little effect on AOB in calcareous
fluvo-aquic soils (Ai et al., 2013; Yang et al., 2018). However, others observed that
organic fertilizers showed no significant effect on AOA, while AOB abundance and
composition was sensitive in calcareous desert soils (Tao et al., 2017). In addition,
documented publications indicated that the effect of organic application on denitrifiers
can be positive (Yin et al., 2015; Cui et al., 2016; Pereg et al., 2018) or neutral (Miller et al.,
2008; Sun et al., 2015) in agricultural soils. Such varying observations indicated that there is
still need to examine the effect of organic fertilization on ammonia oxidizers and
denitrifiers.

Alternatively, the different response of ammonia oxidizers and denitrifiers to organic
amendment mentioned above was possibly due to the sampling period (Hallin et al., 2009;
Tao et al., 2018; Ai et al., 2013; Radl et al., 2015). However, it should be noted that
most of these studies only indicate short-term or long-term effects of organic amendment
in a single sampling time (Hallin et al., 2009; Tao et al., 2018; Ai et al., 2013; Radl et al.,
2015), which only capture a specific status of ammonia oxidizers or denitrifiers that
may not represent the actual response. Several previous studies indicated that ammonia
oxidizers and denitrifiers were subjected to noticeable temporal variations (Hussain et al.,
2011; Muema, Cadisch & Rasche, 2016; Zhong et al., 2014). Therefore, a time course
study is needed to analyze the evolution of ammonia oxidizers and denitrifiers under
application of organic amendment.

Furthermore, both ammonia oxidizers and denitrifiers coexist in complex environment,
resulting in cooperative and competitive interactions (Kuypers, Marchant & Kartal, 2018).
Network analysis, which have been used recently to examine the co-occurrence of
microorganisms, may reveal potential ecological roles and study the complex community
organization (Deng et al., 2012). Previous studies indicated that organic input dramatically
enhanced the complexity of bacterial network in agricultural soils (Ling et al., 2016;
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Yang et al., 2019b). However, how network patterns of soil ammonia oxidizers and
denitrifiers respond to organic fertilization remained largely unknown.

In this study, we used amplicon sequencing performing using Illumina Miseq platform
to provide insight into the community composition of soil N-related microbial community
and quantitative PCR analysis to quantify the abundance of both ammonia oxidizers
and denitrifiers. Our objectives were to (1) examine the dynamics of soil ammonia
oxidizers and denitrifiers in response to compost addition during soybean growing
season; (2) determine the key soil factor in shaping community compositions of soil
ammonia oxidizers and nirS containing denitrifiers; (3) explore the co-occurrence network
patterns of ammonia oxidizers and nirS containing denitrifiers in response to compost
addition.

MATERIALS AND METHODS
Study site and experimental design
The field trial was conducted at Xiangyang experimental farm of Northeast Agricultural
University (45�45′45″ N, 126�54′46″ E), Eastern Songnen Plain, China in 2016 (Yang
et al., 2019a, 2019b). The soil at this study site is classified as Mollisols. The experimental
field was divided into 16 plots of 5 m × 4.5 m (2 m separating each plot) and each
treatment was replicated four times in a complete randomized block design. The field
has been in maize-soybean crop rotation, with chemical fertilizers applied, before 2016.
Compost were applied as basal fertilizer and evenly mixed with top soil when soybean
was planted. There were four treatments: (1) no compost addition (CK); (2) 11.25 t/ha
compost addition (low level of compost addition, LC); (3) 22.5 t/ha compost addition
(moderate level of compost addition, MC); (4) 45 t/ha compost addition (high level of
compost addition, HC). The compost was produced from cattle manure and maize
straw (45 days aerobic composting process). The chemical properties of the compost were:
pH, 8.0; total organic carbon, 386.1 g/kg; total N, 18.4 g/kg; available P, 1.01 g/kg; NO−

3 -N,
0.40 g/kg; NHþ

4 -N, 0.21 g/kg; C:N ratio, 21.0. Soybean (Glycinemax (L.) Merrill) was
planted on 6th May and harvested on 29th September, 2016. No pesticide, herbicide or
other chemicals were applied during the growing season. For climate and soil
characteristics of the field see Yang et al. (2019a, 2019b).

Soil sampling and soil variables
Soil sampling procedure was described in Yang et al. (2019a, 2019b). Specifically, soils
were sampled on June 4 (seedling stage); July 24 (flowering stage) and 27 August
(mature stage) in 2016. In each plot, five soil cores (20 cm deep, 5 cm diameter) were
randomly collected and bulked together to form a single sample at each sampling time.
Soil samples were then passed through 1 mm sieve to remove roots and debris, then stored
at −80 �C (for DNA extraction) and 4 �C (for physicochemical analysis). Soil organic
matter (SOM), total phosphorus (TP), total N (TN), available phosphorus (AP),
available potassium (AK), pH and soil moisture (SM) were determined by Yang et al.
(2017). Soil ammonium and nitrate were extracted with 1 M KCl solution (1:5, w/v) for
30 min and then assayed using a continuous-flow analyzer (SAN++, Skalar, Holand).
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DNA extraction and quantitative PCR
For each soil sample (48 in total), DNA was extracted from 0.25 g frozen soil samples
using the PowerSoil DNA Isolation Kit (MoBio Laboratories, Inc., Carlsbad, CA,
USA) according to the manufacturer’s instruction. Quantitative analysis of genes
encoding catalytic enzymes of ammonia oxidation (AOA-amoA and AOB-amoA), and
denitrification (nirK, nirS and nosZ) were performed in LightCycler� 96 thermocycler
(Roche Diagnostics, Indianapolis, IN, USA). The primer sets and PCR conditions of
AOA-amoA, AOB-amoA, nirS, nirK and nosZ genes were summarized in Table S1
(Rotthauwe, Witzel & Liesack, 1997; Braker, Fesefeldt &Witzel, 1998; Throbäck et al., 2004;
Francis et al., 2005; Henry et al., 2006). Amplification was conducted using the SYBR�

Premix Ex TaqTM (TaKaRa, Kyoto, Japan). Each reaction mixture (25 mL) contained
12.5 mL of 2× SYBR� Premix, one mL of bovine serum albumin (25 mg mL−1), 0.5 mL of
each primer (10 mmol L−1), one mL of DNA template and 9.5 mL of deionized water.
These reactions were then performed in triplicate in a single run, on a plate that included a
full range of the relevant standards. Standard curves were obtained using serial dilution of
plasmids containing the AOA-amoA, AOB-amoA, nirS, nirK and nosZ genes from soil
samples.

Miseq sequencing of AOB and nirS containing denitrifiers
communities
The AOB and nirS containing denitrifiers communities were analyzed with amplicon
sequencing performing using Illumina Miseq platform. The bacterial amoA and nirS genes
were amplified using primer amoA-1F/amoA-2R (Rotthauwe, Witzel & Liesack, 1997)
and Cd3Af/R3cd (Throbäck et al., 2004), respectively. Primer amoA-1F and R3cd
contained a unique 12 nt barcode at the 5’end for Miseq sequencing detection. The raw
sequence data has been deposited on the NCBI SRA (Accession No. SRP127746).
Details regarding PCR conditions and quality processing are available in the
Supplemental File.

Bioinformatics analysis
The bioinformatics analysis in our study were previously described (Yang et al., 2019a,
2019b). Specifically, raw sequences of AOB-amoA and nirS genes were processed using
QIIME Pipeline Version 1.8.0 (Caporaso et al., 2010) to remove low quality (length
<250 bp, with ambiguous base “N” and average base quality score <20) sequences before
further analysis. Potential chimeras of AOB-amoA and nirS sequences were discarded by
performing the chimera. Uchime algorithm in Mothur (Schloss et al., 2009), using
RDP Fungene database (Fish et al., 2013). The remaining nonchimeric sequences of
AOB-amoA and nirS were clustered into different operational taxonomic units (OTUs)
using USEARCH v8.0 (Edgar, 2013) with 97% and 82% similarity level (Palmer, Biasi &
Horn, 2012), respectively. Each OTU was taxonomically classified using blastn 2.2.30
against nt database, then OTUs that were not assigned as AOB and nirS containing
denitrifiers were removed. We then constructed a neighbor joining tree using a Kimura
2-parameter distance with 1,000 bootstrap replicates in MEGA 6 (Tamura et al., 2013) to
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identify AOB OTUs. We used the nomenclature for AOB clusters as defined by Avrahami,
Conrad & Braker (2002) and He et al. (2007). To correct the differences in the sequencing
depth, the number of sequences per sample was normalized to the smallest sample
size using the “sub.sample” command in the Mothur (Schloss et al., 2009).

Statistical analysis
One-way ANOVA was used to examine the effect of compost addition on the soil
ammonium and nitrate contents, gene copies of AOA-amoA, AOB-amoA, nirS, nirK and
nosZ, OTU richness of AOB and nirS containing denitrifiers, relative abundance of
AOB clusters at seedling, flowering and mature stage. All data above were tested for
normality and homogeneity of variance before ANOVA using Levene test. Differences
among treatments were then tested using a Tukey’s HSD post-hoc test at P < 0.05.

Permutational multivariate analysis of variance (PERMANOVA) was carried out in the
vegan package (Oksanen et al., 2013) to evaluate the effects of compost addition, growth
stage and their interactive effect on AOB and nirS containing denitrifiers community
composition (Yang et al., 2019a, 2019b). Subsequently, the AOB and nirS containing
denitrifiers community compositions were ordinated using non-metric multidimensional
scaling (NMDS) with the dissimilarity matrices using the “metaMDS” function in the
Vegan package (Oksanen et al., 2013). Mantel tests were applied to explore correlations
between AOB and nirS containing denitrifiers communities and soil variables in the
ecodist package (Goslee & Urban, 2007). Moreover, the “varpart” function in the vegan
package was used to partition the variation of AOB and nirS containing denitrifiers
community dissimilarity by compost addition, soybean growth stage and soil variables
(SOM, TN, TP, AP, AK, pH, BD, NHþ

4 -N and NO−
3 -N). Random forest analysis (Breiman,

2001) was used to explore the soil physiochemical drivers of AOA-amoA, AOB-amoA,
nirS, nirK and nosZ gene abundance using randomForest package (Liaw & Wiener, 2002).
The rfPermute package (Archer, 2016) was then used to estimate significance of
importance metrics for a random forest model by permuting the response variable.
All the analyses above were carried out in R (v.3.1.1) (R Core Team, 2013).

Four co-occurrence networks of soil AOB and nirS containing denitrifiers from CK, LC,
MC and HC treatments were built using data from all three sampling times. Thus, each
network was based on 12 communities, but only OTUs that occurred in at least six
communities were included in the analysis. Spearman’s correlation coefficients between
OTUs were calculated in each network. P values for multiple testing were calculated
using the false discovery rate (FDR) according to Benjamini & Hochberg (1995).
The Spearman’s coefficient of less than 0.6 and a P value of more than 0.01, were removed.
The numbers of nodes and links, connectedness and modularity were calculated using the
igraph package (Csárdi & Nepusz, 2006).

RESULTS
Soil ammonium and nitrate content
As shown in Fig. 1A, the soil ammonium content ranged from 14.23 ± 4.86 to
27.95 ± 7.40 mg/kg among treatments and gradually decreased across growth stages.
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However, soil ammonium content was unaffected by compost addition in this study
(Fig. 1A; Table S2). The soil nitrate content ranged from 17.05 ± 2.15 to 62.07 ± 17.50 mg/
kg and was significantly influenced by compost addition at the seedling stage (Fig. 1B;
Table S2). Especially, treatment HC induced 175.6%, 129.3% and 96.2% increase in nitrate
content as compared with treatment CK, LC and MC, respectively (Fig. 1B).

Abundance of ammonia-oxidizers and denitrifiers
The copies of AOA-amoA gene ranged from 2.05 × 108 ± 8.42 × 107 to 7.18 × 108 ±
2.16 × 107 among treatments, and was about two orders of magnitude higher than those of
AOB (Figs. 2A and 2B). However, the AOA-amoA gene abundance was unaffected by
compost addition across the growth stages (Fig. 2A; Table S2). In contrast, one-way
ANOVA analysis indicated that AOB-amoA gene abundance was significantly influenced

Figure 1 Soil NHþ
4 -N (A) and NO−

3 -N (B) content among treatments in seedling, flowering and
mature stage. Full-size DOI: 10.7717/peerj.8844/fig-1

Figure 2 Gene copies of AOA-amoA (A), AOB-amoA (B) nirS (C) nirK (D) and nosZ (E); mean predictor importance of soil variables on
AOA-amoA (F), AOB-amoA (G), nirS (H), nirK (I) and nosZ (J). Bars without shared letters indicate significant difference at P < 0.05. Abbre-
viations: CK, control; LC, low level of compost addition; MC, moderate level of compost addition; HC, high level of compost addition; BD, bulk
density; SOM, soil organic matter; AP, available phosphorus; AK, available potassium; NHþ

4 -N, ammonium; NO−
3 -N, nitrate; MSE, mean square

error. ��� P < 0.001; �� P < 0.01; � P < 0.05. Full-size DOI: 10.7717/peerj.8844/fig-2
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by compost addition at the seedling stage (Table S2). Compared with treatment CK,
treatment HC enhanced the abundance of AOB-amoA gene by 263% at the seedling
stage (Fig. 2B). Random forest analysis showed that soil AP and BD were the major
determinants of the abundance of AOA, while SOM and NO−

3 -N content were the major
determinants of the abundance of AOB (Figs. 2F and 2G).

The gene copies of nirS was significantly affected by compost addition in seedling
stage, while the gene copies of nirK and nosZ were significantly affected in seedling and
flowering stages (Table S2). In comparison to treatment CK, soil samples from HC
revealed higher abundance of nirS, nirK and nosZ gene abundance (Figs. 2C–2E). Random
forest analysis showed that soil AP and SOM were the major determinants of nirK and
nosZ gene abundance, while SOM and AK were the major determinants of nirS gene
abundance (Figs. 2H–2J).

Sequencing data analysis of AOB and nirS containing denitrifier
A total of 883,851 AOB-amoA reads were obtained from 48 soil samples after
quality control, from which 20,103 potential chimeras were removed. The remaining
863,748 non-chimeric reads were assigned to 62 operational taxonomic units (OTUs)
based on 97% sequence similarity. The most dominant AOB OTUs were affiliated with
Nitrosospira cluster 3a (accounting for 34.67% of the obtained AOB sequences,
13 OTUs), followed by Nitrosomonas (22.84%, 8 OTUs), Nitrosospira cluster 9 (22.27%,
13 OTUs), cluster 1 (6.98%, 1 OTU), cluster 3c (6.48%, 8 OTUs), cluster 2 (3.35%,
4 OTUs), cluster 3b (2.92%, 11 OTUs), cluster 4 (0.1%, 3 OTUs) and unclassified
OTU (0.47%, 1 OTU) (Fig. S1). Among AOB lineages, Nitrosospira cluster 3a and
Nitrosomonas exhibited entirely different response to compost addition. Nitrosospira
cluster 3a, which gradually decreased along with compost application rate, was
significantly decreased by HC treatment as compared with CK across the growing
season (Fig. 3; Tables S3 and S4). In contrast, the relative abundance of Nitrosomonas
was quite low in treatment CK and greatly enhanced by HC treatment (Fig. 3; Tables S3
and S4).

For nirS containing denitrifier, a total of 2,468,389 reads were obtained after quality
control, from which 100,499 potential chimeras were removed. The remaining 2,367,890
non-chimeric reads were assigned to 98 operational taxonomic units (OTUs) based on
82% sequence similarity. The taxonomic classification of each nirS containing denitrifier
was summarized in Table S3.

The OTU richness of AOB and nirS containing denitrifier were consistently influenced
by compost addition across the growth stages (Table S2). Overall, the OTU richness of
AOB gradually increased along with compost application rate (Fig. 4A). Compared with
CK, treatment HC significantly stimulated OTU richness of AOB at all growth stages
(Fig. 4A). Treatment MC, however, only induced a significant increase in AOB richness at
the seedling stage, but not at flowering and mature stages (Fig. 4A). On the other hand,
the OTU richness of nirS containing denitrifier was significantly higher in treatment LC,
MC and HC than CK in all growth stages (Fig. 4B).
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Community composition of AOB and nirS containing denitrifier
PERMANOVA analysis indicated that AOB community composition was significantly
influenced by compost addition (r2 = 0.26, P = 0.001), marginally influenced by soybean
growth stage (r2 = 0.05, P = 0.05) and unaffected by their interaction (r2 = 0.01, P = 0.62).
nirS containing denitrifiers community composition was significantly influenced by
compost addition (r2 = 0.22, P = 0.001), growth stage (r2 = 0.12, P = 0.001) and their
interaction (r2 = 0.04, P = 0.04). Further analysis revealed that compost addition

Figure 3 The relative abundance of the AOB lineages among treatments in seedling (A), flowering
(B) and mature stage (C). Abbreviations: CK, control; LC, low level of compost addition; MC, moderate
level of compost addition; HC, high level of compost addition.

Full-size DOI: 10.7717/peerj.8844/fig-3

Figure 4 OTU richness of AOB (A) and nirS-containing denitrifier (B) among treatments in
seedling, f lowering and mature stage. Bars without shared letters indicate significant difference at
P < 0.05. Abbreviations: CK, control; LC, low level of compost addition; MC, moderate level of compost
addition; HC, high level of compost addition. Full-size DOI: 10.7717/peerj.8844/fig-4
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consistently influenced AOB and nirS containing denitrifiers community composition
irrespective of growth stage (Fig. 5). Both AOB and nirS containing denitrifiers community
compositions in treatment CK distinguished greatly from MC and HC across the growing
season (Fig. 5).

Mantel tests revealed that AOB community composition was significantly correlated
with pH, SOM, AP, AK and C/N, while pH, SOM and AK showed independent effect
on AOB community composition (Table 1). Similarly, nirS containing denitrifiers
community composition was significantly correlated with nitrate, SOM, AK content and
C/N, while nitrate content exhibited independent effect on nirS containing denitrifiers
community composition (Table 1). Variation partition analysis revealed that 33% of
variation in AOB community composition and 35% of nirS containing denitrifers
community compositions were explained (Fig. S2). Of these variations, 31% of AOB
community was explained by soil variables, 28% by compost application rate. However, the
growth stage only explained 2% of variation in AOB community. For nirS containing
denitrifiers community, 36% of variation was explained by soil variables, 25% by compost
application rate and 9% by growth stage (Fig. S2).

Co-occurrence networks of AOB and nirS containing denitrifiers
The network size was smallest in CK and largest in HC, as evaluated by the number of
nodes and links (Figs. 6A–6D). As shown in Fig. 6, the complexity of AOB and nirS

Figure 5 Non-metric multidimensional scaling (NMDS) of AOB community composition in seedling (A), f lowering (B) and mature (C) stage;
NMDS of nirS-containing community composition in seedling (D), f lowering (E) and mature (F) stage. Circles with dashed line in NMDS plot
are 95% confidence of CK, LC, MC and HC treatment. Abbreviations: CK, control; LC, low level of compost addition; MC, moderate level of compost
addition; HC, high level of compost addition. Full-size DOI: 10.7717/peerj.8844/fig-5
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containing denitrifiers network gradually increased along with the compost application
rate. This pattern was also demonstrated by the network topological properties, that is, the
connectedness increased along with the compost application rate, while modularity

Table 1 Mantel tests and partial mantel tests of the soil ammonia oxidizer (AOB) and
nirS-containing community with soil variables.

Soil variables AOB nirS

Mantel test Partial mantel test Mantel test Partial mantel test

r P r P r P r P

NHþ
4 -N −0.04 0.72 – – 0.22 0.008 0.12 0.07

NO−
3 -N 0.06 0.21 – – 0.42 0.001 0.15 0.05

BD −0.06 0.86 – – 0.12 0.06 – –

SM −0.08 0.90 – – 0.01 0.45 – –

pH 0.19 0.002 0.14 0.02 −0.03 0.60 – –

SOM 0.30 0.001 0.17 0.003 0.19 0.03 0.09 0.09

AP 0.18 0.003 0.07 0.13 −0.09 0.92 – –

TP 0.002 0.46 – – −0.01 0.55 – –

AK 0.16 0.01 0.16 0.01 0.15 0.03 −0.01 0.49

TN −0.03 0.64 – – −0.06 0.84 – –

C/N 0.24 0.005 0.02 0.38 0.21 0.03 −0.03 0.67

Note:
BD, bulk density; SM, soil moisture; SOM, soil organic matter; AP, available phosphorus; TP, total P; AK, available
potassium; TN, total nitrogen; C/N, carbon: nitrogen ratio; NHþ

4 -N, ammonium; NO−
3 -N, nitrate.

Figure 6 The co-occurrence networks of AOB and nirS-containing bacteria in CK (A), LC (B), MC (C) and HC (D) treatment; proportion of
A–A links (E), proportion of A–S links (F), proportion of S–S links (G), connectedness (H) and modularity (I). Black dots represent for AOB,
and grey dots represent for nirS-containing bacteria. The size of the circles indicates the relative abundance of each node. Abbreviations: CK, control;
LC, low level of compost addition; MC, moderate level of compost addition; HC, high level of compost addition; A, AOB; S, nirS-containing
bacteria. Full-size DOI: 10.7717/peerj.8844/fig-6
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exhibited opposite trend (Figs. 6H and 6I). We also calculated the links between AOB (A)
and nirS containing denitrifiers (S), the links between A and A and the links between S
and S in each network. Notably, the compost addition greatly enhanced the proportion of
S-S links (Fig. 6G), while decreased the proportion of A-A links (Fig. 6E). The proportion
of A-S links was highest in treatment MC and significantly higher than others (Fig. 6F).

DISCUSSION
Effect of compost addition on abundance and community of ammonia
oxidizers
As organic fertilizer, compost could slowly and continuously release ammonia after
ammonification (Yang et al., 2017), which may benefit the AOA and AOB growth.
However, our results indicated that AOA and AOB abundance responded to compost
addition in different manners. The application of compost greatly enhanced AOB
abundance while having little effect on AOA across the growing season; a finding similar to
this was in a cotton agroecosystem, whereby Tao et al. (2017) observed an obvious
stimulating effect of manure amendment on the AOB abundance rather than AOA. It was
repeatedly reported that AOA was sensitive to inorganic N-fertilizer application in low
pH soil, whereas AOB was sensitive to the change of soil N availability in neutral and
alkaline soils (Di et al., 2009; Schauss et al., 2009; Bi et al., 2017). For instance, organic
amendment enhanced AOB abundance in neutral-pH (Liu et al., 2018) and alkaline soils
(Pereg et al., 2018; Tao et al., 2017), while it enhanced AOA growth in acidic soils
(Chen et al., 2011). In this study, the soil pH value was close to neutral and ranged from
6.1 to 6.6 (Table S5), which could explain why AOB rather than AOA abundance was
stimulated by compost addition. In addition, compost addition could introduce exogenous
microorganisms into native soil (Sun et al., 2016). In the current study, the compost
indeed contained high abundances of bacterial amoA sequences (Table S6) as revealed by
qPCR. However, given the relatively low application rate of compost (all treatments <2%)
in the current study, high abundances of AOB in compost amended soils is unlikely
due to the exogenous AOB introduced by compost.

Unlike soil AOB abundance, AOB community composition responded to compost
amendment throughout the whole growing season. As revealed by Mantel test, both pH
and SOM were key factors in shaping AOB community composition. This observation
agreed with the findings ofMuema, Cadisch & Rasche (2016) who reported that organic C
played a vital role in regulating the community structure of ammonia oxidizing
microorganisms. In addition to SOM, pH explained much of the variation in AOB
community composition, which is in agreement with other studies conducted in temperate
steppe (Zhang et al., 2018) and forest ecosystem (Long et al., 2012). In the current study,
the pH in compost amended soils was generally higher than the control (Table S5).
Therefore, soil pH may shape AOB community through direct effect on AOB growth or
indirect effect on a range of soil processes (Frijlink et al., 1992).

A notable discovery was that different AOB lineages exhibited divergent response to
compost addition. For instance, compost addition greatly enhanced the relative abundance
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of Nitrosomonas. As reported in previous studies, Nitrosomonas have often been observed
in cattle manure or pig slurry amended soils (Hastings et al., 1997; Fan et al., 2011).
Nitrosospira Cluster 3a, which was reported to be the most abundant AOB lineage in
agricultural soils (Innerebner et al., 2006), gradually decreased along with compost
application rate across the growing season. The different response of Nitrosomonas
and Cluster 3a to compost addition was possibly due to their different physiological
properties on ammonium. Nitrosospira was recognized to be the prevailing AOB in
environments with low ammonium while Nitrosomonas is dominant in ammonium rich
environments (Koops & Pommerening-Roser, 2001), which could be inversely influenced
by agricultural practices. However, other clusters were unaffected by compost addition.
Therefore, our results indicated that different lineages of AOB possess distinct
physiological properties that could be differently influenced by agricultural practices.

Effect of compost addition on abundance and community of
denitrifiers
The abundance of denitrifier genes including nirS, nirK and nosZ were greatly enhanced by
compost addition, which is consistent with previous studies (Kleineidam et al., 2010; Yin
et al., 2015; Cui et al., 2016; Pereg et al., 2018; Tao et al., 2018). Random forest analysis
indicated that SOM content contributed greatly to nirS, nirK and nosZ gene abundance.
It was reported that most of the denitrifiers are heterotrophic (Kramer et al., 2006),
therefore organic carbon might trigger their growth by providing substrates and
energy (Wang et al., 2018). In addition to SOM, denitrifiers were quite sensitive to soil
oxygen level (Herrmann et al., 2017). The application of compost would enhance soil
microbial respiration and consume soil oxygen, creating a more suitable condition for the
anaerobic denitrifiers (Attard et al., 2011; Senbayram et al., 2012).

Compost addition induced significant change in nirS containing denitrifiers community
composition across the growing season. In the same way, Yin et al. (2015) reported
that long term of manure amendment shifted nirS containing denitrifiers community
structure in black soil. Mantel test revealed that soil NO−

3 -N content was a key factor in
shaping nirS containing denitrifiers community composition in the current study. As the
substrate of denitrification, NO−

3 -N strongly can strongly affect denitrification rate, thus
influence nirS containing denitrifiers community composition (Francis et al., 2013).
The shift in nirS community denitrifiers composition was also reflected in OTU level.
For instance, OTUs that classified as Pseudomonas, were significantly enriched in compost
amended soils (Fig. S3; Table S7). Interestingly, Pseudomonas took large abundance in
cattle manure composting process (Maeda et al., 2010). Therefore, the nirS containing
denitrifer existed in compost may induced shift in nirS containing denitrifiers community
after compost addition.

Co-occurrence networks of AOB and nirS containing denitrifiers
Network analysis has been increasingly used to explore the potential microbial interactions
in different ecosystems (Ling et al., 2016, Yang et al., 2019b). To our knowledge, this is
the first study that reports the co-occurrence network patterns of AOB and nirS containing
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denitrifiers communities. Our results indicated that compost addition significantly
enhanced the complexity of A–S networks. Notably, the enhanced network complexity in
compost amended soils is mainly due to the increase in S–S interactions. Higher S–S
interactions under compost addition might be explained, in part, by a greater supply of
organic matter, providing more opportunities for the heterotrophic nirS containing
denitrifiers to interact with each other (Steinberger et al., 1999).

CONCLUSIONS
In conclusion, the responses of soil ammonia oxidizers and denitrifiers were investigated
across the growing season in soybean agroecosystem on the Songnen Plain. Compost
addition significantly enhanced gene copies of AOB-amoA, nirS, nirK and nosZ, while
AOA-amoA abundance was unaffected. Compost addition induced significant shift in
both AOB and nirS containing denitrifiers community composition across the growing
season. Variation of soil AOB community composition was closely correlated with soil pH,
organic matter and available potassium content, while the nirS containing denitrifiers
community was closely related to nitrate content. Network analysis indicated that the
co-occurrence networks of AOB and nirS containing denitrifiers in compost amended soils
were more complex control. Overall, our results highlighted that AOB was more sensitive
to compost addition than AOA, and indicated that compost addition was a strong
determinant in shaping both ammonia oxidizer and nirS containing denitrifier
communities and co-occurrence networks in black soils.
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