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Because cancer evolution underlies the therapeutic difficulties of cancer, it is clinically
important to understand cancer's evolutionary dynamics Thus far, four different
evolutionary modes have been proposed for cancer: linear, branching, neutral, and
punctuated. However, no simulation model exists that can describe the different cancer
evolutionary modes in a unified manner. In this study, we constructed a unified simulation
model for describing the four cancer evolutionary modes and performed sensitivity
analysis on the model to determine the conditions in which cancer growth is driven by
each of the different evolutionary modes. our sensitivity analysis showed that. under the
assumption of sufficiently high driver mutation rates, linear and branching evolutions occur
with driver mutations of relatively strong and weak driver genes, respectively.
Furthermore, we found that, although a high neutral mutation rate is necessary for neutral
evolution, a stem cell hierarchy can also prompt neutral evolution by apparently increasing
the mutation rate. Finally, we demonstrated the possibility that punctuated evolution
underlies the evolutionary shift from branching to neutral evolution, which is observed
during colorectal tumorigenesis. Collectively, this study provides a novel foundation for
understanding the diversity of cancer evolution.
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ABSTRACT16

Because cancer evolution underlies the therapeutic difficulties of cancer, it is clinically important to

understand cancer’s evolutionary dynamics Thus far, four different evolutionary modes have been pro-

posed for cancer: linear, branching, neutral, and punctuated. However, no simulation model exists that

can describe the different cancer evolutionary modes in a unified manner. In this study, we constructed

a unified simulation model for describing the four cancer evolutionary modes and performed sensitivity

analysis on the model to determine the conditions in which cancer growth is driven by each of the differ-

ent evolutionary modes. our sensitivity analysis showed that. under the assumption of sufficiently high

driver mutation rates, linear and branching evolutions occur with driver mutations of relatively strong and

weak driver genes, respectively. Furthermore, we found that, although a high neutral mutation rate is

necessary for neutral evolution, a stem cell hierarchy can also prompt neutral evolution by apparently in-

creasing the mutation rate. Finally, we demonstrated the possibility that punctuated evolution underlies

the evolutionary shift from branching to neutral evolution, which is observed during colorectal tumori-

genesis. Collectively, this study provides a novel foundation for understanding the diversity of cancer

evolution.
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INTRODUCTION31

Cancer is regarded as a disease of evolution; during tumorigenesis, a normal cell evolves to a malignant32

population by means of mutation accumulation and natural selection. Evolution allows cancer cells to33

adapt to a new environment and acquire malignant phenotypes such as metastasis and therapeutic resis-34

tance. Therefore, it is clinically important to understand cancer evolutionary dynamics. To date, it has35

been proposed that several different modes exist in cancer evolution Davis et al. (2017). Traditionally,36

cancer evolution has been described as “linear evolution,” where mutations are acquired linearly in a37

step-wise process, generating a malignant clonal population.38

However, this simple view of cancer evolution has been challenged since the advent of the next gen-39

eration sequencing technology Niida et al. (2018). Deep sequencing demonstrated that subclonality pre-40

vails in both blood and solid tumors, and multiregion sequencing of various types of solid tumor more41

dramatically unveiled intratumor heterogeneity (ITH), which results from branching evolution. These42

genomic studies also found that subclones often harbor mutations in known driver genes, suggesting that43

at least a part of ITH is generated by Darwinian evolution. In some types of cancer, such as renal cell car-44

cinoma Turajlic et al. (2018) and low-grade glioma Suzuki et al. (2015), this Darwinian evolution-driven45
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branching evolution (hereafter, simply referred to as “branching evolution”) is especially prominent; we46

observed convergent evolution in which different subclonal mutations are acquired in the same driver47

gene or pathway.48

Other types of tumors, however, show no clear enrichment of driver mutations in subclonal mutations.49

Consistently with this observation, several studies employing mathematical modeling have suggested50

that mainly the accumulation of neutral mutations, which do not affect the growth and survival of cancer51

cells, shapes ITH; that is, “neutral evolution” is a major origin of ITH in multiple types of cancers52

Uchi et al. (2016); Sun et al. (2018); Ling et al. (2015). The evolutionary principles shaping ITH differ53

not only among cancer types but also between stages of colorectal tumorigenesis. We and another group54

have recently reported that ITH is shaped by branching and neutral evolution in the early and late stages55

of colorectal tumorigenesis, respectively Saito et al. (2018); Cross et al. (2018).56

In the linear, branching and neutral evolution modes, it is commonly assumed that microevolution57

events such as single nucleotide mutations are accumulated sequentially and gradually over time. How-58

ever, recent studies have demonstrated that, in multiple types of cancers, chromosome or genome-wide59

evolutionary events producing copy number alterations and chromosomal rearrangements may occur in60

a short time at the early stage of evolution Gao et al. (2016); Baca et al. (2013). Such rare macroevolu-61

tion events could confer a large fitness increase on one or a few cells, after which one or a few clones62

originating from these cells expand to constitute the tumor mass uniformly. This type of evolution is63

referred to as “punctuated evolution.”64

Collectively, four types of cancer evolutionary modes were proposed thus far: linear, branching, neu-65

tral, and punctuated evolution. Although many mathematical models of cancer evolution have been em-66

ployed to gain an understanding of cancer evolutionary dynamics Beerenwinkel et al. (2014); Altrock et al.67

(2015); Niida et al. (2018), no simulation model that can describe the four evolutionary modes in a uni-68

fied manner exists. In this paper, we propose a unified simulation model that describes the four cancer69

evolutionary modes. While constructing the simulation model, we also investigated the manner in which70

the different modes are realized in cancer evolution.71

This paper is composed of four parts. In the first part, we introduce the driver model, which con-72

tains only driver mutations, and examine the conditions leading to linear or branching evolution. In73

the second part, the neutral model, which contains only neutral mutations, is introduced to address the74

conditions leading to neutral evolution. In the third part, we present a combination of these two models75

as a composite model to reproduce linear, branching, and neutral evolution. In the final part, further-76

more we describe the incorporation of punctuated evolution in the composite model, which enables us77

to reproduce the evolutionary shift from branching to neutral evolution during colorectal tumorigenesis.78

RESULTS79

Driver model80

First, we constructed the “driver” model, which contains only driver genes, aiming to study the two81

Darwinian evolution modes: linear and branching evolution. We employed an agent-based model, where82

each agent corresponds to each cell in a tumor. The simulation started from one cell without mutations.83

In a unit time, a cell divides into two daughter cells with a probability g. This model assumes that84

immortalized cell, which just divides without dying. In each cell division, each of the two daughter85

cells acquires kd driver mutations. Here, kd is sampled from a Poisson distribution with the parameter86

md/2, i.e., kd ∼ Pois(md/2), which means that one cell division generates md mutations on average. We87

assumed that driver mutations acquired by different division events occur at different genomic positions88

and each cell can accumulate Nd mutations at maximum. In this study, we assumed that all mutations89

are driver mutations, which increase the cell division rate. When the cell acquires mutations, the cell90

division rate increases f fold per mutation; that is, when a cell has nd (= ∑kd) mutations in total, the91

cell division probability g is defined as g = g0 f nd , where g0 is a base division probability. In each time92

step, every cell is subject to a cell division trial, which is repeated until population size p reaches P or93

the number of time steps t reaches T .94

To examine the manner in which each parameter affects the evolutionary dynamics of the simulation95

model, we performed a sensitivity analysis utilizing MASSIVE Niida et al. (2019), for which we em-96

ployed a supercomputer. MASSIVE first performs a very large number of agent-based simulations with97

a broad range of parameter settings. The results are then intuitively evaluated by the MASSIVE viewer,98

which interactively displays heat maps of summary statistics and single-cell mutation profiles from the99
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simulations with each parameter setting. In Fig 1, the heat maps of three representative summary statis-100

tics, the proportion of clonal mutations (clonal mutation proportion), a measure for ITH (Shannon in-101

dex 0.05), and an indicator for the occurrence of branching evolution (branching evolution 0.05), are102

presented for only a part of the parameter space examined. All the results can be interactively explored in103

the MASSIVE viewer on our website (https://www.hgc.jp/˜niiyan/canevosim/driver).104

The results of the MASSIVE sensitivity analysis demonstrated that the strength of driver mutations105

f is the most prominent determinant of the Darwinian evolution modes. A smaller value of f , which106

indicates weaker driver mutations, is ingeneral associated with branching evolution, which is character-107

ized by large branching evolution 0.05, corresponding to parameter setting i in Fig 1. However, in the108

case of a low mutation rate, i.e., small md , a small f value is insufficient to cause expansions of multiple109

clones, corresponding to parameter settingiii in Fig 1. When the value of f is large, branching evolution110

0.05 is small, but the clonal mutation proportion is large, which suggests that linear evolution occurs,111

corresponding to parameter setting ii in Fig 1. By considering these results with time-course snapshots of112

the simulations, mechanisms driving linear and branching evolution were intuitively interpreted (Fig 2).113

Under the assumption of weak driver mutations, before a clone that has acquired the first driver mutation114

becomes dominant, other clones that have acquired different mutations expand, leading to branching115

evolution (Fig 2 A and B). In contrast, under the assumption of strong driver mutations, a clone that has116

acquired the first driver mutation rapidly expands to obtain more driver mutations serially, leading to117

linear evolution (Fig 2 C and D).118

We then modified the driver model to create the “driver-d” model where each cell divides with a119

constant probability g0 and dies with a probability d. Moreover, we assumed that cell death occurs only120

in the case of p> 1, to prevent the simulation from halting before clonal expansion. In the driver-d model,121

each driver mutation decreases the cell division probability by f fold: d = d0e−nd , where d0 is the base122

death probability. The MASSIVE analysis of the modified driver model suggested that, when driver123

mutations decrease the death rate, branching evolution is pervasive, irrespective of the strength of the124

driver mutations (https://www.hgc.jp/˜niiyan/canevosim/driver_d). This observed125

behavior is supposed to occur because a driver mutation that decreases the death rate cannot provide126

a cell with the strong growth advantage necessary for linear evolution. By simulating tumor growth127

on a one-dimensional lattice, we also previously examined the effects of the spatial bias of a resource128

necessary for cell divisions: the MASSIVE analysis of the spatial model suggested that spatial resource129

bias could prompt branching evolution Niida et al. (2019).130

Neutral model131

Next, we examined the neutral evolution mode by analyzing the “neutral” model, where we considered132

only neutral mutations that do not affect cell division and death. In a unit time, a cell divides into two133

daughter cells with a constant probability g0 without dying. Similarly to driver mutations in the driver134

model, in each cell division, each of the two daughter cells acquires kn ∼ Pois(mn/2) neutral mutations.135

We assumed that neutral mutations acquired by different division events occur at different genomic136

positions and each cell can accumulate Nn mutations at maximum. In this study, we set Nn = 1000,137

which is sufficiently large that no cell reaches the upper limit, except in a few exceptional cases. The138

simulation started from one cell without mutations and ended when population size p reached P or time139

t reached T .140

The MASSIVE analysis of the neutral model demonstrated that, as expected, the mutation rate is the141

most important factor for neutral evolution (Fig 3; https://www.hgc.jp/˜niiyan/canevosim/neutral_s142

note that the neutral model is included by the neutral-s model, which is described below). When the mean143

number of mutations generated by per cell division, mn, was less than 1, the neutral models just gener-144

ated the sparse mutation profiles with relatively small values of the ITH score, Shannon index 0.05,145

whereas when mn exceeded 1, the mutation profiles presented extensive ITH, characterized by fractal-146

like patterns and large values of the ITH score (hereafter, this type of ITH is referred to as “neutral ITH”).147

According to these results, it is intuitively supposed that neutral ITH is shaped by neutral mutations that148

trace the cell lineages in the simulated tumors. Note that the mutation profiles were visualized after149

filtering out low-frequency mutations. Under the assumption of a high mutation rate, more numerous150

subclones having different mutations should be found to exist if we count the mutations having lower151

frequencies.152

To verify this speculation, we counted the number of subclones generated from a simulated tumor,153

3/19PeerJ reviewing PDF | (2019:11:42873:0:0:CHECK 7 Nov 2019)

Manuscript to be reviewed

guido lenz


guido lenz


guido lenz


guido lenz


guido lenz


guido lenz


guido lenz




0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

−1

−1.5

−2

−2.5

−3

−3.5

−4

−1

−1.5

−2

−2.5

−3

−3.5

−4

−1

−1.5

−2

−2.5

−3

−3.5

−4

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

0.5

1.0

0.0

1.5

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

0.0

0.5

1.0

0.0

0.5

1.0

A D

B

C

i

i

ii

ii

iii

iii

iii

i ii

iii

ii

i

Shannon index 0.05

clonal mutation proportion

branching evolution 0.05

log
10
f

log
10
f

lo
g

1
0
m

d

lo
g

1
0
m

d
lo

g
1
0
m

d

log
10
f

Figure 1. Sensitivity analysis of the driver model. While changing the driver mutation rate md and

the strength of driver mutations f , heat maps of summary statistics were prepared for the proportion of

clonal mutations, clonal mutation proportion (A), a measure for ITH, Shannon index 0.05 (B) and

an indicator for the occurrence of branching evolution, branching evolution 0.05 (C). Nd and P were

set to 3 and 105, respectively. (D) Single-cell mutations profiles obtained from four Monte Carlo trials

with each of the three parameter settings, which are indicated on the heat maps presented in A, B, and

C. Rows and columns of the clustered single-cell mutations profile matrices denote mutations and cells,

respectively. Blue side bars indicate driver mutations.
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Figure 2. Time-course snapshots of simulations based on the driver model. Growth curve (A) and

time-course snapshots of mutation profiles (B) simulated from the driver model with Nd = 3, P = 106,

f = 100.3 and md = 10−1.5 (corresponding to parameter setting i in Fig 1). Growth curve (C) and

time-course snapshots of mutation profiles (D) simulated from the driver model with Nd = 3, P = 106,

f = 100.9, and md = 10−1.5 (corresponding to parameter setting ii in Fig 1). The time points when

snapshots were obtained are indicated by empty circles on the growth curves.
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Figure 3. Sensitivity analysis of the neutral model. (A) Heap map obtained by calculating Shannon

index 0.05 while changing the neutral mutation rate mn and maximum population size P. (B)

Single-cell mutations profiles obtained for seven parameter settings, which are indicated on the heat

map in (A).
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while varying the frequency cutoffs for filtering out mutations. Fig S1 shows the plot of the relationship154

between the number of subclones and the frequency cutoffs. As expected, the results indicate that the155

simulated tumor presents an increasing number of subclones as the frequency cutoff is lowered. The156

linearity of the log-log plot demonstrates that the power law is hidden in the mutation profile, con-157

sistently with its fractal-like pattern Brown et al. (2002). Note that, although the ITH score does not158

depend on population size P and fractal-like patterns shaped in the earliest stage appears to be subse-159

quently unchanged in the time-course snapshots (Fig 4), these are also because low-frequency mutations160

were filtered out before visualization; the simulated tumor in fact expands neutral ITH by accumulating161

numerous low-frequency mutations as it grows.162
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Figure 4. Time-course snapshots of simulations based on the neutral model. Growth curve (A)

and time-course snapshots of mutation profiles (B) simulated from the driver model with P = 106 and

mn = 10 (corresponding to parameter setting vii in Fig 3). The time points when snapshots were

obtained are indicated by empty circles on the growth curves.

Thus far, several theoretical and computational studies have shown that a stem cell hierarchy can163

boost neutral evolution Sottoriva et al. (2010); Solé et al. (2008), which prompted us to extend the neu-164

tral model to the “neutral-s” model such that it contains a stem cell hierarchy (Fig S2). The neutral-s165

model assumes that two types of cell exist: stem and differentiated. Stem cells divide with a probability166

go without dying. For each cell division of stem cells, a symmetrical division generating two stem cells167

occurs with a probability s, while an asymmetrical division generating one stem cell and one differen-168

tiated cell occurs with a probability 1− s. A differentiated cell symmetrically divides to generate two169

differentiated cells with a probability g0 but dies with a probability dd
0 . The means of accumulating170

neutral mutations in the two types of cell is the same as that in the original neutral model, which means171

that the neutral-s model is equal to the original neutral model when s = 0 or dd
0 = 0. For convenience,172

we defined δ = log10(d
d
0/g0) and hereafter use δ instead of dd

0 .173

The MASSIVE analysis of the neutral-s model confirmed that the incorporation of the stem cell174

hierarchy boosts neutral evolution175

(https://www.hgc.jp/˜niiyan/canevosim/neutral_s). To obtain the heat map in Fig 5,176

the ITH score was measured while dd
0 and δ were changed, but mn = 0.1 and P = 1000 were constantly177

set. In the heat map, a decrease of s leads to an increase in the ITH score when δ ≥ 0 (i.e., dd
0 ≥ g0). A178

smaller value of s means that more differentiated cells are generated per stem cell division, and δ ≥ 0179

means that the population of the differentiated cells cannot grow in total, which is a valid assumption180

for typical stem cell hierarchy models. That is, this observation indicates that the stem cell hierarchy181

can induce neutral ITH even with a relatively low mutation rate setting (i.e., mn = 0.1), with which the182

original neutral model cannot generate neutral ITH.183

The underlying mechanism boosting neutral evolution can be explained as follows. We here consider184

only stem cells for an approximation, because differentiated cells do not contribute to tumor growth185

with δ ≥ 0. While one cell grows to a population of P cells, let cell divisions synchronously occur186

across x generations during the clonal expansion. Then, (1+ s)x = P holds, because the mean number187

of stem cells generated per cell division is estimated as 1+ s. Solving the equation for x gives x =188
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Figure 5. Sensitivity analysis of the neutral-s model. (A) Heat map obtained by calculating

Shannon index 0.05 while changing the relative death rate of differentiated cells δ = log10(d
d
0/g0)

and the asymmetrical division rate s. The neutral mutation rate mn and maximum population size P set

to 10−1 and 105, respectively. (D) Single-cell mutation profiles obtained for nine parameter settings,

indicated on the heat map presented in (A).

logP/ log(1 + s); That is, it can be estimated that, during the clonal expansion, each of the P cells189

experiences logP/ log(1+ s) cell divisions and accumulates mn logP/2log(1+ s) mutations on average.190

We confirmed that the expected mutation count based on this formula fits the values observed in our191

simulation well, except in the exceptional cases where the mutation counts reached the upper limit,192

Nn = 1000 (Fig S3). These arguments mean that a tumor with a stem cell hierarchy accumulates more193

mutations until reaching a fixed population size than does a tumor without a stem cell hierarchy; that194

is, a stem cell hierarchy increases the apparent mutation rate by log2/ log(1+ s) folds, which induces195

neutral evolution neutral ITH even with relatively low mutation rate settings.196

Combining the driver and neutral model197

We now present the “composite” model that was constructed by combining the driver and neutral model198

to reproduce ITH more similar to those in real tumors. In a unit time, a cell divides into two daughter cells199

with a constant probability g without dying. In each cell division, each of the two daughter cells acquires200

kd ∼ Pois(md/2) driver mutations and kn ∼ Pois(mn/2) neutral mutations. For each type of mutation,201

Nd and Nn mutations can be accumulated at maximum. For a cell that has nd (= ∑kd) mutations, cell202

division probability g is defined as g = g0 f nd , where g0 is a base division probability. The simulation203

started from one cell without mutations and ended when the population size p reached P or time t reached204

T . As expected from the MASSIVE analyses of the driver and neutral model that were performed205

separately, our MASSIVE analysis of the composite model confirmed that, depending on the parameter206

setting, the behaviors of the composite model are roughly categorized into the following six modes (Fig207

6; https://www.hgc.jp/˜niiyan/canevosim/composite) :208

• With small md and small mn, i.e., with low driver and neutral mutation rates, no evolution involving209

driver and neutral mutations occurs.210

• With large md , small mn, and small f (i.e., with high driver and low neutral mutation rates, and211

weak driver mutations), branching evolution occurs while no neutral evolution occurs.212

• With large md , small mn, and large f (i.e., with high driver and low neutral mutation rates, and213

strong driver mutations), linear evolution occurs while no neutral evolution occurs.214
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• With small md and large mn (i.e., with low driver and high neutral mutation rates), neutral evolution215

occurs while no evolution involving driver mutations occurs.216

• With large md , large mn, and small f (i.e., with low driver and high neutral mutation rates, and217

weak driver mutations), branching and neutral evolution mixedly occur.218

• With large md , large mn, and large f (i.e., with high driver and high neutral mutation rates, and219

strong driver mutations), linear and neutral evolution mixedly occur.220

Note that, because tumors having high driver mutation rates must have high neutral mutation rates221

also, linear and branching evolution must in general be accompanied by neutral evolution. Therefore,222

the last three modes are supposed to constitute the process that can actually occur in real tumors.223
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Figure 6. Six evolutionary modes simulated by the composite model. Our sensitivity analysis

demonstrated that, depending on the parameter setting, the behaviors of the composite model are

roughly categorized into the six modes. Representative mutation profiles of the six modes are presented.

Adding punctuated evolution224

Previously, we analyzed multiregion sequencing data of advanced colorectal cancer and precancerous225

lesions jointly to determine the evolutionary principles generating ITH shift from branching to neutral226

evolution during colorectal tumorigenesis Saito et al. (2018). We also determined that the number of227

copy number alterations drastically increases during the progression from colorectal precancerous le-228

sions to advanced colorectal cancer, which prompted us to suspect that punctuate evolution triggers the229

evolutionary shift from branching to neutral evolution. To examine this possibility, we additionally in-230

corporated punctuated evolution in the composite model to build the “punctuated” model.231

For the models considered thus far, we assumed that cells can infinitely grow without a decrease in232

their growth speed. However, it is more natural to assume that there exists a limit of population size233

because of the resource limitation and that the growth speed gradually slows down as the population234

size approaches the limit. The limit of population sizes is called the carrying capacity and employed235

in the logistic equation Verhulst (1838). By mimicking the logistic equation, we modified the division236

probability as g = g0 f nd (1− p/pc), where pc is the carrying capacity. To reproduce punctuated evo-237

lution, we additionally employ an “explosive” driver mutation, which negates the effect of the carrying238

capacity. After a cell accumulates driver mutations up to the maximum Nd , the explosive driver mutation239

is introduced at a probability me. For a cell that has the explosive driver mutation, the carrying capacity240

pc is set to infinite; That is, it is assumed that the explosive driver mutation rapidly evolve the cell so that241

it can conquer the growth limit and attain infinite proliferation ability.242
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Next, we searched for parameter settings that lead the punctuated model to reproduce punctuated evo-243

lution. The MASSIVE analysis confirmed that, with sufficiently large me, punctuated evolution is repro-244

ducible in the punctuated model (https://www.hgc.jp/˜niiyan/canevosim/punctuated;245

note that, for simplicity, we omitted neutral mutations by setting mn = 0 in the MASSIVE analysis). We246

also examined time-course snapshots of simulations conducted with these parameter settings. In the ex-247

ample shown in Fig 7 A and B, we observed that multiple subclones having different driver genes exist;248

that is, branching evolution, which mixedly occurs with neutral evolution, is prominent during the early249

phase of the simulation. Note that a growth curve plot indicates that, as the population size approaches250

the carrying capacity, the growth speed slows down; however, the tumor regrows after the appearance251

of a clone that has acquired an explosive driver mutation. The clone with the explosive driver mutation252

is then subjected to a selective sweep, which causes subclonal driver mutations in the clone to shift to253

clonal mutations. Then, only neutral mutations are accumulated as subclonal mutations; That is, ITH is254

finally generated by neutral evolution.255

We also found that two subclones having different subclonal driver mutations sometimes appear by256

obtaining two independent explosive driver mutations (Fig 7 C and D). This observation recalls to mind257

the multiverse model, which was proposed for glioblastoma evolution Lee et al. (2017). The multiverse258

model is derived from the Big-Bang model, a model for jointly describing punctuated and neutral evo-259

lution during colorectal tumorigenesis Sun et al. (2018). The Big-Bang model assumes that a single260

clone explosively expands from a precancerous lesion while generating neutral ITH, consistently with261

our evolutionary shift model. However, in the multiverse model, it is assumed that multiple subclones262

are subject to explosive expansion. Collectively, our simulation based on the punctuated model not263

only supports our hypothesis that punctuated evolution underlies the evolutionary shift during colorectal264

tumorigenesis, but also can reproduce multiple types of punctuated models proposed thus far.265

DISCUSSION266

In this paper, we introduce a series of simulation models that reproduce the four types of cancer evo-267

lutionary modes: linear, branching, neutral, and punctuated. Our sensitivity analysis of these models268

provided a number of insights into cancer evolution. For example, under the assumption of sufficiently269

high mutation rates, branching evolution occurs with strong driver mutations, whereas linear evolution270

occurs with weak driver mutations. However, a major concern about our sensitivity analysis is whether271

the ranges of parameter values examined is realistic. Although dependent on tumor types, the number of272

driver mutations were previously estimated as in the low single digits for most tumor types, consistently273

with our settings for d. As the increase in the cell division probability per driver mutation f , which is in-274

terpreted as the strength of driver mutations, we examined values ranging from 100.1 to 101.0. Although275

the value of f has not been the subject to extensive experimental determination, it has been reported that276

induction of K-rasG12D in murine small intestine increases growth rate from one cell cycle per 24 hr to277

one cell cycle per 15 hr, from which f is estimated as 100.204 Snippert et al. (2014).278

The driver mutation rate md and population size P appear to be problematic. Although the driver mu-279

tation rate was previously estimated as ∼ 3.4×10−5 per cell division Bozic et al. (2010), our sensitivity280

analysis examined values from 10−4 to 10−1, which are above the estimated value by orders of magni-281

tude. It should also be noted that, in our simulation, it was assumed that a tumor contains 106 cells at282

maximum, whereas the number of cancer cells in one gram of tumor tissue is reportedly 109 or one order283

less Del Monte (2009). Clearly, for md and P, the parameter space we examined does not cover those in a284

real tumor. However, the results of the MASSIVE analysis allow the behaviors of the driver model to be285

envisioned in a realistic parameter space. When P is small, neither linear nor branching evolution occurs.286

As P increases, we observe linear or branching evolution with smaller md , although the range of f that287

leads to branching evolution shifts to larger values. Moreover, as shown by the sensitivity analysis of the288

neutral-s model, the presence of a stem cell hierarchy increases the apparent mutation rate. Therefore,289

a real tumor having a a stem cell hierarchy apparently should have a higher md value. Collectively, it290

is natural to assume that a real tumor having large P and small md can be similarly generated by linear291

or branching evolution, although, in such cases, the actual value of f might be larger than those that we292

examined.293

The sensitivity analysis of the neutral model showed that neutral ITH is generated if the expected294

number of neutral mutations generated per cell division, mn, exceeds 1. In a recent report, the estimated295

somatic mutation rate was given as 2.66× 10−9 mutations per base pair per mitosis. Given that most296

9/19PeerJ reviewing PDF | (2019:11:42873:0:0:CHECK 7 Nov 2019)

Manuscript to be reviewed

guido lenz


guido lenz


guido lenz


guido lenz


guido lenz


guido lenz




lo
g
1
0
p

lo
g
1
0
p

0 10000 20000 30000 40000 50000

0
1

2
3

4
5

6

0

0
1

2
3

4
5

6

t

t
0 5000 10000 15000 20000 25000

1
2

3
4

5
6

0

1
2

3
4

5
6

A

C

D

B

Figure 7. Time-course snapshots of simulations based on the punctuated model. Growth curve

(A) and time-course snapshots of mutation profiles (B) simulated from the punctuated model with

P = 106, Pc = 103.5, md = 10−1, mp = 100.5, and me = 10−4. Growth curve (C) and time-course

snapshots of mutation profiles (D) simulated from the punctuated model with P = 106, Pc = 103.5,

md = 10−1, mp = 100.5, and me = 10−3. The time points when snapshots were obtained are indicated

by empty circles on the growth curves.
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mutations are neutral on the human genome comprised of 3×109 bases, even a cell division of normal297

cells generates more than 1 mutation. As cancer cells should have higher mutation rates, which can be298

further accelerated by stem cell hierarchies, it is reasonable to assume that a tumor in general satisfies the299

conditions to generate neutral ITH. However, not every tumor necessarily has neutral ITH; neutral ITH300

is distorted by natural selection if the tumor additionally satisfies the conditions for branching evolution,301

as shown by the analysis employing the composite model.302

A highlight of this work is that the punctuated model demonstrated that punctuated evolution triggers303

the evolutionary shift from branching to neutral evolution. For carrying capacity pc and the probability of304

acquiring an explosive mutation me in the punctuated model, the parameter values that we examined are305

clearly outside realistic ranges. Similarly to P, pc should take a larger value. Although it cannot easily306

to be experimentally determined, me also appears to be overestimated; although the human body in fact307

potentially harbors numerous precancerous lesions, which are assumed not to have acquired explosive308

driver mutations yet, only a tiny fraction of cases progresses to advanced stages by acquiring explosive309

driver mutations. However, it is intuitively understandable that the behaviors of the punctuated model, as310

well as of the driver model, are not dependent on precise values of these parameters, and in our opinion311

our analysis is sufficient to provide a semi-quantitative understanding of cancer evolution.312

The models we introduced in this paper can be described collectively as the unified model, a formal313

description of which is provided in the method section. The unified model is very simple but sufficient314

to reproduce linear, branching, neutral, and punctuated evolution. Of course, the unified model har-315

bors many limitations, which should be addressed in future studies. Our current version of the model316

completely ignores spatial information, which potentially influences evolutionary dynamics. Recently317

reported studies have shown that spatial structures regulate evolutionary modes in tumors Noble et al.318

(2019); West et al. (2019). We also determined that resource bias prompts branching evolution, by sim-319

ulating tumor growth on a one-dimensional lattice Niida et al. (2019). Although our model assumed that320

driver mutations independently have effects of equal strength, different driver mutations should have321

different strengths and might work synergistically Castro-Giner et al. (2015). Although we assumed that322

punctuated evolution occurs only once in the course of cancer evolution, it is possible that a tumor is323

confronted with different types of resource limitations during progressions and undergoes punctuated324

evolution multiple times to conquer them Aktipis et al. (2013). However, in spite of these imitations, the325

MASSIVE analyses of the models encompassed by the unified model have successfully provided a num-326

ber of insights into cancer evolutionary dynamics. In our opinion the unified model serves as a starting327

point for constructing more realistic simulation models to understand in greater depth the diversity of328

cancer evolution, which is being unveiled by the evergrowing amount of cancer genomics data.329

METHODS330

Simulation model331

Although we described a series of simulation models in the main text, we here reformulate the unified332

model, which encompasses these models. Starting from a stem cell without mutations, the following333

time steps are repeated until the number of population size p reaches P or the number of time steps t334

reaches T . For each time step, each cell is subject to cell division with a probability g and cell death335

with a probability d. g depends on a base division rate g0, the increase in the cell division probability336

per driver mutation f , the number of driver mutations accumulated in the cell nd , population size p, and337

the carrying capacity pc: g = g0 f nd (1− p/pc). d depends on the base death rate d0, the decrease in the338

cell death probability per driver mutation, and the number of driver mutations accumulated in the cell339

nd : d = d0e−nd . When the cell is a differentiated cell, d0 is replaced by dd
0 , which is the base death rate340

for differentiated cells: d = dd
0 e−nd . The order of the trials of cell division and death is flipped with341

probability 0.5. We also assumed that cell death occurs only in the case where p > 1, to prevent the342

simulation from halting before clonal expansion.343

In a cell division, the cell is replicated into two daughter cells. If the parent cell is a stem cell,344

one of the two daughter cells is differentiated with a probability 1− s; that is, s expresses the proba-345

bility of symmetric division. For each of the two daughter cells, we introduce kd driver and kn neutral346

mutations. kd and kn are sampled from Poison distributions, the parameters of which are md/2 and347

mn/2, respectively: kd ∼ Pois(md/2) and kn ∼ Pois(mn/2). Note that this means that each cell divi-348

sion generates md driver and mn neutral mutations on average. We assumed each mutation acquired349

by different division events occurs at different genomic positions and each cell can accumulate Nd350
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driver and Nn neutral mutations at maximum. When each of the two daughter cells has Nd driver mu-351

tations, we further attempted to introduce an explosive driver mutation; the explosive driver mutation352

is introduced with a probability me and sets the carrying capacity pc of the cell to infinite. The pseu-353

docode for the unified model is provided as Algorithm 1. The variables and parameters employed in354

the unified model are listed in Tables 1 and 2. The simulation code used in this study is available from355

https://github.com/atusiniida/canevosim.356

Algorithm 1 Unified model

1: prepare a stem cell without mutations

2: while p < P or t < T do

3: for each cell do

4: g = g0 f nd (1− p/pc)
5: d = d0e−nd

6: if the cell is a differentiated cell then

7: d = dd
0 e−nd

8: if rand < 0.5 then

9: if rand() < g then

10: divide(the cell)

11: else if rand() < d then

12: if p > 1 then

13: kill the cell (accordingly, p = p−1)

14: else

15: if rand() < d then

16: if p > 1 then

17: kill the cell (accordingly, p = p−1)

18: else if rand() < g then

19: divide(the cell)

20: t = t +1

21:

22:

23: function rand()

24: return a random number ranging from 0 to 1

25:

26: function divide(a cell)

27: replicate the cell into two daughter cells (accordingly, p = p+1)

28: if the parent cell is a stem cell then

29: if rand() > s then

30: differentiate one of the two daughter cells

31: for each of the two daughter cells do

32: introduce kd ∼ Pois(md/2) driver mutations

33: introduce kn ∼ Pois(mn/2) neutral mutations

34: if nd = ∑kd reaches the upper limit Nd then

35: if rand() < me then

36: set pc of the cell to infinite

Post-processing of simulation results357

To evaluate the simulation results quantitatively, we calculated summary statistics based on 1000 cells358

randomly sampled from each simulated tumor. these summary statistics are listed in Table 3. time359

and population size indicate the numbers of time steps and cells, respectively, when the simulation is360

complete. mutation count per cell represents the mean number of mutations accumulated in each of the361

randomly sampled 1000 cells. By combining the mutations of the 1000 cells, we defined the mutations362

that occur in 0.95% or more of the 1000 cells as clonal mutations, and the others as subclonal mutations.363

The numbers of clonal, subclonal, and both types of mutations were then defined as clonal mutation364
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Table 1. Variables

Symbol Description

kd Number of driver mutations obtained in a cell division

nd Number of driver mutations accumulated in a cell

kn Number of neutral mutations obtained in a cell division

p Population size

t Number of time steps

g Cell division probability

d Cell death probability

Table 2. Parameters

Symbol Description

md Expected number of driver mutations generated per cell division

mn Expected number of neutral mutations generated per cell division

me Probability of acquiring an explosive mutation

Nd Maximum number of driver mutations accumulated in a cell

Nn Maximum number of neutral mutations accumulated in a cell

f Increase of the cell division probability per driver mutation

e Decrease of the cell death probability per driver mutation

g0 Base cell division probability

d0 Base cell death probability for stem cells

dd
0 Base cell death probability for differentiated cells

s Symmetric division probability

pc Population capacity

P Maximum population size

T Maximum number of time steps

count, subclonal mutation count, and total mutation count, from which clonal mutation proportion365

and subclonal mutation proportion were further calculated. The degree of ITH was also measured by366

Shannon and Simpson indices, which were calculated based on the proportions of different subclones367

(i.e., cell subpopulations with different mutations) after removing mutations having a frequency less of368

than 5% or 10%: Shannon index 0.05, Shannon index 0.1, Simpson index 0.05, and Simpson369

index 0.1. Similarly, after removing mutations having a frequency of less than 5% or 10%, we also370

checked whether multiple subclones harboring different driver mutations coexist, which is represented as371

binary statistics, branching evolution 0.05, and branching evolution 0.1. When the simulated tumor372

had differentiated cells or subclones with explosive driver mutations, the proportion of the subpopulation373

was calculated as subpopulation proportion .374

The single-cell mutation profiles of the 1000 cells are represented as a binary matrix, the row and375

column indices of which are mutations and samples, respectively. To interpret the simulation results376

intuitively, we also visualized the binary matrix by utilizing the heatmap function in R after the following377

pre-processing, if necessary. When the number of rows was less than 10, empty rows were inserted in the378

matrix so that the number of rows was 10. When the number of rows was more than 300, we extracted379

the 300 rows with the highest mutation occurrence so that the number of rows was 300. In the neutral380

and neutral-s models, we exceptionally set the maximum row number to 1000 in order to visualize381

low-frequency mutations. The visualized matrix is accompanied by a left-side blue bar indicating the382

driver mutations. When the simulated tumor had differentiated cells or subclones with explosive driver383

mutations, the subpopulation is indicated by the purple bar on the top of the visualized matrix.384
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Table 3. Summary statistics

Name Description

time Number of time steps when simulation

is finished

population size Number of cells when simulation

is finished

mutation count per cell Mean number of mutations accumulated in each cell

clonal mutation count Number of clonal mutations

subclonal mutation count Number of subclonal mutations

total mutation count clonal mutation count + subclonal mutation count

clonal mutation proportion clonal mutation count / total mutation count

subclonal mutation proportion subclonal mutation count / total mutation count

Shannon index 0.1 Shannon index calculated with

a mutation frequency cutoff of 0.1

Shannon index 0.05 Shannon index calculated with

a mutation frequency cutoff of 0.05

Simpson index 0.1 Simpson index calculated with

a mutation frequency cutoff of 0.1

Simpson index 0.05 Simpson index calculated with

a mutation frequency cutoff of 0.05

branching evolution 0.05 Binary statistic indicating that multiple subclones

harboring different driver mutations coexist,

calculated with a mutation frequency cutoff of 0.05

branching evolution 0.1 Binary statistic indicating that multiple subclones

harboring different driver mutations coexist,

calculated with a mutation frequency cutoff of 0.1

subpopulation proportion proportion of differentiated cells

or subclones with explosive driver mutations

Sensitivity analysis based on MASSIVE385

To cover a sufficiently large parameter space in the sensitivity analysis, we employed a supercomputer,386

SHIROKANE4 (at Human Genome Center, The Institute of Medical Science, The University of Tokyo).387

The simulation and post-processing steps for different parameter settings were parallelized on Univa388

Grid Engine. For each model, we employed a full factorial design involving four parameters (i.e, we389

tested every combination of candidate values of the four parameters) while other parameters were fixed.390

The parameter values used for our analysis are listed in Table 2. For each parameter setting, 50 Monte391

Carlo trials were performed and the summary statistics were averaged over the 50 trials. The averaged392

summary statistics calculated for each parameter setting were visualized by interactive heat maps on a393

web-based visualization tool, the MASSIVE viewer. The MASSIVE viewer also displays single-cell394

mutation profiles from 5 of the 50 trial with the same parameter setting. For details, please refer to our395

methodological report Niida et al. (2019). All the results in this study can be interactively explored in the396

MASSIVE viewer on our website (https://www.hgc.jp/˜niiyan/canevosim). Parameter397

values used for the MASSIVE analysis are provided in Table S1.398
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SUPPORTING INFORMATION399
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Figure S1. Self-similarity of neutral ITH. (A) Illustrative explanation of the preparation of the

log-log plot presented in (B). After mutations having frequencies less than r are filtered out, the number

of subclones c is counted based on the mutation profiles. (B) Log-log plot for r and c obtained from a

simulation with P = 105 and mn = 10. Similar linearity holds when mn ≥ 1.
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Figure S2. Schema of the neutral-s model. Stem cells divide with a probability go without dying.

For each cell division of stem cells, a symmetrical division generating two stem cells occurs with

probability s, while an asymmetrical division generating one stem cell and one differentiated cell occurs

with probability 1− s. A differentiated cell symmetrically divides to generate two differentiated cells

with probability g0 but dies with probability dd
0 .
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Figure S3. Observed and expected mutation counts from the neutral-s model. The observed

mutation counts (obs) were prepared from values of mutation count per cell in the MASSIVE

analysis, while the expected mutation counts (exp) were analytically estimated as mn logP/2log(1+ s)
under the assumption that δ ≥ 0. Each cross representing each parameter setting was plotted in log10

scale for different values of δ . Positioning on the dashed line indicates the equality of the observed and

expected mutation counts.

16/19PeerJ reviewing PDF | (2019:11:42873:0:0:CHECK 7 Nov 2019)

Manuscript to be reviewed



−1.0

−1.5

−2.0

−2.5

−3.0

−3.5

−4.0

−1.0

−1.5

−2.0

−2.5

−3.0

−3.5

−4.0

−1.0

−1.5

−2.0

−2.5

−3.0

−3.5

−4.0

−1.0

−1.5

−2.0

−2.5

−3.0

−3.5

−4.0

0.2 0.4 0.6 0.8 1.0 1.0 1.00.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

clonal mutation 
proportion

Shannon 
index 0.05

branching 
evolution 0.05

log
10

f

P = 106

P = 105

P = 104

P = 103

log
10

m
d

Figure S4. Sensitivity analysis of the driver model. While changing the driver mutation rate md , the

strength of driver mutations f , and maximum population size P, heat maps of summary statistics were

prepared for the proportion of clonal mutations, clonal mutation proportion (A), a measure for ITH,

Shannon index 0.05 (B) and an indicator for the occurrence of branching evolution, branching

evolution 0.05 (C). Nd was set to 3.

ACKNOWLEDGMENT400

We thank Hiroshi Haeno, Hideki innan, and Watal M. Iwasaki for helpful discussions.401

REFERENCES402

Aktipis, C. A., Boddy, A. M., Gatenby, R. A., Brown, J. S., and Maley, C. C. (2013). Life history403

trade-offs in cancer evolution. Nature Reviews Cancer, 13(12):883.404

Altrock, P. M., Liu, L. L., and Michor, F. (2015). The mathematics of cancer: integrating quantitative405

models. Nature Reviews Cancer, 15(12):730.406

Baca, S. C., Prandi, D., Lawrence, M. S., Mosquera, J. M., Romanel, A., Drier, Y., Park, K., Kitabayashi,407

N., MacDonald, T. Y., Ghandi, M., et al. (2013). Punctuated evolution of prostate cancer genomes.408

Cell, 153(3):666–677.409

Beerenwinkel, N., Schwarz, R. F., Gerstung, M., and Markowetz, F. (2014). Cancer evolution: mathe-410

matical models and computational inference. Systematic biology, 64(1):e1–e25.411

17/19PeerJ reviewing PDF | (2019:11:42873:0:0:CHECK 7 Nov 2019)

Manuscript to be reviewed



Bozic, I., Antal, T., Ohtsuki, H., Carter, H., Kim, D., Chen, S., Karchin, R., Kinzler, K. W., Vogel-412

stein, B., and Nowak, M. A. (2010). Accumulation of driver and passenger mutations during tumor413

progression. Proceedings of the National Academy of Sciences, 107(43):18545–18550.414

Brown, J. H., Gupta, V. K., Li, B.-L., Milne, B. T., Restrepo, C., and West, G. B. (2002). The fractal415

nature of nature: power laws, ecological complexity and biodiversity. Philosophical Transactions of416

the Royal Society of London. Series B: Biological Sciences, 357(1421):619–626.417

Castro-Giner, F., Ratcliffe, P., and Tomlinson, I. (2015). The mini-driver model of polygenic cancer418

evolution. Nature Reviews Cancer, 15(11):680.419

Cross, W., Kovac, M., Mustonen, V., Temko, D., Davis, H., Baker, A.-M., Biswas, S., Arnold, R.,420

Chegwidden, L., Gatenbee, C., et al. (2018). The evolutionary landscape of colorectal tumorigenesis.421

Nature ecology & evolution, 2(10):1661.422

Davis, A., Gao, R., and Navin, N. (2017). Tumor evolution: Linear, branching, neutral or punctuated?423

Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1867(2):151–161.424

Del Monte, U. (2009). Does the cell number 109 still really fit one gram of tumor tissue? Cell Cycle,425

8(3):505–506.426

Gao, R., Davis, A., McDonald, T. O., Sei, E., Shi, X., Wang, Y., Tsai, P.-C., Casasent, A., Waters, J.,427

Zhang, H., et al. (2016). Punctuated copy number evolution and clonal stasis in triple-negative breast428

cancer. Nature genetics, 48(10):1119.429

Lee, J.-K., Wang, J., Sa, J. K., Ladewig, E., Lee, H.-O., Lee, I.-H., Kang, H. J., Rosenbloom, D. S.,430

Camara, P. G., Liu, Z., et al. (2017). Spatiotemporal genomic architecture informs precision oncology431

in glioblastoma. Nature genetics, 49(4):594.432

Ling, S., Hu, Z., Yang, Z., Yang, F., Li, Y., Lin, P., Chen, K., Dong, L., Cao, L., Tao, Y., et al. (2015). Ex-433

tremely high genetic diversity in a single tumor points to prevalence of non-darwinian cell evolution.434

Proceedings of the National Academy of Sciences, 112(47):E6496–E6505.435

Niida, A., Hasegawa, T., and Miyano, S. (2019). Sensitivity analysis of agent-based simulation utilizing436

massively parallel computation and interactive data visualization. PloS one, 14(3):e0210678.437

Niida, A., Nagayama, S., Miyano, S., and Mimori, K. (2018). Understanding intratumor heterogeneity438

by combining genome analysis and mathematical modeling. Cancer science, 109(4):884–892.439

Noble, R., Burri, D., Kather, J. N., and Beerenwinkel, N. (2019). Spatial structure governs the mode of440

tumour evolution. bioRxiv, page 586735.441

Saito, T., Niida, A., Uchi, R., Hirata, H., Komatsu, H., Sakimura, S., Hayashi, S., Nambara, S., Kuroda,442

Y., Ito, S., et al. (2018). A temporal shift of the evolutionary principle shaping intratumor heterogeneity443

in colorectal cancer. Nature communications, 9(1):2884.444

Snippert, H. J., Schepers, A. G., van Es, J. H., Simons, B. D., and Clevers, H. (2014). Biased competition445

between lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO446

reports, 15(1):62–69.447
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