
Submitted 8 November 2019
Accepted 2 March 2020
Published 8 April 2020

Corresponding author
Atsushi Niida,
aniida@ims.u-tokyo.ac.jp

Academic editor
Leonardo Gollo

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj.8842

Copyright
2020 Niida et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A unified simulation model for
understanding the diversity of cancer
evolution
Atsushi Niida1, Takanori Hasegawa2, Hideki Innan3, Tatsuhiro Shibata1,6,
Koshi Mimori4 and Satoru Miyano5

1 Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University
of Tokyo, Tokyo, Japan

2Division of Health Medical Data Science, Health Intelligence Center, The Institute of Medical Science,
The University of Tokyo, Tokyo, Japan

3 SOKENDAI, The Graduate University for Advanced Studies, Hayama, Japan
4Department of Surgery, Kyushu University Beppu Hospita, Beppu, Japan
5 Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science,
The University of Tokyo, Tokyo, Japan

6Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan

ABSTRACT
Because cancer evolution underlies the therapeutic difficulties of cancer, it is clinically
important to understand the evolutionary dynamics of cancer. Thus far, a number of
evolutionary processes have been proposed to beworking in cancer evolution.However,
there exists no simulation model that can describe the different evolutionary processes
in a unified manner. In this study, we constructed a unified simulation model for
describing the different evolutionary processes and performed sensitivity analysis on
the model to determine the conditions in which cancer growth is driven by each of
the different evolutionary processes. Our sensitivity analysis has successfully provided
a series of novel insights into the evolutionary dynamics of cancer. For example, we
found that, while a high neutral mutation rate shapes neutral intratumor heterogeneity
(ITH) characterized by a fractal-like pattern, a stem cell hierarchy can also contribute
to shaping neutral ITH by apparently increasing the mutation rate. Although It has
been reported that the evolutionary principle shaping ITH shifts from selection to
accumulation of neutral mutations during colorectal tumorigenesis, our simulation
revealed the possibility that this evolutionary shift is triggered by drastic evolutionary
events that occur in a short time and confer a marked fitness increase on one or a
few cells. This result helps us understand that each process works not separately but
simultaneously and continuously as a series of phases of cancer evolution. Collectively,
this study serves as a basis to understand in greater depth the diversity of cancer
evolution.

Subjects Computational Biology, Oncology, Computational Science
Keywords Cancer, Evolution, Simulation

INTRODUCTION
Cancer is regarded as a disease of evolution; during tumorigenesis, a normal cell evolves
to a malignant population by means of mutation accumulation and adaptive Darwinian
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selection. Evolution allows cancer cells to adapt to a new environment and acquire
malignant phenotypes such as metastasis and therapeutic resistance. Therefore, it is
clinically important to understand cancer evolutionary dynamics. The view of cancer as
an evolutionary system was established by Nowell (1976). By combining this view with
a series of discoveries of onco- and tumor suppressor genes (hereinafter, collectively
referred to as ‘‘driver genes’’), Fearon & Vogelstein (1990) proposed a multistep model for
colorectal carcinogenesis. Since then, cancer evolution has generally been described as
‘‘linear evolution,’’ where driver mutations are acquired linearly in a step-wise manner,
generating a malignant clonal population.

However, this simple view of cancer evolution has been challenged since the advent
of the next generation sequencing technology (Yates & Campbell, 2012; McGranahan
& Swanton, 2017; Niida et al., 2018). Deep sequencing demonstrated that subclonality
prevails in both blood and solid tumors, and multiregion sequencing of various types of
solid tumor more dramatically unveiled intratumor heterogeneity (ITH), which results
from the branching process in a cancer cell population along with mutation accumulation.
These genomic studies also found that subclones often harbor mutations in known driver
genes, suggesting that at least a part of ITH is subject to Darwinian selection. In some types
of cancer, such as renal cell carcinoma (Turajlic et al., 2018) and low-grade glioma (Suzuki
et al., 2015), this Darwinian selection-driven branching process is especially prominent; we
observed convergent evolution in which different subclonal mutations are acquired in the
same driver gene or pathway.

Other types of tumors, however, show no clear enrichment of driver mutations
in subclonal mutations. Consistently with this observation, several studies employing
mathematical modeling have suggested that the accumulation of neutral mutations that
do not affect the growth or survival of cancer cells mainly shapes ITH; that is, ‘‘neutral
evolution’’ is the major contributor of ITH in multiple types of cancers (Uchi et al., 2016;
Sottoriva et al., 2015; Ling et al., 2015; Niida, Iwasaki & Innan, 2019). The evolutionary
principles shaping ITH differ not only among cancer types but also between stages of
tumorigenesis.We and others have recently reported that ITH in the early stage of colorectal
tumorigenesis involves selection, whereas the accumulation of neutral mutations plays the
central role in shaping IHT in the later stages (Saito et al., 2018; Cross et al., 2018).

In addition to single nucleotide mutation- and small indel-driven drivers, recent studies
have demonstrated that, in multiple types of cancers, more drastic chromosome- and/or
genome-wide evolutionary events producing copy number alterations and chromosomal
rearrangementsmay have occurred in a short time at the early stage of cancer evolution (Gao
et al., 2016; Baca et al., 2013). Such large-scale events could confer a marked fitness increase
on one or a few cells, which expand to constitute the tumor mass uniformly. This type of
evolution is referred to as ‘‘punctuated evolution’’ after the term ‘‘punctuated equilibrium’’,
which was proposed for species evolution by Gould and Eldredge to challenge the long-
standing paradigm of gradual Darwinian evolution (Gould & Eldredge, 1972; Jay Gould &
Eldredge, 1993), although the underlying molecular mechanisms that cause rapid bursts of
change are very different.
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Collectively, at least four scenarios of cancer evolution were proposed (Davis, Gao &
Navin, 2017). In this paper, we term the four scenarios as the linear-replacing, punctuated-
replacing, driver-branching, and neutral-branching processes (Figs. 1A–1D). The linear-
replacing process applies when newly arisen clones repeatedly spread and replace the entire
population very quickly. A special case of the linear-replacing process is the punctuated-
replacing process, where a number of drastic changes occur in a very short time and
a very fit clone spreads and replaces the entire population very quickly. In the driver-
branching process, multiple subclones having distinct driver mutations coexist to shape
ITH, whereas, in the neutral-branching process, there are no significant driver mutations
when accumulating mutations that constitute ITH.

To obtain an understanding of cancer evolutionary dynamics, many mathematical
models of cancer evolution have been developed (Beerenwinkel et al., 2014; Altrock, Liu
& Michor, 2015); in particular, agent-based simulation models are commonly employed
for this purpose (Sottoriva et al., 2015; Waclaw et al., 2015; Uchi et al., 2016; Iwasaki &
Innan, 2017; Minussi et al., 2019; Poleszczuk, Hahnfeldt & Enderling, 2015). In agent-based
simulation models, each cell in a tumor corresponds to an agent; the cells can divide to
produce new cells, die, or migrate, and each cell’s behavior can be stochastically determined
from its own state and/or the environment surrounding the cell. By applying sensitivity
analysis to the simulation models, (i.e., examining the simulation results while changing
the parameters of the models), it is possible to identify the factors affecting the cancer
evolutionary dynamics (Niida, Hasegawa & Miyano, 2019). However, to the best of our
knowledge, there exists no simulation work aiming to reproduce and analyze the four
above-stated evolutionary processes in a unified manner.

In this paper, we introduce a unified agent-based simulation model, which is simple
but sufficient to reproduce the four evolutionary processes (Figs. 1A–1D). Although the
unified model is formulated in ‘Materials & Methods’, the ‘Results’ section presents a
family of simulation models, each of which constitutes submodels of the unified model.
While constructing the submodels, we explore the conditions leading to, and the ITH
pattern from the four processes. The ‘Results’ section is composed of four parts. In the
first part, we introduce the driver model, which contains only driver mutations, and
examine the conditions leading to the linear-replacing and driver-branching processes. In
the second part, the neutral model, which contains only neutral mutations, is introduced
to address the conditions leading to a neutral pattern of ITH. We show that, although a
high neutral mutation rate is necessary for the neutral pattern of ITH, a stem cell hierarchy
can also contribute to the neutral pattern by apparently increasing the mutation rate.
In the third part, we present a combination of these two models as a composite model
and reproduce realistic ITH patterns, which are generated by mixing the neutral pattern
with the pattern from the linear-replacing or driver-branching processes. In the final part,
we build the punctuated model by incorporating the punctuated-replacing process into
the composite model. Our simulation based on the punctuated model demonstrates that
the punctuated-replacing process triggers an evolutionary shift from the driver- to the
neutral-branching process that is commonly observed during colorectal tumorigenesis
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Figure 1 Illustrating the scenarios in cancer evolution. (A–D) The four typical evolutionary processes.
Red stars indicate normal driver events, which are assumed to be single nucleotide mutations and small
indels, while a green star indicates more drastic chromosome- and/or genome-wide evolutionary events
producing copy number alterations and chromosomal rearrangements. (E) Our model explaining the
temporal shift of evolutionary principles shaping ITH during colorectal tumorigenesis.

Full-size DOI: 10.7717/peerj.8842/fig-1
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(Fig. 1E). This result helps us understand that each process works not separately but
simultaneously and continuously as a series of ‘‘phases’’ of cancer evolution.

MATERIALS & METHODS
Simulation model
Although we described a family of simulation models in the Results section, we here
formulate the unified model, which encompasses these models. Starting from a stem cell
without mutations, the following time steps are repeated until the number of population
size p reaches P or the number of time steps t reaches T . For each time step, each cell is
subject to cell division with a probability g and cell death with a probability d.g depends
on a base division rate g0, the increase in the cell division probability per driver mutation
f , the number of driver mutations accumulated in the cell nd , population size p, and the
carrying capacity pc : g = g0f nd (1−p/pc).d depends on the base death rate d0, the decrease
in the cell death probability per driver mutation, and the number of driver mutations
accumulated in the cell nd : d = d0e−nd . When the cell is a differentiated cell, d0 is replaced
by dd0 , which is the base death rate for differentiated cells: d = dd0 e

−nd . The order of the
trials of cell division and death is flipped with probability 0.5. We also assumed that cell
death occurs only in the case where p> 1, to prevent the simulation from halting before
clonal expansion.

In a cell division, the cell is replicated into two daughter cells. If the parent cell is a
stem cell, one of the two daughter cells is differentiated with a probability 1− s; that is,
s expresses the probability of symmetrical division. For each of the two daughter cells,
we introduce kd driver and kn neutral mutations. kd and kn are sampled from Poison
distributions, the parameters of which are md/2 and mn/2, respectively: kd ∼ Pois(md/2)
and kn∼ Pois(mn/2). Note that this means that each cell division generates md driver and
mn neutral mutations on average. We assumed each mutation acquired by different
division events occurs at different genomic positions and each cell can accumulate
Nd driver and Nn neutral mutations at maximum. When each of the two daughter
cells has Nd driver mutations, we further attempted to introduce an explosive driver
mutation; the explosive driver mutation is introduced with a probability me and sets
the carrying capacity pc of the cell to infinite. The pseudocode for the unified model is
provided as Algorithm 1. The variables and parameters employed in the unified model
are listed in Tables 1 and 2. The simulation code used in this study is available from
https://github.com/atusiniida/canevosim.

Post-processing of simulation results
To evaluate the simulation results quantitatively, we calculated summary statistics based
on 1,000 cells randomly sampled from each simulated tumor. these summary statistics
are listed in Table 3. time and population size indicate the numbers of time steps and
cells, respectively, when the simulation is complete. mutation count per cell represents
the mean number of mutations accumulated in each of the randomly sampled 1,000 cells.
By combining the mutations of the 1,000 cells, we defined the mutations that occur in
95% or more of the 1,000 cells as clonal mutations, and the others as subclonal mutations.
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Algorithm 1 Unified model
1: prepare a stem cell without mutations
2: while p< P or t <T do
3: for each cell do
4: g = g0f nd (1−p/pc)
5: d = d0e−nd

6: if the cell is a differentiated cell then
7: d = dd0 e

−nd

8: if rand< 0.5 then
9: if rand()< g then
10: divide(the cell)
11: if p> 1 and rand()< d then
12: kill the cell (accordingly, p= p−1 )
13: # in the case that the cell is replicated, kill one of the two daughter cells

14: else
15: if p> 1 and rand()< d then
16: kill the cell (accordingly, p= p−1)

17: if rand()< g then
18: divide(the cell)
19: t = t+1
20:

21:

22: function rand()
23: return a random number ranging from 0 to 1

24:

25: function divide(a cell)
26: replicate the cell into two daughter cells (accordingly, p= p+1)
27: if the parent cell is a stem cell then
28: if rand()> s then
29: differentiate one of the daughter cells

30: for each of the daughter cells do
31: introduce kd ∼Pois(md/2) driver mutations
32: introduce kn∼Pois(mn/2) neutral mutations
33: if nd =

∑
kd reaches the upper limit Nd then

34: if rand()<me then
35: set pc of the cell to infinite
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Table 1 Variables.

Symbol Description

kd Number of driver mutations obtained in a cell division
nd Number of driver mutations accumulated in a cell
kn Number of neutral mutations obtained in a cell division
p Population size
t Number of time steps
g Cell division probability
d Cell death probability

Table 2 Parameters.

Symbol Description

md Expected number of driver mutations generated per cell division
mn Expected number of neutral mutations generated per cell division
me Probability of acquiring an explosive mutation
Nd Maximum number of driver mutations accumulated in a cell
Nn Maximum number of neutral mutations accumulated in a cell
f Increase of the cell division probability per driver mutation
e Decrease of the cell death probability per driver mutation
g0 Base cell division probability
d0 Base cell death probability for stem cells
dd
0 Base cell death probability for differentiated cells
s Symmetrical division probability
pc Carrying capacity
P Maximum population size
T Maximum number of time steps

The numbers of clonal, subclonal, and both types of mutations were then defined as
clonal mutation count, subclonal mutation count, and total mutation count, from
which clonal mutation proportion and subclonal mutation proportion were further
calculated. The degree of ITH was also measured by Shannon and Simpson indices, which
were calculated based on the proportions of different subclones (i.e., cell subpopulations
with different mutations) after removing mutations having a frequency less of than 5% or
10%: Shannon index 0.05, Shannon index 0.1, Simpson index 0.05, and Simpson
index 0.1. Similarly, after removing mutations having a frequency of less than 5% or 10%,
we also checked whether multiple subclones harboring different driver mutations coexist,
which is represented as binary statistics, driver-branching 0.05, and driver-branching
0.1. When the simulated tumor had differentiated cells or subclones with explosive
driver mutations, the proportion of the subpopulation was calculated as subpopulation
proportion.

The single-cell mutation profiles of the 1,000 cells are represented as a binary matrix,
the row and column indices of which are mutations and samples, respectively. To interpret
the simulation results intuitively, we also visualized the binary matrix by utilizing the
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Table 3 Summary statistics.

Name Description

time Number of time steps when simulation is finished
population size Number of cells when simulation is finished
mutation count per cell Mean number of mutations accumulated in each cell
clonal mutation count Number of clonal mutations
subclonal mutation count Number of subclonal mutations
total mutation count clonal mutation count + subclonal mutation count
clonal mutation proportion clonal mutation count / total mutation count
subclonal mutation proportion subclonal mutation count / total mutation count
Shannon index 0.1 Shannon index calculated with

a mutation frequency cutoff of 0.1
Shannon index 0.05 Shannon index calculated with

a mutation frequency cutoff of 0.05
Simpson index 0.1 Simpson index calculated with

a mutation frequency cutoff of 0.1
Simpson index 0.05 Simpson index calculated with

a mutation frequency cutoff of 0.05
driver-branching 0.05 Binary statistic indicating that multiple subclones

harboring different driver mutations coexist,
calculated with a mutation frequency cutoff of 0.05

driver-branching 0.1 Binary statistic indicating that multiple subclones
harboring different driver mutations coexist,
calculated with a mutation frequency cutoff of 0.1

subpopulation proportion proportion of differentiated cells
or subclones with explosive driver mutations

heatmap function in R after the following pre-processing, if necessary. When the number
of rows was less than 10, empty rows were added to the matrix so that the number of
rows was 10. When the number of rows was more than 300, we extracted the 300 rows
with the highest mutation occurrence so that the number of rows was 300. In the neutral
and neutral-s models, we exceptionally set the maximum row number to 1,000 in order
to visualize low-frequency mutations. The visualized matrix is accompanied by a left-side
blue bar indicating the driver mutations. When the simulated tumor had differentiated
cells or subclones with explosive driver mutations, the subpopulation is indicated by the
purple bar on the top of the visualized matrix.

Sensitivity analysis based on MASSIVE
To cover a sufficiently large parameter space in the sensitivity analysis, we employed a
supercomputer, SHIROKANE4 (at Human Genome Center, The Institute of Medical
Science, The University of Tokyo). The simulation and post-processing steps for different
parameter settings were parallelized on Univa Grid Engine. For each model, we employed a
full factorial design involving four parameters (i.e, we tested every combination of candidate
values of the four parameters) while other parameters were fixed. The parameter values
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used for our analysis are listed in Table 2. For each parameter setting, 50 Monte Carlo trials
were performed and the summary statistics were averaged over the 50 trials. The averaged
summary statistics calculated for each parameter setting were visualized by interactive
heat maps on a web-based visualization tool, the MASSIVE viewer. The MASSIVE viewer
also displays single-cell mutation profiles from 5 of the 50 trials with the same parameter
setting. For details, please refer to our methodological report (Niida, Hasegawa & Miyano,
2019). All the results in this study can be interactively explored in the MASSIVE viewer
on our website (https://www.hgc.jp/~niiyan/canevosim). Parameter values used for the
MASSIVE analysis are provided in Table S1.

RESULTS
Driver model
First, we constructed the ‘‘driver’’ model, which contains only driver genes, aiming to
study the two Darwinian selection processes: linear-replacing and driver-branching. We
employed an agent-based model where each cell in a tumor is represented by an agent.
The model starts from one cell without mutations. In a unit time, a cell divides into two
daughter cells with a probability g . This model assumes that immortalized cell, which just
divides without dying. In each cell division, each of the two daughter cells acquires kd driver
mutations. Here, kd is sampled from a Poisson distribution with the parameter md/2, i.e.,
kd ∼ Pois(md/2), which means that one cell division generates md mutations on average.
We assumed that driver mutations acquired by different division events occur at different
genomic positions and each cell can accumulate Nd mutations at maximum. In this study,
we assumed that all mutations are driver mutations, which increase the cell division rate.
When the cell acquires mutations, the cell division rate increases f fold per mutation; that
is, when a cell has nd (=

∑
kd) mutations in total, the cell division probability g is defined

as g = g0f nd , where g0 is a base division probability. In each time step, every cell is subject
to a cell division trial, which is repeated until population size p reaches P or the number of
time steps t reaches T .

To examine themanner inwhich each parameter affects the evolutionary dynamics of the
simulationmodel, we performed a sensitivity analysis utilizingMASSIVE (Niida, Hasegawa
& Miyano, 2019), for which we employed a supercomputer. MASSIVE first performs a very
large number of agent-based simulations with a broad range of parameter settings. The
results are then intuitively evaluated by the MASSIVE viewer, which interactively displays
heat maps of summary statistics and single-cell mutation profiles from the simulations with
each parameter setting. In Figs. 2A–2C and Fig. S1, the heat maps of three representative
summary statistics, the proportion of clonal mutations ( clonal mutation proportion),
a measure for ITH ( Shannon index 0.05), and an indicator for the occurrence of
the driver-branching process ( driver-branching 0.05), are presented for a part of the
parameter space examined. To calculate clonal mutation proportion, we defined the
mutations having a frequency of 95% or more as clonal mutations. Shannon index
0.05 is the Shannon index calculated based on the proportions of different subclones
(i.e., cell subpopulations with different mutations) after removing the mutations having

Niida et al. (2020), PeerJ, DOI 10.7717/peerj.8842 9/27

https://peerj.com
https://www.hgc.jp/~niiyan/canevosim
http://dx.doi.org/10.7717/peerj.8842#supp-7
http://dx.doi.org/10.7717/peerj.8842#supp-1
http://dx.doi.org/10.7717/peerj.8842


0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−1.5

−2

−2.5

−3

−3.5

−4

−1

−1.5

−2

−2.5

−3

−3.5

−4

−1

−1.5

−2

−2.5

−3

−3.5

−4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5
1.0

0.7

0.0

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.0

0.5

1.0

0.0

0.35

A D

E

F

B

C

D

D

E

E

F

F

D E

F

Shannon index 0.05

clonal mutation proportion

driver-branching 0.05

log10f   (driver strength)

log10f   (driver strength)

log10f   (driver strength)

log
10

m d  
 (m

ut
at

ion
 ra

te
)

log
10

m d  
 (m

ut
at

ion
 ra

te
)

log
10

m d  
 (m

ut
at

ion
 ra

te
)

Figure 2 Sensitivity analysis of the driver model.While changing the driver mutation ratemd and the
strength of driver mutations f , heat maps of the summary statistics were prepared for the proportion of
clonal mutations, clonal mutation proportion (A), a measure for ITH, Shannon index 0.05 (B), and an
indicator for the occurrence of the driver-branching process, driver-branching 0.05 (C). Nd and P were
set to 3 and 105, respectively. (D–F) Single-cell mutations profiles obtained from four Monte Carlo trials
with each of the three parameter settings, which are indicated on the heat maps presented in A–C. Rows
and columns of the clustered single-cell mutations profile matrices denote mutations and cells, respec-
tively. Blue side bars indicate driver mutations.

Full-size DOI: 10.7717/peerj.8842/fig-2
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a frequency less of than 5%. The Shannon index is commonly used to measure species
richness in community ecology, and it has a positive correlation with diversity. Similarly,
after removing mutations having a frequency of less than 5%, we also checked whether
multiple subclones harboring different driver mutations coexist, which is represented as a
binary statistic, driver-branching 0.05. For each parameter setting, 50 Monte Carlo trials
were performed and the summary statistics were averaged over the 50 trials. To examine
ITH visually, we sampled 1,000 cells from a simulated tumor and obtained a single-cell
mutation profile matrix. The mutation profile matrix was visualized after reordering its
rows and columns based on hierarchical clustering. The rows and columns indexmutations
and samples, respectively (Figs. 2D–2F). All the results can be interactively explored in the
MASSIVE viewer on our website (https://www.hgc.jp/~niiyan/canevosim/driver).

The results of the MASSIVE sensitivity analysis demonstrated that the strength of driver
mutations f is the most prominent determinant of the Darwinian selection processes
(Fig. 2). A smaller value of f (e.g., f = 100.3), which indicates weaker driver mutations,
is generally associated with the driver-branching process, which is characterized by large
driver-branching 0.05, corresponding to parameter setting D in Figs. 2A–2C. However,
in the case of a low mutation rate (e.g., md = 10−3), a small f value is insufficient to
cause expansions of multiple clones, corresponding to parameter setting F in Figs. 2A–2C.
When the value of f is large (e.g., f = 100.9), driver-branching 0.05 is small, but the
clonal mutation proportion is large, which suggests that the linear-replacing process
generates a homogeneous tumor, corresponding to parameter setting E in Figs. 2A–2C.
By considering these results with time-course snapshots of the simulations, mechanisms
driving the linear-replacing and driver-branching processes were intuitively interpreted
(Fig. 3). Under the assumption of weak driver mutations, before a clone that has acquired
the first driver mutation becomes dominant, other clones that have acquired different
mutations expand, leading to the driver-branching process (Figs. 3A and 3B). In contrast,
under the assumption of strong driver mutations, a clone that has acquired the first
driver mutation rapidly expands to obtain more driver mutations serially, leading to the
linear-replacing process (Figs. 3C and 3D).

The linear-replacing process is very similar to the fixation and selective sweep described
in the standard population genetics framework (Maynard Smith & Haigh, 1974; Ohta &
Kimura, 1975). Note that, in a strict sense, fixation does not occur under the assumption
that cancer cells are immortal (Sidow & Spies, 2015; Ohtsuki & Innan, 2017; Niida, Iwasaki
& Innan, 2019); even if a tumor appears to be monoclonal in a mutation profile for 1,000
randomly sampled cells, it is possible that minor clones having less fitness coexist in the
actual population. In the driver-branching process, we observe various subclones that
coexist in the population. They could compete with each other depending on their fitness.
If different subclones obtain distinct driver mutations with very similar fitness effects
independently, the competition between them will be neutral so that none of them can
be fixed and they will keep competing. This situation is similar to the phenomenon called
‘‘clonal interference’’ in an asexual population (Gerrish & Lenski, 1998).

In actual tumors, driver mutations can not only increase the growth rate but also
decrease the death rate. To test the effect of driver mutations decreasing the death rate,

Niida et al. (2020), PeerJ, DOI 10.7717/peerj.8842 11/27

https://peerj.com
https://www.hgc.jp/~niiyan/canevosim/driver
http://dx.doi.org/10.7717/peerj.8842


●●

●

●

●

●

●

0 10000 20000 30000 40000

0
1

2
3

4
5

6

●●

●

●

●

●

●

0 20000 40000 60000
0

1
2

3
4

5
6

t  (time)

t  (time)

A

C D

B

lo
g 10

p 
  (

po
pu

lat
ion

 si
ze

)
lo

g 10
p 

  (
po

pu
lat

ion
 si

ze
)

Figure 3 Time-course snapshots of simulations based on the driver model.Growth curve (A) and
time-course snapshots of mutation profiles (B) simulated from the driver model with Nd = 3, P = 106,
f = 100.3, andmd = 10−1.5 (corresponding to parameter setting D in Figs. 2A–2C). Growth curve (C) and
time-course snapshots of mutation profiles (D) simulated from the driver model with Nd = 3, P = 106,
f = 100.9, andmd = 10−1.5 (corresponding to parameter setting E in Figs. 2A–2C). The time points when
snapshots were obtained are indicated by empty circles on the growth curves.

Full-size DOI: 10.7717/peerj.8842/fig-3

we also created a modified version of the driver model, the ‘‘driver-d’’ model. In the
driver-d model, each cell divides with a constant probability g0 and dies with a probability
d . Driver mutation decreases the cell death probability by f fold: d = d0e−nd , where d0 is
the base death probability. Moreover, we assumed that cell death occurs only in the case
of p> 1, to prevent the simulation from halting before clonal expansion. We applied the
MASSIVE analysis to the driver-d model to find that, if a high mutation rate is assumed
(i.e., md = 10−2), the driver-branching process is pervasive, irrespective of the strength
of the driver mutations (Fig. S2; https://www.hgc.jp/~niiyan/canevosim/driver_d). This
observation is presumably ascribed to the fact that a driver mutation that decreases the
death rate cannot provide a cell with the strong growth advantage necessary for the
linear-replacing process. Even if the mutation rate is low (i.e., md = 10−4), multiple clones
appear after the simulation proceeds to reach a sufficient population size.We also examined
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the evolutionary dynamics of the driver-d models with different mutation rates by taking
time-course snapshots of the simulations (Fig. S3).

In both the driver and driver-d models, we do not consider spatial information.
However, it should be noted that, by simulating tumor growth on a one-dimensional
lattice, we demonstrated that the spatial bias of a resource necessary for cell divisions could
prompt the driver-branching process (Niida, Hasegawa & Miyano, 2019).

Neutral model
Next, we examined the neutral-branching process by analyzing the ‘‘neutral’’ model, where
we considered only neutral mutations that do not affect cell division and death. In a
unit time, a cell divides into two daughter cells with a constant probability g0 without
dying. Similarly to driver mutations in the driver model, in each cell division, each of the
two daughter cells acquires kn∼ Pois(mn/2) neutral mutations. We assumed that neutral
mutations acquired by different division events occur at different genomic positions and
each cell can accumulateNn mutations at maximum. In this study, we setNn= 1000, which
is sufficiently large that no cell reaches the upper limit, except in a few exceptional cases.
The simulation started from one cell without mutations and ended when population size
p reached P or time t reached T .

The MASSIVE analysis of the neutral model demonstrated that, as expected, the
mutation rate is the most important factor for the neutral-branching process (Fig. 4;
https://www.hgc.jp/~niiyan/canevosim/neutral_s; note that the neutral model is included
by the neutral-s model, which is described below). When the mean number of mutations
generated by per cell division, mn, was less than 1, the neutral model just generated sparse
mutation profiles with relatively small values of the ITH score, Shannon index 0.05. In
contrast, when mn exceeded 1, the mutation profiles presented extensive ITH, which are
characterized by a fractal-like pattern and large values of the ITH score (hereinafter, this
type of ITH is referred to as ‘‘neutral ITH’’). According to these results, it is intuitively
supposed that neutral ITH is shaped by neutral mutations that trace the cell lineages in
the simulated tumors. Note that the mutation profiles were visualized after filtering out
low-frequency mutations. Under the assumption of a high mutation rate, more numerous
subclones having different mutations should be observed if we count themutations existing
with lower frequencies.

To verify this speculation, we counted the number of subclones generated from a
simulated tumor, while varying the frequency cutoffs for filtering out mutations. Figure S4
shows the plot of the relationship between the number of subclones and the frequency
cutoffs. As expected, the results indicate that the simulated tumor presents an increasing
number of subclones as the frequency cutoff is lowered. The linearity of the log–log plot
demonstrates that the power law is hidden in the mutation profile, consistently with its
fractal-like pattern (Brown et al., 2002). Note that, although the ITH score does not depend
on population size P and the fractal-like pattern shaped in the earliest stage appears to
be subsequently unchanged in the time-course snapshots (Fig. 5), these are also because
low-frequency mutations were filtered out before visualization; the simulated tumor in fact
expands neutral ITH by accumulating numerous low-frequency mutations as it grows.
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indicated by empty circles on the growth curves.
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Thus far, several theoretical and computational studies have shown that a stem cell
hierarchy can boost the neutral-branching process (Sottoriva et al., 2010; Solé et al., 2008),
which prompted us to extend the neutral model to the ‘‘neutral-s’’ model such that it
contains a stem cell hierarchy (Fig. S5). The neutral-s model assumes that two types of
cells exist: stem and differentiated. Stem cells divide with a probability g0 without dying.
For each cell division of stem cells, a symmetrical division generating two stem cells occurs
with a probability s, while an asymmetrical division generating one stem cell and one
differentiated cell occurs with a probability 1−s. A differentiated cell symmetrically divides

Niida et al. (2020), PeerJ, DOI 10.7717/peerj.8842 14/27

https://peerj.com
https://doi.org/10.7717/peerj.8842/fig-4
https://doi.org/10.7717/peerj.8842/fig-5
http://dx.doi.org/10.7717/peerj.8842#supp-5
http://dx.doi.org/10.7717/peerj.8842


2.0

0.5

3.5

A

B

E

H J

F G

C D

−2 −1.5

−1 −0.5

0

0.5

0.25

0

−0.25

−0.5

B C D

E F G

H I J

log10s  (symmetrical division rate)

Shannon index 0.05

  r
ela

tiv
e 

ce
ll d

ea
th

 ra
te

 
 o

f d
iffe

re
nt

iat
ed

 ce
lls

δ 
(  

   
   

   
   

   
   

   
   

)

I

Figure 6 Sensitivity analysis of the neutral-s model. (A) Heat map obtained by calculating Shannon in-
dex 0.05 while changing the relative death rate of differentiated cells δ = log10(d

d
0 /g0) and the symmetri-

cal division rate s. The neutral mutation ratemn and the maximum population size P set to 10−1 and 105,
respectively. (B–J) Single-cell mutation profiles obtained for nine parameter settings, indicated on the heat
map presented in A.

Full-size DOI: 10.7717/peerj.8842/fig-6

to generate two differentiated cells with a probability g0 but dies with a probability dd0 . The
means of accumulating neutral mutations in the two types of cell is the same as that in
the original neutral model, which means that the neutral-s model is equal to the original
neutral model when s= 0 or dd0 = 0. For convenience, we define δ = log10(d

d
0 /g0) and

hereinafter use δ instead of dd0 .
The MASSIVE analysis of the neutral-s model confirmed that the incorporation of the

stem cell hierarchy boosts the neutral-branching process (https://www.hgc.jp/~niiyan/
canevosim/neutral_s). To obtain the heat map in Fig. 6A, the ITH score was measured
while dd0 and δ were changed, but mn= 0.1 and P = 1,000 were constantly set. In the heat
map, a decrease of s leads to an increase in the ITH score when δ ≥ 0 (i.e., dd0 ≥ g0). A
smaller value of smeans that more differentiated cells are generated per stem cell division,
and δ≥ 0means that the population of the differentiated cells cannot grow in total, which is
a valid assumption for typical stem cell hierarchy models. That is, this observation indicates
that the stem cell hierarchy can induce neutral ITH even with a relatively low mutation
rate setting (i.e., mn= 0.1), with which the original neutral model cannot generate neutral
ITH.

The underlying mechanism boosting the neutral-branching process can be explained
as follows. We here consider only stem cells for an approximation, because differentiated
cells do not contribute to tumor growth with δ≥ 0. While one cell grows to a population
of P cells, let cell divisions synchronously occur across x generations during the clonal
expansion. Then, (1+ s)x = P holds, because the mean number of stem cells generated per
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cell division is estimated as 1+ s. Solving the equation for x gives x = logP/log(1+ s); that
is, it can be estimated that, during the clonal expansion, each of the P cells experiences
logP/log(1+ s) cell divisions and accumulates mn logP/2log(1+ s) mutations on average.
We confirmed that the expected mutation count based on this formula is well fit with
the values observed in our simulation, except in the exceptional cases where the mutation
counts reached the upper limit, Nn= 1,000 (Fig. S6). These arguments mean that a tumor
with a stem cell hierarchy accumulates more mutations until reaching a fixed population
size than does a tumor without a stem cell hierarchy. That is, a stem cell hierarchy increases
the apparent mutation rate by log2/log(1+ s) folds, which induces the neutral-branching
process even with relatively low mutation rate settings.

Similarly, we can also show that the introduction of cell death to the neutral model
boosts the neutral-branching process. In the neutral model having a non-zero death rate
d0, we estimate that the mean number of cells generated per cell division is 2−d0/g0.
Through arguments similar to the one above, we can also show that the apparent mutation
rate is increased by log2/log(2−d0/g0). Collectively, although the mutation rate is the
most important determinant for generating neutral ITH, the introduction of cell death as
well as stem cell hierarchy also contribute to the neutral-branching process by increasing
the apparent mutation rate.

Combining the driver and neutral model
We now present the ‘‘composite’’ model that was constructed by combining the driver and
neutral model, aiming to reproduce ITH more similar to those in real tumors. In a unit
time, a cell divides into two daughter cells with a constant probability g without dying. In
each cell division, each of the two daughter cells acquires kd ∼Pois(md/2) driver mutations
and kn∼ Pois(mn/2) neutral mutations. For each type of mutation, Nd and Nn mutations
can be accumulated at maximum. For a cell that has nd (=

∑
kd) mutations, cell division

probability g is defined as g = g0f nd , where g0 is a base division probability. The simulation
started from one cell without mutations and ended when the population size p reached P
or time t reached T . As expected from the MASSIVE analyses of the driver and neutral
model that were performed separately, our MASSIVE analysis of the composite model
confirmed that, depending on the parameter setting, behaviors of the composite model
and the resultant mutation profiles are roughly categorized into the following six classes
(Fig. 7; https://www.hgc.jp/~niiyan/canevosim/composite):

• With small md and small mn, i.e., with low driver and neutral mutation rates, no
evolutionary process involving driver and neutral mutations occurs.
• With large md , small mn, and small f (i.e., with high driver and low neutral mutation
rates, and weak driver mutations), the driver-branching occurs while the neutral-
branching process does not occur.
• With large md , small mn, and large f (i.e., with high driver and low neutral mutation
rates, and strong driver mutations), the linear-replacing process occurs while the
neutral-branching process does not occur..

Niida et al. (2020), PeerJ, DOI 10.7717/peerj.8842 16/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.8842#supp-6
https://www.hgc.jp/~niiyan/canevosim/composite
http://dx.doi.org/10.7717/peerj.8842


without the
Darwinian
 processes

the driver-
branching
process

without  
the neutral-
branching
process

the neutral-
branching
process

the linear-
replacing
process

(with large md and large f )(with large md and small f )

(with large mn )

(with small mn )

(with small md)

Figure 7 Six classes of mutation profiles simulated by the composite model.Our sensitivity analysis
demonstrated that, depending on the parameter setting, behaviors of the composite model are roughly
categorized into the six classes. Representative mutation profiles of the six classes are presented.
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• With small md and large mn (i.e., with low driver and high neutral mutation rates),
the neutral-branching process occurs while no evolutionary process involving driver
mutations occurs.
• With large md , large mn, and small f (i.e., with low driver and high neutral mutation
rates, and weak drivermutations), the driver-branching and neutral-branching processes
occur simultaneously.
• With large md , large mn, and large f (i.e., with high driver and high neutral mutation
rates, and strong drivermutations), the linear-replacing and neutral-branching processes
occur simultaneously.

Note that, because tumors having high driver mutation rates must have high neutral
mutation rates also, the linear-replacing and driver-branching processes must in general
be accompanied by the neutral-branching process. Therefore, the last three behaviors are
supposed to constitute the process that can actually occur in real tumors (note that, since
different processes work simultaneously and continuously as a series of phases of cancer
evolution in real tumors as described below, the situation is not so simple).

Adding the punctuated-replacing process
Previously, we analyzed multiregion sequencing data of advanced colorectal cancer and
precancerous lesions jointly to demonstrated that the evolutionary principle generating
ITH shifts from the driver- to neutral-branching process during colorectal tumorigenesis

Niida et al. (2020), PeerJ, DOI 10.7717/peerj.8842 17/27

https://peerj.com
https://doi.org/10.7717/peerj.8842/fig-7
http://dx.doi.org/10.7717/peerj.8842


(Saito et al., 2018). We also demonstrated that the number of copy number alterations
drastically increases during the progression from colorectal precancerous lesions to
advanced colorectal cancer, which prompted us to suspect that the punctuated-replacing
process underlies the evolutionary shift from branching to the neutral-branching process
(Fig. 1E). To examine this possibility, we additionally incorporated the punctuated-
replacing process into the composite model to build the ‘‘punctuated’’ model.

For the models considered thus far, we assumed that a cell can infinitely grow without
a decrease in their growth speed. However, it is more natural to assume that there exists
a limit of population size because of the resource limitation and that the growth speed
gradually slows down as the population size approaches the limit. The limit of population
sizes is called the carrying capacity and employed in the well-known logistic equation
(Verhulst, 1838). By mimicking the logistic equation, we modified the division probability
as g = g0f nd (1−p/pc), where pc is the carrying capacity. To reproduce the punctuated-
replacing process, we additionally employ an ‘‘explosive’’ driver mutation, which negates
the effect of the carrying capacity. After a cell accumulates driver mutations up to the
maximum Nd , the explosive driver mutation is introduced at a probability me after cell
division. For a cell that has the explosive driver mutation, the carrying capacity pc is set to
infinite; That is, it is assumed that the explosive driver mutation rapidly evolves the cell so
that it can conquer the growth limit and attain infinite proliferation ability.

Next, we searched for parameter settings that lead the punctuatedmodel to reproduce the
punctuated-replacing process. TheMASSIVE analysis confirmed that, with sufficiently large
me (i.e., me > 10−4), the punctuated-replacing process is reproducible in the punctuated
model (https://www.hgc.jp/~niiyan/canevosim/punctuated; note that, for simplicity, we
omitted neutral mutations by setting mn= 0 in the MASSIVE analysis). We also examined
time-course snapshots of simulations conducted with these parameter settings. In the
example shown in Figs. 8A and 8B, we observed that multiple subclones having different
driver genes coexist; that is, the driver-branching process, with which the neutral-branching
process occurs simultaneously, is prominent during the early phase of the simulation. Note
that a growth curve plot indicates that, as the population size approaches the carrying
capacity, the growth speed slows down; however, the tumor regrows after the appearance
of a clone that has acquired an explosive drivermutation. The clonewith the explosive driver
mutation is then subjected to a selective sweep, which causes subclonal driver mutations
in the clone to shift to clonal mutations. Then, only neutral mutations are accumulated as
subclonal mutations; That is, ITH is finally generated by the neutral-branching process.

We also found that two subclones having different subclonal drivermutations sometimes
appear by obtaining two independent explosive driver mutations (Figs. 8C and 8D). This
observation recalls to mind the multiverse model, which was proposed for glioblastoma
evolution (Lee et al., 2017). The multiverse model is derived from the Big-Bang model,
a model for jointly describing punctuated and the neutral-branching process during
colorectal tumorigenesis (Sottoriva et al., 2015). The Big-Bang model assumes that a
single clone explosively expands from a precancerous lesion while generating neutral
ITH, consistently with our evolutionary shift model. However, in the multiverse model,
it is assumed that multiple subclones are subject to explosive expansion. Collectively,
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Figure 8 Time-course snapshots of simulations based on the punctuated model.Growth curve (A) and
time-course snapshots of mutation profiles (B) simulated from the punctuated model with P = 106, pc =
103.5,md = 10−1,mp = 100.5, andme = 10−4. Growth curve (C) and time-course snapshots of mutation
profiles (D) simulated from the punctuated model with P = 106, pc = 103.5,md = 10−1,mp = 100.5, and
me = 10−3. The time points when snapshots were obtained are indicated by empty circles on the growth
curves.

Full-size DOI: 10.7717/peerj.8842/fig-8
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our simulation based on the punctuated model not only supports our hypothesis that
the punctuated-replacing process underlies the evolutionary shift during colorectal
tumorigenesis, but also can reproduce multiple types of punctuated models proposed
thus far.

Our simulation based on the punctuated model also demonstrated a dramatic evolution
of cancer, during which multiple processes could go on simultaneously and continuously,
and we observed different phases along the evolution. Consequently, the mutation profile
records the history of the processes such that a series of multiple phases arise with different
patterns of mutation profiles. It is possible that we infer the history from the mutation
profile at the end point to some degree; for example, the accumulation of clonal driver
mutations suggests that the tumor has been subjected to the linear- or punctuated-replacing
process. However, our result emphasizes the importance of having a time-series data to
fully understand the detailed process behind cancer evolution (Sato et al., 2019).

DISCUSSION
In the ‘Results’ section, we introduced a family of simulation models that reproduce the
four types of cancer evolutionary processes: linear-replacing, driver-branching, neutral-
branching, and punctuated-replacing. Our sensitivity analysis of these models successfully
identified the conditions leading to each of the evolutionary processes. For example, under
the assumption of a sufficiently high mutation rate, the driver-branching process occurs
with strong driver mutations, whereas linear evolution occurs with weak driver mutations.
However, a major concern about our sensitivity analysis is whether the ranges of parameter
values examined is realistic. Although dependent on tumor types, the number of driver
mutations were previously estimated as in the low single digits for most tumor types,
consistently with our settings for d . As the increase in the cell division probability per
driver mutation f , which is interpreted as the strength of driver mutations, we examined
values ranging from 100.1 to 101.0. Although the value of f has not been the subject to
extensive experimental determination, it has been reported that the induction of K-rasG12D

in murine small intestine increases growth rate from one cell cycle per 24 hr to one cell
cycle per 15 hr, from which f is estimated as 100.204 (Snippert et al., 2014).

The driver mutation rate md and population size P appear to be problematic. Although
the driver mutation rate was previously estimated as∼ 3.4×10−5 per cell division (Bozic et
al., 2010), our sensitivity analysis examined values from 10−4 to 10−1, which are above the
estimated value by orders of magnitude. It should also be noted that, in our simulation,
it was assumed that a tumor contains 106 cells at maximum, whereas the number of
cancer cells in one gram of tumor tissue is reportedly 109 or one order less (Del Monte,
2009). Clearly, for md and P , the parameter space we examined does not cover those for
a real tumor. However, the results of the MASSIVE analysis allow the behaviors of the
driver model to be envisioned in a realistic parameter space. When P is small, neither
the linear-replacing process nor the driver-branching process occurs. As P increases, we
observe the linear-replacing or driver-branching process with smaller md , although the
range of f that leads to the driver-branching process shifts to larger values. Moreover, as
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shown by the sensitivity analysis of the neutral-s model, the presence of a stem cell hierarchy
increases the apparent mutation rate. Therefore, a real tumor having a stem cell hierarchy
apparently should have a higher md value. Collectively, it is natural to assume that a real
tumor having large P and small md can be similarly generated by the linear-replacing or
driver-branching process, although, in such cases, the actual value of f might be larger
than those that we examined.

The sensitivity analysis of the neutral model showed that neutral ITH is generated if
the expected number of neutral mutations generated per cell division, mn, exceeds 1. In
a recent report, the estimated somatic mutation rate was given as 2.66×10−9 mutations
per base pair per mitosis. Given that most mutations are neutral on the human genome
comprised of 3×109 bases, even a cell division of normal cells generates more than 1
neutral mutation. As cancer cells should have higher mutation rates, which can be further
accelerated by stem cell hierarchies, it is reasonable to assume that a tumor in general
satisfies the conditions to generate neutral ITH. However, not every tumor necessarily has
neutral ITH; neutral ITH is distorted by natural selection if the tumor additionally satisfies
the conditions for the driver-branching process, as shown by the analysis employing the
composite model.

A highlight of this work is that the punctuatedmodel demonstrated that the punctuated-
replacing process triggers the evolutionary shift from branching to the neutral-branching
process. For carrying capacity pc and the probability of acquiring an explosive mutation
me in the punctuated model, the parameter values that we examined are clearly outside
realistic ranges. Similarly to P , pc should take a larger value. Although it cannot easily to be
experimentally determined,me also appears to be overestimated; although the human body
in fact potentially harbors numerous precancerous lesions (Brunner et al., 2019; Yokoyama
et al., 2019), which are assumed not to have acquired explosive driver mutations yet, only a
tiny fraction of cases progress to advanced stages by acquiring explosive driver mutations.
However, it is intuitively understandable that the behaviors of the punctuated model, as
well as of the driver model, are not dependent on precise values of these parameters, and
in our opinion, our analysis is sufficient to provide a semi-quantitative understanding of
cancer evolution.

The models we introduced in the Results section can be described collectively as the
unified model, a formal description of which is provided in the ‘Materials & Methods’.
The unified model is very simple but sufficient to reproduce the linear-replacing, driver-
branching, neutral-branching, and punctuated-replacing processes. Of course, the unified
model harbors many limitations, which should be addressed in future studies. Our current
version of the model completely ignores spatial information, which potentially influences
evolutionary dynamics. Recently reported studies have shown that spatial structures
regulate evolutionary dynamics in tumors (Noble et al., 2019; West et al., 2019). We also
determined that resource bias prompts the driver-branching process, by simulating tumor
growth on a one-dimensional lattice (Niida, Hasegawa & Miyano, 2019).Moreover, Iwasaki
& Innan (2017) recently developed a realistic simulator called tumopp to show that the
three-dimensional pattern of ITH is affected by the local cell competition and asymmetric
stem cell division. Although our model assumed that driver mutations independently have

Niida et al. (2020), PeerJ, DOI 10.7717/peerj.8842 21/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.8842


effects of equal strength, different driver mutations should have different strengths and
might work synergistically (Castro-Giner, Ratcliffe & Tomlinson, 2015). Similarly, although
we assumed that the punctuated-replacing process occurs only once in the course of
cancer evolution, it is possible that a tumor is confronted with different types of resource
limitations during the tumor progression and undergoes the punctuated-replacing process
multiple times to conquer them (Aktipis et al., 2013).

CONCLUSION
Although the unified model harbors the above-described limitations, the application
of sensitivity analysis to the model has successfully provided a number of insights into
cancer evolutionary dynamics. In our opinion, the unified model serves as a starting
point for constructing more realistic simulation models to understand in greater depth
the diversity of cancer evolution, which is being unveiled by the ever-growing amount of
cancer genomics data.
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