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A generalist pollinator system is identified through the interaction of a plant species with
two or more species or functional groups of pollinators. The spatio-temporal variation of
the most effective pollinator is the factor most frequently advocated to explain the
emergence and maintenance of generalist pollination systems. Studies comprising both
temporal variation on floral visitor assemblages and the effectiveness on pollination by
different functional groups are restricted to a few systems. Thus, there are gaps in
knowledge about generalist species concerning the variation of pollinators and their
effectiveness over time. In this study we evaluated the pollination effectiveness (i.e.,
frequency associated with efficacy) of the floral visitors of Edmundoa lindenii
(Bromeliaceae) across four reproductive events. We analysed the frequency of floral
visitors (large bees, small bees, and hummingbirds) through focal observations and their
single-visit efficacy (seed set). Pollen limitation (PL) index was estimated comparing seed
set after hand cross and natural pollination. Edmundoa lindenii is self-incompatible and
parthenocarpic, requiring the action of pollinators for reproduction. Hummingbirds have
greater efficacy than large bees, and small bees act as pollen robbers. The frequency of
floral visitors varied among the years, and overall hummingbirds were more effective than
large bees. The PL index varied among the years, with limitation only occurring in the
reproductive event of 2017, when hummingbirds were scarce. Our results allow us to
conclude that a generalist species can suffer or not PL in different reproductive events, in
response to variations in the pollinator assemblage. Although the evolution of a
generalized pollination system is expected when different pollinators play the same role as
selective agents, our results support that generalization may also be favoured when
pollinators with lesser efficacy provide reproductive assurance, lightening fluctuations of

the most effective pollinators, such as could be the case for large bees and E. lindenii.
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ABSTRACT
Background D

A generalist pollination system is identified through the interaction of a plant species with two or

more species or functional groups of pollinators. The spatio-temporal variation of the most
effective pollinator is the factor most frequently advocated to explain the emergence and
maintenance of generalist pollination systems. Studies comprising both temporal variation on
floral visitor assemblages and the effectiveness on pollination by different functional groups are
restricted to a few systems. Thus, there are gaps in knowledge about generalist species
concerning the variation of pollinators and their effectiveness over time. In this study we
evaluated the pollination effectiveness (i.e., frequency associated with efficacy) of the floral
visitors of Edmundoa lindenii (Bromeliaceae) across four reproductive events.

Methods
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We analysed the frequency of floral visitors (large bees, small bees, and hummingbirds) through
focal observations and their single-visit efficacy (seed set). Pollen limitation (PL) index was
estimated comparing seed set after hand cross and natural pollination.

Results

Edmundoa lindenii is self-incompatible and parthenocarpic, requiring the action of pollinators
for reproduction. Hummingbirds have higher efficacy than large bees, and small bees acted only
as pollen robbers. The frequency of floral visitors varied among the reproductive events, and
overall hummingbirds were more effective than large bees. The PL index varied among the
reproductive events, with limitation only occurring in the reproductive event of 2017, when

hummingbirds were scarce.

INTRODUCTION

In most plants, flowers are visited by a diverse assemblage of animals (Waser et al., 1996).
These floral visitors may differ in their contribution to the plant reproductive success, as they can
vary in the efficacy of pollen transfer (Shuttleworth & Johnson, 2008; Freitas, 2013; Ollerton,
2017). Moreover, these visitors can be arranged in different functional groups of pollinators
based on their behaviour and morphological traits (Fenster et al., 2004). Plants with bimodal
systems are examples of generalist systems, in which flowers are attractive to and pollinated by
two functional groups of pollinators (Waser & Price, 1990; Castellanos, Wilson & Thomson,
2003; Manning & Goldblatt, 2005; Shuttleworth & Johnson, 2008).

Based on the principle of “the most effective pollinator,” plants with a bimodal generalist system
can be interpreted as an intermediary stage in the transition from one specialized pollinator to
another, in which both vectors are able to pollinate the flower (Stebbins, 1970). Alternatively to
this explanation, plants with bimodal generalist systems may be favoured in certain scenarios, for
example, under unpredictable pollination environments (Herrera, 1988; Waser et al., 1996;
Ollerton et al., 2007). Accordingly, the spatio-temporal variation of the most effective pollinator
is the factor most frequently advocated to explain the emergence and maintenance of generalist
pollination systems (Herrera, 1996; Armbruster et al., 2000).

Studies encompassing generalist pollination systems only report floral visitor assemblages and
visitation rates (e.g., Thompson, 2001; Freitas & Sazima, 2006, Scrok & Varassin, 2011),

despite the expected variation on fruit and seed set (i.e., variation in fitness consequences of
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flower visits) after visits by different floral visitors, and even the fact that not all visitors are
actual pollinators (Armbruster, Fenster & Dudash, 2000, Ollerton, 2017). Several studies have
gone further, exploring spatiotemporal variation in the composition and frequency of visitors
(Fenster & Dudash, 2001; Ivey, Martinez & Wyatt, 2003, Zych et al., 2018) whereas others have
quantified the contribution to plant reproduction of different pollinator species or functional
groups (Avila Jr. & Freitas, 2011; Muchhala, et al., 2013; Amorim, Galetto & Sazima, 2013;
Salas-Arcos et al., 2017). However, information comprising both temporal variation in floral
visitor assemblages and the effectiveness of pollination by different functional groups is
restricted to a few systems (e.g., Larsson, 2005; Wiggam & Ferguson, 2005) investigated since
the seminal studies by C. M. Herrera in the 1980s (Herrera, 1987; 1988). Thus, there are gaps in
knowledge about the variation of pollinators in generalist plants and their effectiveness over
time.

Generalized pollination systems have ecological and evolutionary dimensions

(Armbruster, Fenster & Dudash, 2000), therefore the effect of several pollinators in the process
of evolutionary generalization depends on the selective pressures exerted by those floral visitors.
In this sense, differences in pollination efficacy (sensu Freitas, 2013) among functional groups
may be enhanced if the variations in the pollination environment affect the plant reproductive
success. Pollen limitation (PL), the lower fruit and/or seed production due to inadequate pollen
receipt, is widespread in angiosperms (Ashman et al., 2004; Knight et al., 2005), and similarly to
the pollinator effectiveness, its magnitude varies at several scales (Bennett et al., 2018).
However, how temporal variations in the pollination environment and LP levels are related is a
fundamental but poorly understood aspect to a better understanding of the mechanisms that lead
to the maintenance of generalized pollination systems (see Koski et al., 2018).

Here, we focused on the temporal variation of pollinator effectiveness in a tropical
Bromeliaceae species with bimodal pollination system. We measured the efficacy of floral
visitors and investigated whether the frequency of visits between different functional groups of
pollinators varied along four years of observation. Furthermore, we tested the PL on different
reproductive events to evaluate the effect of the frequency of each pollinator group on
reproductive success. In addition, we measured the reflectance of attractive floral parts over a
range of relevant wavelengths, as well as nectar production and the effects of nectar removal, in

order to understand how this species attracts its major pollinators. E
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MATERIALS AND METHODS

Study site and species

This study was conducted in an area covered by montane Atlantic Forest, located in the Serra dos
Orgdos National Park (PARNASO), Rio de Janeiro state, Brazil (22° 52'- 22° 54' S and 42° 09'-
45° 06' W, ca. 960 m a.s.l.). The total annual rainfall at the study site is 2,436 mm, with the
rainiest period between December and March and colder and drier months from June to August.
The mean annual temperature is 18.6 °C, with minimum and maximum monthly temperatures of
13.7 °C and 22.9 °C (climate data for 2015 to 2018 from the meteorological station located inside
the PARNASO). The field research reported here was performed using the required permit
(SISBIO No. 34882, No. 432793).

Edmundoa lindenii (Regel) Leme (Bromeliaceae - Bromelioideae) is a terrestrial,
saxicolous, or epiphyte herb, endemic to the Atlantic Forest in south and southeastern Brazil
(Martinelli et al., 2008, BFG, 2015). In the study area, this species flowered between December
and February, and produced fruits between March and April, and its flowers were visited by bees
and hummingbirds (R.L.B. Leal, pers. obs.). The study was carried out in four reproductive

events (from 2014 to 2018). E

Floral biology
We obtained the number of individuals with open flowers in December (n = 10 individuals),
January (n = 74 individuals), and February (n = 24 individuals). We measured inflorescences of
E. lindenii (n = 16 individuals) directly in the field with a pachymeter, considering the following
traits: scape length, inflorescence diameter, and bract length. Flowers (n = 73) from 28
individuals were collected in the field, stored in 70% alcohol, and measured in the laboratory
with a pachymeter considering the following structures: corolla tube length (i.e., from septal
nectary to the opening of the corolla) and the width of the corolla tube opening. We counted the
number of ovules in 25 flowers (n = 15 individuals).

To analyse the colour quantitatively, we measured the spectral reflectance of petals,
sepals, and bracts. For this, 12 flowers (n = 6 individuals) were collected in the field, stored in
thermal bags containing moist paper, and brought to the laboratory, where they were

immediately measured (Lunau et al., 2011). We measured the reflectance using an USB2000
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spectrophotometer (OceanOptics, Inc., Dunedin, FL, USA) coupled with a deuterium—halogen
light source (DH-2000; OceanOptics, Inc., Ostfildern, Germany), with a light emission range
between 215 and 1700 nm. We took all reflectance measurements at a 45° angle in relation to the
plant structure, and we used barium sulphate as the white standard and black paper as the black
standard (Chittka & Kevan, 2005).

We used the logarithm version of the receptor noise-limited model to compare the colours
of the petals, sepals, and bracts from the bee and hummingbird subjective view, since it suits tri-
and tetrachromatic colour vision systems (Vorobyev & Osorio, 1998). The chromatic distances
were calculated with the model of Vorobyev. We modelled spectral sensitivity curves using data
from Sephanoides sephaniodes (Herrera et al., 2008) to estimate hummingbird colour distances,
and from Bombus terrestris for bees (Telles & Rodriguéz-Gironés, 2015). In all cases, we used
standard daylight illumination (D65 — Wyszecki & Stiles, 1982). Using these models, we
determined the spectral location of each structure in a colour space for each pollinator.

The distance between two points in a colour space provides an approximation of the
perceived colour difference (Endler & Mielke, 2005). We evaluated colour distances between
sepals, petals, and bracts. Using the receptor noise-limited model, we estimated that two colours
were discriminable if their distance was greater than 0.27 units for bees (7elles & Rodriguez-
Gironés, 2015) and 1.0 for hummingbirds (Vorobyev et al., 1998). For representation, we also
calculated the colour loci of the flower colours in the respective colour space models: the colour
hexagon for bees (Chittka 1992) and the colour tetrahedron for hummingbirds (Vorobyev et al.,
1998).

Nectar
We measured the nectar volume in flowers previously bagged in bud stage, with a graduated
microliter syringe (Hamilton, Nevada, USA), and the concentration with hand-held refractometer
(Bellingham + Stanley Eclipse, UK). To evaluate the nectar production along time of anthesis,
36 flowers (n = 10 individuals) previously bagged at the bud stage were measured every one
hour and half intervals after the onset of anthesis. In total, we performed measurements at four
different times of the day (7:00, 8:30, 10:00, and 11:30). To evaluate if the removal of the nectar
stimulates the secretion, 24 flowers (n = 6 individuals) were submitted to four removal E|
als).

treatments (R = no removal, R1 = one removal, R2 = two removals, and R3 = three remov
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We calculated the total amount of sugar (mg) per flower by multiplying nectar volume (uL) by
its corrected concentration (mg/uL) according to Dafni et al. (2005).

Breeding system and pollen limitation

We evaluated the breeding system and the pollen limitation (PL) through manual pollination
treatments. For this, floral buds of different individuals were previously bagged with “voile”
bags, and the flowers submitted to the following treatments: spontaneous self-pollination (n = 20
flowers were bagged and not manipulated); manual self-pollination (49 flowers were
supplemented manually with pollen from the same flower and bagged); cross-pollination (130
flowers were supplemented with pollen from different individuals, located at 10 m, and bagged).
A total of 131 flowers not bagged were marked and maintained under natural conditions, of
which 49 were marked in 2016, 20 were marked in 2017, and 62 were marked in 2018. At the
end of treatments, the number of seeds produced per fruit was evaluated. We assessed the self-
incompatibility by the index of incompatibility (ISI) based on Zapata and Arroyo (1978).
According to this index, species with ISI > 0.30 are classified as self-incompatible (Ramirez &
Brito, 1990). We calculated the index of PL for each year according to Larson and Barrett
(2000). Values of IPL > 0.20 indicate absence of PL, whereas values above 0.80 indicate a strong
PL (Freitas et al., 2010).

Frequency and efficacy of floral visitors

In order to evaluate the identity of floral visitors and their frequency of visits, we performed
focal observations (sensu Dafni, 1992), by censuses of 30-min per individual (n = 143
individuals) between 6:00 and 12:00, totalizing 184 hours of observation in the four reproductive
events ( in the years: 2015 = 43.5h; 2016 = 39.0h; 2017 = 51.0h; and 2018 = 50.5h). Images and
videos were captured during the visits to evaluate the foraging behaviour and the floral resources
obtained. The visits were identified as legitimate or illegitimate by the expected mode of
pollination, considering the shape and arrangement of the flower parts (sensu Irwin et al., 2010,
Freitas, 2018). Specimens of insects were collected for posterior identification. We grouped the
floral visitors into three functional groups based on body size and foraging behaviour, as

following: large bees, small bees, and hummingbirds.
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The efficacy of the different groups of pollinators was evaluated through experiments of
selective exposition, in which flowers previously bagged at the bud stage were exposed to a
single visit, then marked and bagged. The number of flowers exposed to visitors of the three
functional groups was 48 flowers to small bees in 2016, 20 flowers to hummingbirds and 20
flowers to large bees in 2017, and 65 flowers to hummingbirds and 60 flowers to large bees in
2018. Edmundoa lindenii is parthenocarpic, which means that flowers develop into fruits
independent of pollination; therefore, the measure of efficacy was estimated for each treatment
(i.e., pollinator group) from the product between the proportion of fruits with seeds formed after

visits by each pollinator group and the number of seeds in each fruit.

Data analyses

We evaluated the production of nectar along the anthesis and the effect of nectar removal in
nectar secretion by analyses of variance (one-way ANOVA), using the function aov. We
assessed the differences between treatments (time of anthesis and number of removals) by Tukey
HSD post-hoc test, using the function TukeyHSD.

To evaluate whether hummingbirds and large bees differ in their efficacy, we conducted a
linear mixed-effects model. For this, we used the functional group of pollinators (two levels:
hummingbirds and large bees) as fixed effects, and the year when the treatments were conducted
(two levels: 2017 and 2018) as random intercept terms. We fitted all the linear mixed-effects
models using the /mer function from the Ime4 package (Bates et al., 2015). We calculated the
significance of each term in the model using the function anova from the /mer package
(Kuznetsova et al., 2017) and the differences between levels of categorical factors using the
Ismeans package (Lenth, 2016). We did not compare the efficacy of small bees as no seeds were
produced after their visits.

To evaluate the association between functional pollinator groups (hummingbirds and
large bees) and the reproductive events (in the years 2015, 2016, 2017, and 2018), we conducted
a chi-squared test using the function chi.test (2 X 4 contingency table). We performed all the

analyses in R version 3.4.4 (R Development Core Team, 2016).

RESULTS
Floral biology
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The flowers of E. lindenii are grouped in a compound corymboid inflorescence with 100150
flowers, inserted in the leaf rosette (Fig. 1). Inflorescence diameter reached 121.32 = 17.01 mm
and scape length 296.87 £+ 23.86 mm (mean = SD throughout the text). The flowers are
hermaphrodite, with the androecium presenting six stamens included in the corolla and anthers
with longitudinal dehiscence (Fig. 1). The gynoecium is also included in the corolla and the style
ends in a three-lobed stigma (Fig. 1). The inferior and trilocular ovary contains 197.9 + 54.12
ovules. The length of bracts and sepals was 55.15 £ 6.99 mm and 26.0 + 4.0 mm, respectively.
The corolla is tubular (length: 17.95 + 2.92 mm) with a narrow opening (3.11 = 1.17 mm). The
flowers have diurnal anthesis (ca. 06:00-12:00h), characterized by the presence of exposed
pollen grains and receptive stigma. The production of nectar starts in the beginning of anthesis
and does not increase over time (F = 0.338; df = 3; p = 0.798; Fig 3A). However, the removal of
nectar stimulated new secretion (F = 6.632, df =3, p =0.00273, Fig. 3B).

The bracts reflect red wavelengths, whereas the corolla is UV-reflecting white, and the
sepals are UV-absorbing white (Fig. 2). The colour of petals, sepals, and bracts, as well as open
or closed flowers, is distinguishable by bees and hummingbirds. Flower colour was 1-7 times
above the discrimination criteria (0.27) for bee vision (petals-sepals 4 £ 1, bracts-sepals 4 £ 2)
and 5—15 times above the discrimination criteria (1.0) for hummingbirds (petals-sepals 8 £ 2,

bracts-sepals 12 + 4, bracts-petals 15 + 7).

Breeding system and pollen limitation

Edmundoa lindenii is self-incompatible (ISI = 0.08; Table 1) and parthenocarpic (Table 1),
requiring the action of pollinators for sexual reproduction. The PL index varied between years,
with PL only occurring in the reproductive event of 2017 (2016 =-0.07, 2017 = 0.70, 2018 = -
0.03).

Floral visitors and temporal variation

The flowers of E. lindenii were visited by 11 species of animals belonging to three functional
groups (hummingbirds, large bees, and small bees). Hummingbirds were the group with the
highest species richness (Table 2; Fig.1). All of animals that approached the flowers, only the

small bee 7. spinipes conducted illegitimate visits, resulting in damage of corolla and/or anthers
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by chewing. Hummingbirds and large bees foraged for nectar acting as legitimate visitors, and
small bees collected pollen.

Hummingbirds had greater effectiveness than large bees (contrast: t = 7.708, df =74, p <
0.001; Fig. 4; Table 3), whereas small bees did not acted as pollinators, as no flowers visited by
them produced fruit with seeds. The frequency of floral visits by each functional group varied
among the reproductive events (Fig. 5). The variation between years was more pronounced for
large bees and small bees than for the hummingbirds, whose frequency decreased in 2017 (Fig.
5). Overall, hummingbirds were more effective than large bees (Table 3). However, variations in
both cumulative and relative frequency of visits by each group-between the reproductive events
were remarkable (Fig. 5), and this was reflected in the values of the effectiveness of
hummingbirds and large bees each year (Table 3). Chi-square analysis indicated an association
between the frequency of the groups of pollinators and the reproductive events of each year (y* =

70.356, df =3, p < 0.010).

DISCUSSION
Through observational and experimental approaches, we have shown that the frequency of
functional groups of flower visitors (hummingbirds, large bees, and small bees) varied between
reproductive events of E. lindenii, and this influenced the plant’s reproductive success. Among
the three functional groups of visitors, hummingbirds and large bees acted as pollinators, with
hummingbirds exhibiting greater efficacy than large bees. The existence of year-to-year changes
in the composition of floral visitor species has been found in several systems (Schemske &
Horvitz, 1984, Traveset & Saez, 1997; Price et al., 2005; Olesen et al., 2008, Petanidou et al.,
2008), while in others, pollinator efficacy between different years was studied (Fishbein &
Venable, 1996, Stoepler et al., 2012). However, there are fewer studies that consider the
relationship between variations in pollinator assemblages and plant reproductive success in
different reproductive seasons (Herrera, 1990; Fleming et al.,2001; Salas-Arcos et al., 2017).
Our results allow us to conclude that a generalist species can suffer or not PL in different
reproductive events, in response to variations in the pollinator assemblage.

The occurrence of PL is a common phenomenon in angiosperms (Larson & Barrett 2000,
Bennett et al. 2018) and is modulated by several factors, such as floral attributes, environmental

conditions, and population demography (Ashman et al., 2004). Generalization in pollination is
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expected to alleviate PL, because having different pollen vectors may buffer fertility reduction
associated with unpredictability of a certain pollinator between years. Accordingly, more
generalized plants are less prone to show PL in the Brazilian Atlantic Forest (Wolowski, Ashman
& Freitas, 2014). However, pollinators belonging to different functional groups may vary in
their pollination effectiveness (e.g., Dar, Arizmendi & Valiente-Banuet, 2006; Avila & Freitas,
2011), so pollinator shifts among years may lead to different levels of reproductive success. The
occurrence of PL was recorded in E. lindenii only in the year in which there was a strong
decrease in the frequency of visits by hummingbirds, when large bees were the most frequent
visitors. Thus, the effectiveness of large bees alone was not enough to achieve the potential seed
set fully. The evolution of a generalized pollination system is expected when different pollinators
play the same role as selective agents (Gomez & Zamora, 2006). However, generalization may
also be favoured when less efficacious pollinators provide reproductive assurance, sustaining
fluctuations of the most effective pollinators, such as could be the case for large bees and E.
lindenii. Lastly, combined measurements of PL and pollinator assemblages along time and space
is an interesting approach to evaluate the effects of variable pollination environments (see Gomez
& Zamora, 2006 for other suggestions in this regard).

Pollinators identify and select flowers using a variety of characteristics, including size
and contrast of colouring, which serve as a guide for floral visitors (Papiorek et al., 2016). The
attributes measured in E. /indenii were detectable and allowed access to resources by both
pollinators. Petals had UV reflection, sepals absorbed UV, and bracts were red. These results
correspond to the expected pattern for attraction of bees and hummingbirds, as bees have a
spectrum of vision that includes UV wavelengths, around 300400 nm (Kevan et al 2001), and
hummingbirds are known for their preference for red-coloured flowers that mostly are UV-
absorbent (Lunau et al. 2011). Trade-offs between selective pressures exerted by different
pollinators could occur if they differ in preference for floral traits (Gervasi & Schiestl 2017).
However, fluctuation in the frequency between reproductive events may reduce the probability of
pollinators exerting consistent selective pressures on the floral traits of the plants, suppressing
plant specialization towards a pollinator type (Schemske & Horvitz, 1984, Gomez & Zamora,
2006). The same condition may be favoured by repeated visits to the same flower by different
pollinators, and this is consistent with the nectar secretion pattern of E. /indenii where, although

nectar production did not increase during anthesis, nectar removal stimulated its secretion.
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The mechanisms of self-incompatibility in plants are complex and diverse in their
physiological, morphological, biochemical, and genetic aspects (Nettancourt, 2001). The
population of E. lindenii at PARNASO was self-incompatible, but self-compatibility has been
registered in other populations of this species (Matallana et al., 2010). Variations between self-
incompatibility and self-compatibility within species are common in plant evolution and may
indicate transitions between reproductive systems (Igic, Lande & Kohn, 2008). Studies have
shown that compatibility barriers can be broken by genetic changes (such as mutations) (e.g.,
Sassa et al., 1997), physiological factors, elevated temperatures, and stress (e.g., Tazuka et al.,
1997), allowing for self-pollination. Moreover, breeding systems may be related to the degree of
pollination generalization, linking shifts in pollination and incompatibility systems. For instance,
Wessinger and Kelly (2018) found a relationship between self-compatibility and attributes
related to the attraction of hummingbirds, including red flowers and loss of floral aroma and UV-
absorbing pigments. In E. lindenii, self-incompatibility served as a barrier to autogamous
pollination, since our records indicate that small bees access the anthers, make long visits to the
flower, and manipulate the pollen. In fact, pollinators usually do not operate independently of
herbivores (florivores in this case), which may generate a trade-off between the fitness functions
by each kind of organism (Ashman, 2002; Gomez & Zamorra, 2006, Gélvez-Zuiiiga et al., 2018).

This paper contributes to our knowledge about variable pollination environments, which
may lead to generalization of pollination systems. The factors that influence the temporal
variation in pollinator effectiveness are not as well understood, and consequently, cannot yet be
predicted. After conducting a temporal analysis, we were able to establish the importance of the
secondary pollinators for reproductive assurance in a generalist species. This is a starting point
toward a better understanding of the ecological processes that drive the evolution of generalist

pollination systems.

CONCLUSION

Our results allow us to conclude that a generalist species can suffer ot PL in different
reproductive events, in response to variations in the pollinator assemblage. Although the
evolution of a generalized pollination system is expected when different pollinators play the

same role as selective agents, our results support that generalization may also be favoured when
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pollinators with lesser efficacy provide reproductive assurance, lightening fluctuations of the

most effective pollinators, such as could be the case for large bees and E. lindenii.
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Figure 1

Edmundoa lindenii is visited by three functional groups:hummingbirds, large bees, and
small bees.

Examples of visitation by small bees - Trigona spinipes (A); large bees - Bombus morio (B);
and hummingbirds - Amazilia fimbriata (C). All observations were made in the montane

Atlantic Forest at Serra do Orgdos National Park southeastern Brazil in 2016 - 2018.
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Figure 2

Nectar production by Edmundoa lindenii did not increase over anthesis time, but removalof
nectar stimulated new secretion.

(A) Nectar production along the time of anthesis. (B) Nectar production after experimental
removal of nectar (R = no removal, R1 = one removal, R2 = two removals, and R3 = three
removals). For both boxplots, the thick horizontal line represents the median values, the
upper and lower sides of the box represent the corresponding quartiles, and vertical lines are
minimum and maximum values of the data range. Dots are outliers. Different letters indicate
statistical significance between pairs of years (p < 0.05) by ANOVA post-hoc test
(TukeyHSD).
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Figure 3

Attractive structures of E. lindenii include red bracts, UV- reflecting white
petals, and UV-absorbing white sepals, and can be detected by bees and
hummingbirds.

(A) Spectroscopic analysis of reflectance by typical attractive structures in E. lindenii
inflorescences. For each structure, the coloured line represents the mean reflectance and the
corresponding colour shading represents the standard deviation. In red, bract reflectance (n
= 12 individuals); in blue, sepal reflectance; and in green petal reflectance (n= 12 flowers of
6 individuals for both petals and sepals). (B) Hexagon model for bee vision based on the
photoreceptors of Bombus terrestris.(C)Tetrahedron model for bird vision based in the
photoreceptors of Sephanoides sephaniodes. In both models, the gray point represents
achromatic center, witch the red point represents mean loci for bracts, the purple point

indicates the mean loci for sepals, and the blue point represents mean loci for bracts.
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Figure 4

Hummingbirds have greater efficacy than large bees in two reproductive

events.

(A) 2017 and (B) 2018. HB = hummingbirds, LB = large bees. Different letters show

statistically significant difference (p < 0.05) of linear mixed effect model.
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Figure 5

The two groups of pollinators displayed variation in the frequency of visits during
reproductive events.

Visitation records were made throughout the flowering period in each reproductive event.
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Table 1l(on next page)
The population of E. lindenii in PARNASO is self-incompatible and parthenocarpic.

With cross-pollination and natural conditions, most flowers produced large amounts of fruit
with seeds, whereas autonomous and self-pollination resulted in few fruits with seeds. All

treatments were made in the montane Atlantic Forest at Serra do Orgaos National Park,

southeastern Brazil.
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Fruits with

Treatments Fruits (n) Seeds (mean = sd)
seeds (n)
Cross-pollination 130 127 116.10 = 62.29
Hand self-pollination 49 4 10.29 + 37.77
Autonomous 20 1 1.3 +5.81
Natural conditions 131 108 97.85+£75.50
1
2
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Table 2(on next page)

In Edmundoa lindenii we registered 11 floral visitors belonging to three functional groups: HB =
hummingbirds, LB = large bees, SB = small bees.

Rewards taken by the visitors: P = pollen, N = nectar. All records were made in the montane

Atlantic Forest at Serra do Orgdos National Park in southeastern Brazil in 2016 - 2018.
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Family Species Functional group Resource

Trochilidae Amarzilia lactea (Lesson, 1832) HB N
Amaczilia versicolor (Vieillot, 1818) HB N
Leucocholoris albicollis (Viellot, 1818) HB N
Phaethornis eurynome (Lesson, 1832) HB N
Ramphodon naevius (Dumont, 1818) HB N
Thalurania glaucopis (Gmelin, 1788) HB N
Amaczilia fimbriata (Gmelin, 1788) HB N

Apidae Bombus morio (Swederus, 1787) LB N/P
Bombus brasiliensis (Lepeletier, 1835) LB N/P
Euglossa sp. LB N

Apidae Trigona spinipes (Fabricius,1793) SB P
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Table 3(on next page)

Hummingbirdswere most effective in three of four reproductive events measured in Edmundoa lindenii.
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Functional groups

2015 2016 2017 2018
of pollinators
Hummingbirds (HB) 1726.8 1672.9 215.9 1942.7
Large bees (LB) 904.1 193.7 629.6 48.4
Proportional effectiveness
0.66x034 090x0.10 0.25x0.75 0.98 x 0.02

(HB x LB)
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