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Genome evolution in an ancient bacteria-ant symbiosis:
Convergent gene loss among Blochmannia spanning the origin
of the ant tribe Camponotini

Laura E Williams, Jennifer ] Wernegreen

Stable associations between bacterial endosymbionts and insect hosts provide
opportunities to explore genome evolution in the context of established mutualisms and
assess the roles of selection and genetic drift across host lineages and habitats.
Blochmannia, obligate endosymbionts of ants of the tribe Camponotini, have coevolved
with their ant hosts for ~40 MY. To investigate early events in Blochmannia genome
evolution across this ant host tribe, we sequenced Blochmannia from two divergent host
lineages, Colobopsis obliquus and Polyrhachis turneri, and compared them with four
published genomes from Blochmannia of Camponotus sensu stricto. Reconstructed gene
content of the last common ancestor (LCA) of these six Blochmannia genomes is reduced
(690 protein coding genes), consistent with rapid gene loss soon after establishment of the
symbiosis. Differential gene loss among Blochmannia lineages has affected cellular
functions and metabolic pathways, including DNA replication and repair, vitamin
biosynthesis and membrane proteins. Blochmannia of P. turneri (i.e., B. turneri) encodes
an intact DnaA chromosomal replication initiation protein, demonstrating that loss of dnaA
was not essential for establishment of the symbiosis. Based on gene content, B. obliquus
and B. turneri are unable to provision hosts with riboflavin. Of the six sequenced
Blochmannia, B. obliquus is the earliest diverging lineage (i.e., the sister group of other
Blochmannia sampled) and encodes the fewest protein-coding genes and the most
pseudogenes. We identified 55 genes involved in convergent gene loss, including
glutamine synthetase, which may participate in nitrogen recycling. Pathways for
biosynthesis of coenzyme A, terpenoids and riboflavin were lost in multiple lineages,
suggesting relaxed selection on the pathway after inactivation of one component. Analysis
of lllumina read datasets did not detect evidence of plasmids encoding missing functions,
nor the presence of coresident symbionts other than Wolbachia. Although gene order is
strictly conserved in four Blochmannia of Camponotus sensu stricto, comparisons with
deeply divergent lineages revealed inversions in eight genomic regions, indicating ongoing
recombination despite ancestral loss of recA. In sum, the addition of two Blochmannia
genomes of divergent host lineages enables reconstruction of early events in evolution of
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this symbiosis and suggests that Blochmannia lineages may experience distinct, host-
associated selective pressures. Understanding how evolutionary forces shape genome
reduction in this system may help to clarify forces driving gene loss in other bacteria,
including intracellular pathogens and free-living marine bacteria.
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Introduction

The evolution of stable mutualisms between bacteria and insects has occurred many times
and involves phylogenetically diverse lineages (Moran, McCutcheon & Nakabachi, 2008; Moya
et al., 2008; Kikuchi, 2009; Douglas, 2014). In many of these symbioses, the limited diets of
insect hosts are supplemented by an intracellular bacterial partner. Variation in dietary
requirements among insect hosts likely results in differing selective pressure on endosymbiont
genes, which in turn impacts endosymbiont genome evolution. For example, Buchnera
aphidicola supplement the carbohydrate-rich plant sap diet of aphids with amino acids
(Shigenobu et al., 2000), whereas Wigglesworthia species supplement the blood diet of tsetse
flies with vitamins and other cofactors (Akman et al., 2002). By contrast, cockroaches and ants of
the tribe Camponotini are generally considered omnivores with complex diets. Their bacterial
partners, Blattabacterium and Blochmannia, respectively, synthesize essential amino acids and
participate in nitrogen recycling (Gil et al., 2003; Lopez-Sanchez et al., 2009; Sabree,
Kambhampati & Moran, 2009), although the nitrogen recycling pathway is not complete in some
Blochmannia species (Williams & Wernegreen, 2010). In the case of Blochmannia, its nutritional
role may be most important at particular stages of the host's lifecycle (Zientz et al., 2006;
Feldhaar et al., 2007; Stoll et al., 2010).

Genomes of established endosymbionts like Buchnera, Wigglesworthia and Blochmannia
are typically characterized by high AT content, high mutation rates and extreme stability of gene
order (Moran, McCutcheon & Nakabachi, 2008). Recombination-related genes are often lost
during endosymbiont evolution, and very few recombination events are evident in endosymbiont
lineages. Genome reduction in established endosymbionts occurs via degradation and loss of

individual genes. Gene loss is likely shaped by both relaxed selective pressure due to the stable
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intracellular niche and genetic drift due to small effective population sizes and bottlenecks during
vertical transmission of symbionts. The balance between these forces may shift over time for a
given association, from the initial acquisition event through the ongoing evolution of the
symbiosis.

To explore genome reduction and evolution in the context of a long-term endosymbiosis,
we sequenced two deeply divergent lineages of Candidatus Blochmannia, which are obligate
bacterial endosymbionts of ants of the tribe Camponotini (Sauer et al., 2000). Blochmannia are
closely related to free-living Enterobacteriaceae such as Escherichia coli and form a clade with
other obligate endosymbionts including Baumannia, Sodalis and Wigglesworthia (Herbeck,
Degnan & Wernegreen, 2005; Husnik, Chrudimsky & Hypsa, 2011). The presence of
Blochmannia in multiple extant ant genera of Camponotini points to a single colonization event
in the ancestral lineage as the origin of the symbiosis (Sameshima et al., 1999; Wernegreen et al.,
2009). Based on phylogenetic evidence, the ancestor of Blochmannia may have been a facultative
symbiont of insects (Herbeck, Degnan & Wernegreen, 2005; Wernegreen et al., 2009).

The ant hosts of the four previously sequenced Blochmannia (Camponotus chromaiodes,
C. floridanus, C. pennsylvanicus and C. vafer) belong to Camponotus sensu stricto. Whereas
these host species span the origin of Camponotus ~16-20 MY, the association between
Blochmannia and the tribe Camponotini is at least twice that old, on the order of 40 MY. To
reconstruct earlier events in the evolution of this symbiosis, we sequenced the genomes of
Blochmannia from two divergent lineages in the tribe Camponotini: the genus Polyrhachis and
the Colobopsis lineage.

Though Colobopsis 1s formally considered a subgenus of Camponotus, phylogenetic

evidence has revealed it is a separate lineage from Camponotus (Brady et al., 2006; Moreau &
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Bell, 2013). These studies demonstrated that Colobopsis diverged early in the evolution of the
tribe Camponotini, and results are consistent with Colobopsis being the sister group of all other
Camponotini sampled, although relationships in this part of the tree were difficult to resolve
conclusively. Subsequent work has further suggested that Colobopsis is likely the sister group of
all other extant camponotines (pers. comm., P. S. Ward, 2014). In contrast to Camponotus species
with published Blochmannia genomes, C. obliquus lives in small twigs and branches, often in the
canopy. Polyrhachis diverged later than Colobopsis and is found in the Old World. The deep
evolutionary divergence of these host lineages, as well as differences in their geographic range
and habitats, provide a valuable opportunity to investigate the evolutionary trajectories of
Blochmannia across the Camponotini and to clarify ancient events that shaped this 40 MY old

ant-bacterial partnership.

Materials and Methods
Preparation of genomic DNA

A single colony of C. obliquus was collected near Morehead City, North Carolina, USA
by B. Guénard, and P. turneri was collected near Townsville, Australia by S. K. A. Robson (see
Acknowledgments). Voucher specimens were deposited in the Bohart Museum of Entomology,
University of California, Davis (UCDC), corresponding to voucher ID numbers
CASENTO0221021 (C. obliquus) and CASENT0220426 (P. turneri). We used the Qiagen DNeasy
Blood and Tissue Kit to prepare genomic DNA from a pooled sample of seven eggs, two larvae,
five pupae, eight minor workers, six major workers and five female alates for C. obliquus and a

pooled sample of three worker gasters for P. turneri.
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Sequencing and assembly of Blochmannia genomes

C. obliquus gDNA was sequenced on an [llumina HiSeq to generate 100 bp paired end
reads. We modified filter_reads.py (https://github.com/nickloman/xbase/blob/master/short-read-
assembly/filter_reads.py) for Sanger FASTQ format and used the script to remove paired reads
with any bases of quality score <30, which retained 6,184,892 read pairs. We assembled this
filtered read dataset using Velvet v1.2.07 (Zerbino & Birney, 2008) with a hash length of 61,
exp_cov 200, cov_cutoff 20 and scaffolding turned off. This generated 566 contigs, one of which
aligned to B. pennsylvanicus using MAUVE (Darling, Mau & Perna, 2010). We observed an
overlap of 116 bp between the contig ends, which suggested that de novo assembly had produced
a closed genome. To test this, we used Mosaik (Lee et al., 2014) to align the filtered read dataset
against a 1260 bp sequence encompassing the joined contig ends and flanking regions. This
alignment produced no zero coverage regions, which confirmed that the single contig was the
closed B. obliquus genome.

To finish the genome, we used a two-step process applying different alignment programs
to confirm the majority genotype, or the base represented by the majority of reads at each
position. In the first step, we used Mosaik, which allows the user to set the stringency of
mismatch tolerance. We aligned the filtered read dataset against the closed genome sequence
with a maximum mismatch threshold of 12 and then removed duplicate read pairs with the
DupSnoop module. Using Consed (Gordon, Abajian & Green, 1998), we generated a
questionable consensus bases report and a highly discrepant indels report for the resulting
alignment, which did not identify any positions that needed editing.

The second step in our finishing process invokes the IndelRealigner module of the

Genome Analysis Toolkit (GATK) to ensure accurate identification of indels (DePristo et al.,
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2011). We aligned the filtered read dataset against the closed genome sequence using BWA (Li
& Durbin, 2009) and then processed the resulting alignment with RealignerTargetCreator and
IndelRealigner from the GATK package. We removed duplicate reads using Picard
MarkDuplicates (http://broadinstitute.github.io/picard). Finally, we analyzed the processed
alignment using VarScan (Koboldt et al., 2009). We did not identify any positions that needed
editing, confirming that the single contig was the closed, finished B. obliquus genome. Genome
coverage for this alignment averaged 558x. This sequence is deposited in GenBank as accession
number CP010049. The Illumina read dataset is deposited in the NCBI Short Read Archive
(SRA) as SRP050154.

P. turneri gDNA was sequenced on an Illumina Genome Analyzer II (GAIIX) to generate
150 bp paired end reads. We used DynamicTrim.pl and LengthSort.pl from the SolexaQA
package (Cox, Peterson & Biggs, 2010) to generate trimmed reads of at least 80 bp with quality
score >30 for each base. The resulting trimmed read dataset included 9,590,066 read pairs. We
assembled this filtered read dataset using Velvet with a hash length of 41, exp_cov 200,
cov_cutoff 20 and scaffolding turned off. This generated 8,275 contigs, four of which aligned to
B. pennsylvanicus using MAUVE. To close the four gaps, we generated Sanger sequencing reads
and used Phred/Phrap/Consed to assemble and manually examine the sequence.

To finish the B. turneri genome, we followed the two-step process described above for B.
obliquus. In the first step, we corrected nine positions based on alignment of the full read dataset
against the closed genome sequence using Mosaik. In the second step, we aligned the full read
dataset against the corrected sequence using BWA followed by processing with GATK. We
analyzed the processed alignment with VarScan and corrected a single position. Genome

coverage for this alignment averaged 1223x. The closed, finished genome sequence is deposited
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in GenBank as accession number CP010048. The Illumina read dataset is deposited in the NCBI

Short Read Archive (SRA) as SRP050161.

Annotation of Blochmannia genomes

We used an annotation engine hosted by the Institute for Genome Sciences (IGS) at the
University of Maryland School of Medicine to generate an automated annotation of each genome
sequence (Galens et al., 2011), which we then manually curated within the MANATEE
framework (http://manatee.sourceforge.net/igs/). Protein-coding genes predicted by the
annotation engine were removed if they lacked a Blast-Extend-Repraze (BER) alignment score
<10~ to a protein-coding gene from outside of Blochmannia. We manually examined possible
frameshifted genes flagged by the annotation engine. For genes with frameshifts in homopolymer
tracts, we included the likely position of the frameshift in the GenBank annotation. Because the
frameshifts may be corrected by polymerase slippage, we consider these to be intact genes.

We curated start sites using BER alignments to Blochmannia and closely related species.
When possible, we used the gene name and symbol listed in SwissProt for the homologous gene
in E. coli to maintain consistency with existing proteobacterial annotations. For conserved
hypothetical proteins or proteins with similarity to a protein family but not a specific family
member, we did not assign a gene name and refer to them using the locus tag (for example,
BTURNG675_020).

After curating the annotations, we analyzed intergenic regions in each genome with
RFAM (Burge et al., 2013) and BLASTX (Altschul et al., 1990) to identify uncalled genes and
pseudogenes. In both B. obliquus and B. turneri, RFAM identified three RNA-coding genes (ffs,

rnpB and tmRNA). To identify protein-coding genes, we aligned intergenic regions to the
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GenBank non-redundant database using BLASTX with the low complexity filter turned off. We
manually examined hits with e-value <10°. Pseudogenes were identified by multiple nonsense
mutations, frameshifts and/or gaps. We annotated pseudogene coordinates using the boundaries
of the BLASTX alignments. Analysis of B. obliquus intergenic regions detected two genes (cyoD
and sdhD) and 15 pseudogenes (dnaA, engD, glnA, pdxA, pdxB, pdxJ, ribA, ribB, ribC, ribD,
secD, secF, topA, yigB and uvrD). Analysis of B. turneri intergenic regions detected five genes
(cyoD, infA, rpmJ, ycaR and yidD), one frameshifted gene (ybeY) and one pseudogene of a

hypothetical protein (BTURN675_514).

Phylogenetic analysis

We classified genes into six MultiFun categories (cell processes, cell structure,
information transfer, metabolism, regulation, and transport) by searching for the gene name in the
EcoCyc database. Some genes are assigned to more than one MultiFun category, and we included
all categories listed for each gene. If the gene had no associated MultiFun terms in EcoCyc or if it
had no gene name, such as BPEN_040, we considered the gene unclassified.

To construct a phylogeny, we chose Baumannia (NC_007984), Hamiltonella
(NC_012751) and Sodalis (NC_007712) as outgroups. We identified orthologs of Blochmannia
genes in these genomes using the Reciprocal Smallest Distance (RSD) algorithm (Wall, Fraser &
Hirsh, 2003) with default values for divergence (0.8) and e-value (107°). For each of the six
MultiFun categories, we randomly selected five genes present in all taxa. There were no
duplicates in the resulting set of 30 genes. We excluded B. chromaiodes from the phylogeny
because its genome sequence is 98.0% identical to that of B. pennsylvanicus (Williams &

Wernegreen, 2013). We used TranslatorX (Abascal, Zardoya & Telford, 2010) and MAFFT
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(Katoh et al., 2005) to construct a multiple sequence alignment for each gene, which we then
trimmed with ZORRO (Wu, Chatterji & Eisen, 2012). We concatenated the trimmed amino acid
alignments and used MrBayes v3.2.1 (Ronquist & Huelsenbeck, 2003) to construct a majority

rule consensus tree.

GC skew and DnaA box motif search

For B. pennsylvanicus (NC_007292), B. obliquus, and B. turneri, we used DNAPIlotter
(Carver et al., 2009) to construct plots of GC skew with 500 bp window size and 50 bp step size.
We used Pattern Locator (Mrazek & Xie, 2006) to search these three genome sequences for the

consensus DnaA box motif TTWTNCACA.

BLAST analysis

Because we prepared genomic DNA from whole ants or gasters, the Illumina read datasets
include coverage of genomes other than Blochmannia, such as the ant host nuclear and
mitochondrial genomes. To determine if the de novo assemblies included contigs from potential
Blochmannia plasmids or other bacterial symbionts, we used BLASTN to align all 2500 bp
contigs to the GenBank non-redundant database, limited to bacteria (taxid 2). For contigs with at
least one hit of >30% coverage and an evalue of <10”, we aligned each contig against the full
non-redundant database and examined the top hits.

To test whether the Illumina read datasets contain evidence of riboflavin biosynthesis
genes, we constructed BLAST databases of the C. obliquus and P. turneri read datasets. For C.
obliquus, we built a BLAST database using the unaligned reads file generated by Mosaik during

the initial finishing step (see above), thereby excluding most reads originating from the rib
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pseudogenes within the B. obliquus genome. We compiled a set of query genes representing
orthologs of conspicuously absent genes, including ribABDEF from B. pennsylvanicus
(NC_007292), Baumannia (NC_007984) and E. coli MG1655 (NC_000913), ribH from B.
pennsylvanicus and Baumannia, ribC from E. coli and the Camponotus floridanus gene for EF-
lalpha-F2 (EFN72500). For analysis of C. obliquus reads, we also included ribF and rib
pseudogenes from B. obliquus in the query set. We used BLASTN to align the query genes
against both BLAST databases and examined the output for alignments with e-values <10~.
Certain gene distribution patterns may be explained by either convergent gene loss or
acquisition via horizontal gene transfer. To test the hypothesis of horizontal gene transfer, we
aligned each of the 55 genes with such patterns against the GenBank non-redundant database
using BLAST. We first used BLASTN, and if this search did not return significant hits, we used
BLASTX. We examined the taxonomic assignments of the top hits to identify genes with high
scoring alignments to bacteria outside of the Enterobacteriaceae, which may support the

hypothesis of horizontal gene transfer.

Results
B. obliquus has the fewest protein-coding genes and most pseudogenes

The size and GC content of the B. obliquus and B. turneri genomes are within the ranges
observed for Blochmannia of Camponotus sensu stricto (Table 1). Although B. obliquus is on the
upper end of the size range, it has the fewest protein-coding genes of the six sequenced
Blochmannia. We also detected 15 pseudogenes in B. obliquus, which is an unusually high
number for Blochmannia (Table S1). In both B. obliquus and B. turneri, we identified genes that

have frameshifts in homopolymer tracts but otherwise are expected to encode a full-length
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protein. We consider these genes to be functional, because they may be corrected by polymerase
slippage during transcription and expressed as full-length proteins (Tamas et al., 2008;

Wernegreen, Kauppinen & Degnan, 2010).

B. obliquus is the earliest diverging Blochmannia lineage sequenced

To determine the evolutionary relationships of the Blochmannia lineages, we constructed
a phylogeny of 30 randomly selected protein-coding genes shared among Blochmannia genomes
and the outgroups Baumannia, Hamiltonella and Sodalis. The resulting phylogeny has 100%
posterior probability at all nodes (Fig. 1). In this phylogeny, B. turneri and Blochmannia of
Camponotus sensu stricto are more closely related to each other than to B. obliquus. This
topology is congruent with recent phylogenies of the ant host taxa that show Colobopsis as a
separate lineage rather than a subgenus of Camponotus (Brady et al., 2006). Hereafter, we use the
phrase "Blochmannia of Camponotus" to mean Blochmannia of Camponotus sensu stricto, which

does not include Colobopsis.

Assemblies show evidence of Wolbachia but no Blochmannia plasmids or other bacterial
symbionts

Because we prepared genomic DNA from whole ants or gasters, the [llumina read datasets
include coverage of genomes other than Blochmannia. To determine whether the assemblies
generated by Velvet included contigs from other symbionts or possible plasmids, we aligned all
contigs 2500 bp against the GenBank non-redundant database using BLASTN. We limited our
first search to bacteria (taxid 2). For contigs with hits of evalue <10” and >30% query coverage,

we aligned them against the full database. The top hits from this search are shown in Table S2.
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Analysis of the C. obliquus assembly identified 15 contigs with BLAST hits that met the
criteria outlined above. Three of these are from the ant nuclear genome and one is from the ant
mitochondrial genome (Table S2). The best-scoring hits for the remaining 11 contigs are all
matches to Wolbachia, an endosymbiont found in many insect species (Werren, Baldo & Clark,
2008), including ants (Russell et al., 2012). We did not detect evidence of any other symbiont or
any Blochmannia plasmids.

Analysis of the P. turneri assembly identified eight contigs with BLAST hits that met the
criteria outlined above. Four of these are from the ant nuclear genome and three are from the ant
mitochondrial genome (Table S2). The best-scoring hit for the remaining contig is to B.
pennsylvanicus. To examine this further, we aligned the contig to the B. turneri genome
sequence, which produced a much better alignment with 100% coverage and 85% identity. The
contig spans the 3' end of prfB, a 19 bp intergenic region and the 5' end of lysS. Coverage of this
contig averages 54x, whereas coverage of the same region in the B. turneri genome sequence
averages 1380x. Given its high nucleotide identity and synteny with the B. turneri genome and its
low coverage, we consider this contig an artifact of assembly rather than evidence of a plasmid or

other symbiont.

Gene content of reconstructed Last Common Ancestor is highly conserved in divergent
Blochmannia lineages

Using the six sequenced Blochmannia genomes, we reconstructed the likely gene content
of the Last Common Ancestor (LCA) of these lineages. Horizontal gene transfer (HGT) is
considered unlikely in Blochmannia due to the isolated intracellular niche of these bacteria.

Conservation of gene order in Blochmannia genomes supports the hypothesis that HGT is very
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rare. Additionally, we used BLAST to identify the best hits for genes with distribution patterns
consistent with either independent loss in multiple lineages or acquisition via HGT, and we did
not find evidence of HGT (see below). For these reasons, we expect very little, if any, gain of
genes in Blochmannia lineages, and our reconstruction of the LCA includes any intact gene found
in at least one of the sequenced genomes.

By this definition, the genome of the LCA consists of 690 genes (Fig. 2). Most of these
genes are retained in the Blochmannia genomes, with 568 genes, or 82% of the gene content of
the LCA, found in all six species. The complete ortholog table can be found as Table S3. Our
reconstruction may underestimate LCA gene content, because it is possible that genes were lost
independently from all lineages at some point after divergence from the LCA. For example, B.
chromaiodes, B. pennsylvanicus and B. obliquus encode a pseudogene of uvrD, but no sequenced
Blochmannia has an intact uvrD. This is the only Blochmannia gene found solely as a
pseudogene. This gene may have been intact and functional in the LCA, but it is not represented
in our reconstruction here. Sequencing of additional taxa, including Blochmannia from other
deeply divergent ant host genera such as Opisthopsis, will further refine reconstruction of the

ancestral lineage.

Gene content differences among divergent Blochmannia lineages include important cellular
functions

DNA replication and repair

The dnaA chromosomal replication initiation protein is intact in B. turneri, detectable as a
pseudogene in B. obliquus and missing in all four sequenced Blochmannia of Camponotus (Fig.

2). In other gamma-proteobacteria, DnaA initiates replication by binding to 9-bp sequences called
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DnaA boxes within the origin of replication (Zakrzewska-Czerwinska et al., 2007). GC skew
analysis predicts that the origin of replication is adjacent to mnmG in most Blochmannia species
(Fig. 3), so we searched the intergenic regions flanking mnmG in B. obliquus, B. pennsylvanicus
and B. turneri for the consensus DnaA box motif TTWTNCACA (Schaper & Messer, 1995).

We found two matches in B. turneri, none in B. obliquus and one match in B.
pennsylvanicus. By comparison, Buchnera aphidicola, which retained dnaA, has two DnaA boxes
in oriC (Mackiewicz et al., 2004); therefore, it is possible that DnaA can initiate replication in B.
turneri with only two consensus DnaA boxes. However, the presence of a DnaA box in B.
pennsylvanicus, which lacks dnaA, suggests that these motifs are not necessarily associated with
DnaA function in Blochmannia. In fact, when we searched the entire length of each genome, we
found multiple matches to the consensus DnaA box motif, which are unlikely to be involved in
DnaA function as described for gamma-proteobacteria such as E. coli (Hansen et al., 2006). More
work is needed to understand how the differential distribution of DnaA in Blochmannia species
affects control of DNA replication and whether DnaA boxes play a role in replication initiation in
B. turneri.

Loss of DNA repair mechanisms is a common characteristic of obligate intracellular
symbionts of insects. In the six sequenced Blochmannia, two genes involved in base excision
repair, mutM and mutY, are differentially distributed. B. obliquus encodes mutM but is missing
mutY, whereas B. turneri and the four Blochmannia of Camponotus are missing mutM and
encode mutY (Fig. 2). Both protein products act on 8-0x0G, which can mispair with adenine
(Michaels et al., 1992). MutM excises 8-0xoG when it is paired with cytosine, thereby initiating
base excision repair. If 8-0xoG is not removed prior to replication, MutY removes the mispaired

adenine, enabling repair. Inactivation of either gene leads to an increase in GC-to-TA
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transversions, which may contribute to the reduced genomic GC content observed in

Blochmannia and other insect endosymbionts (Lind & Andersson, 2008).

Vitamin biosynthesis

Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, is an important
enzyme cofactor. With very few exceptions, insects and other animals cannot synthesize vitamin
B6 (Tanaka, Tateno & Gojobori, 2005). Biosynthesis of PLP in E. coli and other gamma-
proteobacteria occurs via a pathway encoded by seven genes (Mukherjee et al., 2011). This
pathway is conserved in B. turneri and Blochmannia of Camponotus, with the exception of
epd/gapB, which is missing from all six sequenced Blochmannia (Fig. 4). In B. obliquus, only
dxs and serC are conserved, whereas pdxABHJ are missing. We detected pseudogenes of three of
these genes. Based on these gene losses, B. obliquus appears unable to provision its ant host with
vitamin B6.

Riboflavin (vitamin B2) biosynthesis is another vitamin synthesis pathway with
differential gene distribution in these Blochmannia lineages. Riboflavin is essential for synthesis
of the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) (Abbas &
Sibirny, 2011). Blochmannia of Camponotus encode five riboflavin biosynthesis genes
(ribABCDH), which comprise the complete pathway in E. coli. By contrast, these genes are
missing in both B. obliquus and B. turneri. We detected pseudogenes of ribABCD, but not ribH,
in B. obliquus. The ribF gene, which encodes an enzyme that synthesizes FMN and FAD from
riboflavin, is conserved in all six sequenced Blochmannia species.

It is possible that riboflavin biosynthesis genes are encoded on a plasmid, by a secondary

symbiont (Lamelas et al., 2011), or even within the ant host nuclear genome (Husnik et al.,
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2013). As discussed above, we detected Wolbachia but no plasmids or other symbionts in the
assemblies. To investigate possible alternative sources of riboflavin, we analyzed the Illumina
read datasets. Using BLASTN, we aligned a query set of rib genes from B. pennsylvanicus,
Baumannia and E. coli against the reads. We also included the elongation factor alpha F2 (EF-
lalpha-F2) gene from Camponotus floridanus in the query set to assess representation of the ant
host nuclear genome in the read datasets. Because B. obliquus has pseudogenes of four riboflavin
biosynthesis genes, we used the subset of reads that did not align to the B. obliquus genome to
build the C. obliquus BLAST database.

We found no evidence of intact riboflavin biosynthesis genes in the read datasets. For
reads from P. furneri gasters, we detected no BLASTN hits with e-values <107 to the query
riboflavin biosynthesis genes. For reads from C. obliquus ants, some reads aligned to the B.
obliquus pseudogenes. These are likely low quality reads originating from these pseudogenes.
When we considered only reads that did not align by BLASTN to the rib pseudogenes, we
detected only three reads aligning to the query riboflavin biosynthesis genes with evalues <107.
A single read, but not its mate, aligned to ribE from B. pennsylvanicus with only 58% coverage
and an evalue of ~10°, and a single read pair aligned to ribA from E. coli with 100% identity and
100% coverage, which may be due to contamination or presence of gut-associated bacteria. These
single reads contrast with the 558x coverage of the B. obliquus genome. For both read datasets,
multiple reads aligned to the C. floridanus EF-1alpha gene with evalues <10, confirming that
the reads include coverage of the host nuclear genome. Our analysis of the [llumina read datasets
did not reveal how these symbiotic systems compensate for the loss of riboflavin biosynthesis in

the Blochmannia partners.
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Membrane proteins

All six sequenced Blochmannia encode tolA, an inner membrane protein and a component
of the Tol-Pal system; however, there are structural differences among the species. In E. coli,
TolA has three domains: a transmembrane domain that anchors the protein in the cytoplasmic
membrane, a central periplasmic domain with high alpha-helix structure and a globular
periplasmic domain (Godlewska et al., 2009). In Blochmannia, five of the six species have a
stretch of 80-100 bp tandem repeats in to/A, which varies in length and repeat sequence among
species (Table 2). By contrast, B. obliquus shows no evidence of this repeat region, which is also
not found in the E. coli homolog. E. coli tolA has a repeat region, but it occurs in a distinct
location in the protein and consists of shorter repeats (Zhou et al., 2012). In addition, the length
of B. obliquus tolA (771 bp) is shorter than t0/A in the other Blochmannia species (990-1305 bp)
and E. coli (1266 bp).

The function of 70lA in an insect endosymbiont such as Blochmannia is unknown. In E.
coli, the Tol-Pal system is thought to interact with phage particles and colicins (Godlewska et al.,
2009). Some structural features described for E. coli TolA are conserved in Blochmannia, such as
the N-terminal transmembrane domain. Both the TMHMM server v 2.0 and Phobius predicted
one transmembrane helix within the first 50 amino acids of TolA from each sequenced
Blochmannia genome. Six of the seven genes comprising the two Tol-Pal operons (ybgC-tolQ-
tolR-tolA and tolB-pal-ybgF) in E. coli are conserved in all six sequenced Blochmannia, with
only ybgC missing. The Tol-Pal system may be important in Blochmannia for host-endosymbiont

interactions.

Phylogenetic framework reveals convergent gene losses
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We placed gene losses in a phylogenetic context to identify convergent losses (Fig. 5),
which we define as independent loss of the same gene in multiple lineages separated by a lineage
that retained the gene. By this definition, we identified 55 genes that were subject to convergent
loss in these Blochmannia lineages. An alternative explanation for the distribution patterns of
these 55 genes is acquisition by horizontal gene transfer. To test this explanation, we aligned each
of the 55 genes to the GenBank non-redundant database using BLAST and identified only two
genes (icd and yqiC) for which the top hits were to bacteria outside of the Enterobacteriaceae.
The top BLASTN hit for icd was to Candidatus Profftella, a beta-proteobacterial endosymbiont
of the Asian citrus psyllid. BLASTN did not return any significant hits for ygiC, but the top
BLASTX hit was to Vibrio litoralis. Although it is possible that these genes were acquired by
Blochmannia via horizontal gene transfer, for the purposes of our analysis we consider
convergent gene loss a more likely explanation for their distribution patterns.

Because of the branching order in the Blochmannia phylogeny (Fig. 1), the 15 genes
unique to B. turneri must have been independently lost in both B. obliquus and Blochmannia of
Camponotus (Fig. 5), assuming that gene content differences reflect gene loss rather than HGT
(see above). Four of these 15 genes are involved in DNA replication and repair, including the
chromosomal replication initiation protein dnaA, the DNA mismatch repair protein mutS and
DNA topoisomerases topA and topB. Three of the 15 genes (acnB, gltA and icd) encode enzymes
of the tricarboxylic acid (TCA) cycle and complete this pathway in B. turneri. By contrast, B.
obliquus and Blochmannia of Camponotus retained only TCA genes involved in energy
generation. In general, convergent loss of these 15 unique B. turneri genes in B. obliquus and
Blochmannia of Camponotus may indicate differing selective pressures on B. turneri and its ant

host.
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Multiple genes involved in metabolic pathways were subject to convergent loss in the six
sequenced Blochmannia. Glutamine synthetase was independently lost in both B. vafer and B.
obliquus. In other Blochmannia, this enzyme may play an important role in nitrogen recycling for
the ant host (Feldhaar et al., 2007). Convergent loss of g/nA suggests that this enzyme is not
essential to the symbiosis and its function can be fulfilled by an alternative pathway (Williams &
Wernegreen, 2010). A few convergent loss events involved genes from the same metabolic
pathway, such as coaADE and dfp (coenzyme A biosynthesis), ispADFGH (terpenoid backbone
biosynthesis) and ribABCDH (riboflavin biosynthesis). Loss of these genes may reflect relaxed
selection on components of a pathway after inactivation of a gene within that pathway.

In addition to genes involved in metabolism, genes encoding outer membrane and
secretory proteins, including ompA, oprC, secBDF and tonB, were lost independently in multiple
lineages, possibly affecting communication between endosymbiont and host cells. Finally,
convergent loss of five hypothetical proteins with unknown function emphasizes the need to
better characterize these proteins and understand their contributions to the symbiosis.
Maintenance of these hypothetical proteins in particular lineages suggests that they are under

selective pressure specific to host lineages.

Blochmannia lineages experienced multiple inversions

Although gene order is conserved among the four sequenced Blochmannia of
Camponotus, comparisons including B. obliquus and B. turneri revealed inversions in eight
genomic regions involving between two and 34 genes (Figs. 3 and 6). Two of these regions
(labeled D and G in Figs. 3 and 6) show evidence of multiple separate inversion events (Table

S3), suggesting that they may be inversion “hotspots”. To determine which lineage likely
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experienced inversion events, we compared gene order in the eight regions to that of close
relatives strain HS (CP006569), which is a member of a Sodalis-allied clade, and Baumannia
cicadellinicola str. Hc (NC_007984). For some regions, these close relatives provide information
on the probable gene order of the ancestral Blochmannia lineage. Based on these comparisons,
we hypothesize that two inversions occurred in the lineage leading to B. obliquus (labeled A and
B), one occurred in the lineage leading to B. turneri (labeled F), one occurred in the ancestral
lineage of B. turneri and Blochmannia of Camponotus (labeled C), and one occurred in the
ancestral lineage of the four sequenced Blochmannia of Camponotus (labeled E). For the

remaining three regions, our comparisons were inconclusive.

Discussion

Comparative genomics of Blochmannia lineages spanning the origin of the ant tribe
Camponotini allows us to reconstruct early events in the evolution of this symbiosis. Previous
phylogenetic analyses identified a clade of secondary endosymbionts of mealybugs as the closest
relatives of Blochmannia, suggesting Blochmannia may have originated from an ancestor of this
group (Wernegreen et al., 2009). Reconstruction of the last common ancestor of the Blochmannia
analyzed here showed most genes in the LCA (82%) have been retained in all six Blochmannia
species sequenced to date. This is consistent with the hypothesis that the ancestor was an
endosymbiont with an already reduced genome. Alternatively, Blochmannia may have undergone
a similar trajectory as that proposed for Blattabacterium, which may have originated as a free-
living associate that experienced substantial and rapid gene loss after acquiring an endosymbiotic
lifestyle but before diverging into extant lineages (Patino-Navarrette et al., 2013). Sequencing the

genomes of Blochmannia of other deeply divergent lineages, such as Opisthopsis, and closely
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related lineages outside of Blochmannia may provide data to distinguish these two hypotheses.

We found that gene content differences among Blochmannia lineages involve several key
functions, including information transfer, metabolism, and cell-cell communication, which may
affect the functioning of this mutualism across ant host lineages. Regarding metabolism, the
biosynthesis pathways for two vitamins, riboflavin and vitamin B6, vary among the sequenced
Blochmannia lineages. Plants and most bacteria encode a riboflavin biosynthesis pathway, but
animals lack this pathway. Many insect endosymbionts, such as Baumannia, Blattabacterium,
Buchnera, Hamiltonella, Sodalis and Wigglesworthia, synthesize riboflavin. Young aphids
depend on the supply of riboflavin from Buchnera for growth and development (Nakabachi &
Ishikawa, 1999). Our analyses showed that B. obliquus and B. turneri have both lost the ability to
synthesize riboflavin, whereas Blochmannia of Camponotus have retained this pathway and can
provision the ants with this vitamin. These differences in riboflavin biosynthetic functionality
illustrate how the nutritional roles of Blochmannia in this mutualism change during co-evolution
with hosts.

In other endosymbiont systems, loss of riboflavin biosynthesis is compensated by either a
secondary symbiont or transfer of the genes to the host nuclear genome. In the aphid Cinara
cedri, the primary endosymbiont Buchnera lacks riboflavin biosynthesis genes, but a more
recently integrated Serratia symbiotica associate retains this pathway (Perez-Brocal et al., 2006;
Lamelas et al., 2011). In the mealybug Planococcus citri, the symbiont Moranella endobia,
which is nested within cells of the endosymbiont Tremblaya princeps, encodes two riboflavin
biosynthesis genes. Two other genes are encoded by the host nuclear genome and appear to have
been transferred from facultative symbionts during past colonizations (Husnik et al., 2013). In

contrast to the above symbioses, our analysis of Illumina read datasets generated from genomic
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DNA of C. obliquus ants and P. turneri gasters showed no evidence that other bacterial associates
or the ant host encode intact riboflavin biosynthesis genes. Rather, the ant hosts may acquire
riboflavin via their diet, or it is possible that members of the gut microbiome synthesize this
vitamin for the host. Gut bacteria are not represented at high coverage in our read datasets.

As with riboflavin, insects lack a pathway for biosynthesis of vitamin B6 (Tanaka, Tateno
& Gojobori, 2005) and thus rely on their diet or symbionts to supply this essential cofactor. Five
of the six sequenced Blochmannia encode the 'DXP dependent' pathway for vitamin B6
biosynthesis characteristic of E. coli and other gamma-proteobacteria (Mukherjee et al., 2011)
The B. obliquus lineage has lost all but two of the seven genes in this pathway. In the other
Blochmannia lineages, these genes are scattered along the genome rather than adjacent to each
other, suggesting loss due to relaxed selective pressure on the pathway instead of a large deletion
event affecting multiple genes. This explanation is supported by retention of dxs and serC in B.
obliquus. These genes are also involved in amino acid metabolism and terpenoid backbone
biosynthesis pathways, respectively, which are conserved in Blochmannia. The two genes are
likely under selective pressure due to their roles in these other metabolic pathways, which
prevented their loss in the B. obliquus lineage.

In addition to metabolism, Blochmannia lineages show differences in replication and
repair genes. Specifically, the chromosomal replication initiation protein dnaA was lost in all but
one of the sequenced Blochmannia lineages. Some obligate bacterial endosymbionts of insects,
such as Buchnera species, have retained dnaA despite severe genome reduction. By contrast, loss
of dnaA has occurred in a few insect endosymbionts, including Baumannia, Blattabacterium,
Carsonella, Sulcia and Wigglesworthia (Akman et al., 2002; Nakabachi et al., 2006; Wu et al.,

2006; Lopez-Sanchez et al., 2009). DnaA is also missing from a bacterial endosymbiont of
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protists found in termite guts (Hongoh et al., 2008). Previously, it was hypothesized that loss of
dnaA was necessary for establishing a stable symbiosis between insects and bacterial
endosymbionts located in the cytosol, because it may enable direct control of symbiont DNA
replication by the host (Gil et al., 2003). The presence of intact dnaA in B. turneri and a dnaA
pseudogene in B. obliquus demonstrates that loss of dnaA was not required for establishment of a
stable symbiosis between Blochmannia and camponotines. However, the precise function of
DnaA in B. turneri and the mechanisms for controlling initiation of chromosome replication in
different Blochmannia lineages are unclear. In addition, it remains untested whether divergent
Blochmannia lineages live in the cytosol like B. floridanus or, alternatively, occupy host-derived
vacuoles.

The DNA repair genes mutM and mutY are also differentially distributed in the
Blochmannia lineages, with either one or the other retained. Loss of mutY appears to be more
common in intracellular bacteria (Garcia-Gonzalez, Rivera-Rivera & Massey, 2012).
Overexpression of mutM can "rescue" inactivation of mutY in E. coli (Michaels et al., 1992),
which implies that retention of mutM may be favored more strongly by selection. However, some
bacteria, including obligate intracellular Rickettsia species, lack both mutM and mutY (Garcia-
Gonzalez, Rivera-Rivera & Massey, 2012). Additional sequencing of Blochmannia from diverse
ant hosts may reveal the evolutionary trajectories leading to differential loss of mutM and mutY in
Blochmannia.

Obligate bacterial endosymbionts of insects are characterized by a high degree of genome
stability, with strictly conserved gene order observed among sequenced representatives of some
endosymbiont groups, such as Carsonella and Sulcia. Comparative genomics of other

endosymbiont genera, including Blattabacterium and Buchnera, have identified typically three or
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fewer inversions. Recently, an exception to this extreme conservation of genome architecture was
described in Portiera, an endosymbiont of whiteflies (Sloan & Moran, 2013). Analysis of
Portiera genomes from divergent whitefly host genera predicted at least 17 inversion events, with
most occurring in one lineage that also had a high prevalence of tandem repeats.

Previously, the Blochmannia genome dataset sampled only species from Camponotus
hosts, and these four sequenced species shared strictly conserved gene order. By sequencing
Blochmannia from ant hosts on divergent branches of the tribe Camponotini, our analysis
revealed that inversions have occurred throughout the evolution of this endosymbiont group.
Comparisons with close relatives suggest that inversions are not limited to a particular
Blochmannia lineage, but rather may have occurred along all four major branches of the
phylogeny. We identified gene losses in some of the regions involved in inversion events; it is
possible that changes in mutational pressure arising from strand switch contributed to degradation
and eventual loss of these genes (Williams & Wernegreen, 2012).

By sequencing genomes from Blochmannia of divergent ant host lineages, we expanded
the available Blochmannia genome dataset beyond Camponotus hosts and reconstructed
evolutionary trajectories of Blochmannia that likely span the origin of the tribe Camponotini.
Analysis of deep branches in symbiont groups addresses questions surrounding the origin of
symbioses and the mechanisms involved in establishment of stable associations. Although
divergent Blochmannia genomes share much of their gene content, differential gene losses across
key functional categories are likely to impact the host-bacterial partnership. It remains
challenging to distinguish if different losses reflect selective fine-tuning across distinct ant hosts,
stochastic gene deletions or a combination of the two. However, our results, particularly the

numerous instances of convergent gene loss, hint that the strength or efficacy of selection to
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maintain gene functions has varied across ant host lineages and contributed to observed genome
variation. These findings contribute to a broader understanding of processes shaping genome
reduction in insect endosymbionts and potentially in other bacteria, including intracellular

pathogens and free-living marine bacteria.
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Figure Legends

Figure 1. Blochmannia phylogeny. The phylogeny was constructed by Bayesian analysis of
concatenated amino acid sequence alignments for 30 genes. The phylogeny is artificially rooted
on the branch leading to Hamiltonella. All nodes have 100% posterior probability. The scale bar

shows amino acid substitutions.

Figure 2. Gene content of three divergent Blochmannia lineages. The total number of intact
genes, including genes that have frameshifts in homopolymer tracts, is shown in bold in each
section. Camponotus Bloch LCA includes any intact gene found in at least one of the four
sequenced Blochmannia of Camponotus sensu stricto. Note that coaBC is one gene. Although
vidC and yidD are separate genes in B. turneri and B. floridanus, these two genes are fused in the
other sequenced genomes and therefore counted as one gene here. Similarly, BOBLI757_064 and
BOBLI757_065 are counted as one gene because they encode the two domains of bifunctional

protein hldE.

Figure 3. Blochmannia genome plots. Plots of B. obliquus and B. turneri (sequenced in this
study) and B. pennsylvanicus (as a representative of Blochmannia of Camponotus sensu stricto)
were constructed with DNAPIotter. Position zero is set to the ATG start of mnmG for each
genome. Major and minor tick marks on the outer circle show 100 kbp and 20 kbp increments,
respectively. Tracks 1 and 2 show CDS in blue on the forward and reverse strands, respectively.
Track 3 shows pseudogenes in red. Track 4 shows the eight genomic regions that experienced

inversions in at least one of the lineages in grey. These regions are labeled A-H for consistency
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with Figure 6. Track 5 shows GC skew calculated using 500 bp window size and 50 bp step size.
Green shading above the line indicates GC skew greater than the genome average, whereas

purple shading below the line indicates GC skew smaller than the genome average.

Figure 4. Vitamin B6 synthesis encoded by six Blochmannia genomes. The pathway for
synthesis of vitamin B6 is annotated with gene distribution in the six sequenced Blochmannia.
Camp Bloch refers to all four sequenced Blochmannia of Camponotus sensu stricto, which have
the same gene content for this pathway. A plus sign indicates an intact gene, a minus sign

indicates a missing gene, and a psi symbol indicates a pseudogene.

Figure 5. Convergent gene losses. The distribution of genes lost in multiple independent events
(i.e., convergent gene losses) are shown in a phylogenetic context. A plus sign indicates an intact
gene, which includes frameshifted genes, a psi symbol indicates a pseudogene and a minus sign
indicates that the gene is absent. The gene content of B. chromaiodes and B. pennsylvanicus is
identical; therefore, only B. pennsylvanicus is shown here. Acquisition via horizontal gene
transfer could, in principle, explain some observed patterns; however, such transfer is unlikely in

Blochmannia, and we found no evidence for HGT of genes listed here (see text).

Figure 6. Inversions in divergent Blochmannia lineages. Whole genome alignment of B.
pennsylvanicus (as a representative of Blochmannia of Camponotus sensu stricto), B. turneri and
B. obliquus with progressive MAUVE shows inversions as colored blocks below the midline for
each genome. The eight genomic regions that experienced inversions are labeled A-H with the

number of genes involved in each also shown.
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Supplemental Material

Supplemental Table S1. Pseudogene statistics.

To examine gene degradation, we used TBLASTN to align Blochmannia pseudogenes to protein

sequences of intact genes from the most closely related lineage.

Supplemental Table S2. BLASTN analysis of contigs from de novo assemblies.

Supplemental Table S3. Ortholog table.

"pan-Camp" includes genes found in at least one of the four Blochmannia of Camponotus sensu
stricto. Genomic regions where inversion events occurred in at least one lineage are highlighted
in grey. For regions where comparisons to close relatives indicate which lineage likely
experienced the inversion event, only that lineage's genes are highlighted. When these
comparisons are inconclusive, all three lineages are highlighted. Note that BOBLI757_064 and

BOBLI757_065 are domain 1 and domain 2, respectively, of bifunctional protein HIdE.
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Genome statistics of six sequenced Blochmannia.
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Table 1. Genome statistics of six sequenced Blochmannia.
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GC

Genes

Genome Size content (inc. Prot.ein tRNA | rRNA other | pseudo | frameshifted
(%) pseudo) coding RNA | genes genes

B. obliquus 773,940 27.4 642 584 37 3 3 15 4
B. turneri 749,321 29.1 634 589 38 3 3 1 7
B. chromaiodes 791,219 29.5 658 609 40 3 3 3 4
B. pennsylvanicus | 791,654 29.6 658 609 40 3 3 3 4
B. floridanus 705,557 27.4 637 590 37 3 3 4 4
B. vafer 722,585 27.5 631 587 37 3 2 2 8
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1

Blochmannia phylogeny.

The phylogeny was constructed by Bayesian analysis of concatenated amino acid sequence
alignments for 30 genes. The phylogeny is artificially rooted on the branch leading to

Hamiltonella. All nodes have 100% posterior probability. The scale bar shows amino acid

substitutions.
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2

Gene content of three divergent Blochmannia lineages.

The total number of intact genes, including genes that have frameshifts in homopolymer
tracts, is shown in bold in each section. Camponotus Bloch LCA includes any intact gene
found in at least one of the four sequenced Blochmannia of Camponotus sensu stricto. Note
that coaBC is one gene. Although yidC and yidD are separate genes in B. turneri and B.
floridanus, these two genes are fused in the other sequenced genomes and therefore
counted as one gene here. Similarly, BOBLI757 064 and BOBLI757_065 are counted as one

gene because they encode the two domains of bifunctional protein hldE.
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Figure 3(on next page)
Blochmannia genome plots.

Plots of B. obliquus and B. turneri (sequenced in this study) and B. pennsylvanicus (as a
representative of Blochmannia of Camponotus sensu stricto) were constructed with
DNAPIotter. Position zero is set to the ATG start of mnmG for each genome. Major and minor
tick marks on the outer circle show 100 kbp and 20 kbp increments, respectively. Tracks 1
and 2 show CDS in blue on the forward and reverse strands, respectively. Track 3 shows
pseudogenes in red. Track 4 shows the eight genomic regions that experienced inversions in
at least one of the lineages in grey. These regions are labeled A-H for consistency with Figure
6. Track 5 shows GC skew calculated using 500 bp window size and 50 bp step size. Green
shading above the line indicates GC skew greater than the genome average, whereas purple

shading below the line indicates GC skew smaller than the genome average.
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Vitamin B6 synthesis encoded by six Blochmannia genomes.

The pathway for synthesis of vitamin B6 is annotated with gene distribution in the six
sequenced Blochmannia. Camp Bloch refers to all four sequenced Blochmannia of
Camponotus sensu stricto, which have the same gene content for this pathway. A plus sign
indicates an intact gene, a minus sign indicates a missing gene, and a psi symbol indicates a

pseudogene.
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Table 2(on next page)

Tandem repeats within tolA of Blochmannia and E. coli.

Data from Tandem Repeats Finder (Benson, 1999).* Four repeat patterns were identified. The

top-scoring pattern is reported here.
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Table 2. Tandem repeats within f0l/A of Blochmannia and E. coli.

Genome Length of rolA Length of # of repeat | Alignment score | Coordinates of
(bp) consensus copies repeat region
repeat pattern
(bp)
B. obliquus 771 17 2.1 52 81-114
B. turneri 990 81 4.4 699 205-558
B. chromaiodes 1185 87 6.0 1030 199-722
B. pennsylvanicus 1185 87 6.0 1046 200-722
B. floridanus 1305 99 6.5 1260 215-853
B. vafer 1173 102 5.1 1038 208-726
E. coli MG1655* 1266 79 2.0 239 671-829

Data from Tandem Repeats Finder (Benson, 1999)
*Four repeat patterns were identified. The top-scoring pattern is reported here.
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Convergent gene losses.

The distribution of genes lost in multiple independent events (i.e., convergent gene losses)
are shown in a phylogenetic context. A plus sign indicates an intact gene, which includes
frameshifted genes, a psi symbol indicates a pseudogene and a minus sign indicates that the
gene is absent. The gene content of B. chromaiodes and B. pennsylvanicus is identical;
therefore, only B. pennsylvanicus is shown here. Acquisition via horizontal gene transfer
could, in principle, explain some observed patterns; however, such transfer is unlikely in

Blochmannia, and we found no evidence for HGT of genes listed here (see text).
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Figure 6(on next page)

Inversions in divergent Blochmannia lineages.

Whole genome alignment of B. pennsylvanicus (as a representative of Blochmannia of
Camponotus sensu stricto), B. turneri and B. obliquus with progressive MAUVE shows
inversions as colored blocks below the midline for each genome. The eight genomic regions
that experienced inversions are labeled A-H with the number of genes involved in each also

shown.
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