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RNA-fluorescence in situ hybridization (FISH) is a powerful tool to visualize target mRNA
transcripts in cultured cells, tissue sections or whole-mount preparations. As the technique
has been developed over time, an ever-increasing number of divergent protocols have
been published. There is now a broad selection of options available to facilitate proper
tissue preparation, hybridization, and post-hybridization background removal to achieve
optimal results. Here we review the technical aspects of RNA-FISH, examining the most
common methods associated with different sample types including cytological
preparations and whole-mounts. We discuss the application of commonly used reagents
for tissue preparation, hybridization, and post-hybridization washing and provide
explanations of the functional roles for each reagent. We also discuss the available probe
types and necessary controls to accurately visualize gene expression. Finally, we review
the most recent advances in FISH technology that facilitate both highly multiplexed
experiments and signal amplification for individual targets. Taken together, this
information will guide the methods development process for investigators that seek to
perform FISH in organisms that lack documented or optimized protocols.
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12 Abstract

13 RNA-fluorescence in situ hybridization (FISH) is a powerful tool to visualize target mRNA 

14 transcripts in cultured cells, tissue sections or whole-mount preparations. As the technique has 

15 been developed over time, an ever-increasing number of divergent protocols have been 

16 published. There is now a broad selection of options available to facilitate proper tissue 

17 preparation, hybridization, and post-hybridization background removal to achieve optimal 

18 results. Here we review the technical aspects of RNA-FISH, examining the most common 

19 methods associated with different sample types including cytological preparations and whole-

20 mounts. We discuss the application of commonly used reagents for tissue preparation, 

21 hybridization, and post-hybridization washing and provide explanations of the functional roles 

22 for each reagent. We also discuss the available probe types and necessary controls to accurately 

23 visualize gene expression. Finally, we review the most recent advances in FISH technology that 

24 facilitate both highly multiplexed experiments and signal amplification for individual targets. 

25 Taken together, this information will guide the methods development process for investigators 

26 that seek to perform FISH in organisms that lack documented or optimized protocols.

27
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28 Introduction

29 Fluorescence in situ hybridization (FISH) is a powerful tool to visualize target DNA sequences 

30 or mRNA transcripts in cultured cells, tissue sections or whole-mount preparations. FISH 

31 functions via the principles of nucleic acid thermodynamics whereby two complementary strands 

32 of nucleic acids readily anneal to each other under the proper conditions to form a duplex 

33 (RNA:RNA or DNA:DNA), known as a hybrid (Felsenfeld & Miles, 1967). Under energetically 

34 favourable conditions, strands of RNA and DNA can also anneal to form DNA:RNA hybrids 

35 (Rich, 1959, 1960; Milman, Langridge & Chamberlin, 1967). These phenomena have facilitated 

36 the development of techniques that use either DNA or RNA probes to bind to DNA or RNA 

37 targets within a biological sample, a method broadly known as in situ hybridization (ISH). The 

38 earliest ISH protocols relied on radioactive probes that were costly, required long exposure 

39 times, and were hazardous to human health (Gall & Pardue, 1969; Pardue & Gall, 1969). Probes 

40 that relied on fluorophores instead of radioactive isotopes were later developed and could be 

41 directly detected with fluorescence microscopy. Methods that employed these probes became 

42 known as fluorescence in situ hybridization (FISH; Rudkin & Stollar, 1977). As FISH can be 

43 used to target DNA, modern FISH protocols can label positions of genes on chromosomes, 

44 diagnose diseases, and identify microorganisms (Kempf, Trebesius & Autenrieth, 2000; Wiegant 

45 et al., 2000; Hicks & Tubbs, 2005). However, FISH has also been developed to target RNA and 

46 thus visualize gene expression in situ, herein referred to as RNA-FISH (Singer & Ward, 1982). 

47 More recently, computational and imaging technology has further driven the development of 

48 RNA-FISH to allow for the visualization and semi-automated quantification of individual 

49 messenger RNA (mRNA) transcripts (Femino et al., 1998; Levsky et al., 2002; Raj et al., 2006, 

50 2008). The use of RNA-FISH to visualize individual mRNA molecules in this fashion is 
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51 currently known as single-molecule FISH (smFISH; Femino et al., 1998). Ultimately, there are 

52 several derivations of the original ISH method that have diverged to localize either DNA or RNA 

53 molecules with one of many detection methods. In this review, we focus on RNA-FISH methods.

54

55 As the number of FISH-based methods has increased, the number of published reagents, probe 

56 types, and detection methods have also expanded. This rise in options has increased the 

57 complexity faced by a researcher when developing a new FISH protocol or attempting to adapt 

58 an established protocol for use with a non-conventional sample type. Furthermore, published 

59 protocols rarely clarify which components are essential, and which are “traditional” elements 

60 inherited from previous iterations of a protocol. Thus, for a newcomer seeking to repurpose a 

61 published protocol, it is often unclear which steps of a protocol may be critical to its success or 

62 which steps could be removed for their own purposes. Here we review the technical aspects of 

63 RNA-FISH, including but not limited to smFISH. Based on a critical analysis of some leading 

64 published methods, we summarize the technique with respect to commonly used reagents for 

65 tissue preparation, hybridization, and post-hybridization washing and provide explanations of the 

66 functional roles for each reagent. The purpose of this review is to draw common ISH variants 

67 and their rationales together to equip users with the knowledge to develop novel applications of 

68 RNA-FISH for unexplored sample types. Thus, we present a broad survey of published RNA-

69 FISH protocols to educate new users and streamline the methods development process for both 

70 experienced and new investigators. It is worth noting the substantial overlap between many 

71 published ISH and FISH protocols with respect to tissue preparation, hybridization, and post-

72 hybridization. We have drawn information from a broad selection of protocols which could also 
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73 benefit the development of non-fluorescent (also known as chromogenic or colorimetric) ISH 

74 protocols (excluding probe generation and detection).

75

76 Survey methodology

77 To compare differences in modern FISH methodologies (tissue preparation, hybridization, and 

78 post-hybridization), the literature was broadly surveyed using PubMed and Google Scholar to 

79 search terms including “FISH”, “fluorescent”, “fluorescence”, and “in situ hybridization”. We 

80 also cross-referenced each article to identify further relevant resources from the published 

81 literature. Manuscripts that included sufficiently detailed methods were selected for comparison. 

82 Generally, manuscripts from the last 10 years (after 2009) were preferred to reflect modern 

83 methods, however, we also include early works that heavily influenced the development of the 

84 technique. To support discussion of the commonly used reagents, we searched for manuscripts 

85 that specifically explained the mechanistic underpinnings of the reagents.

86

87 The historical development of RNA-FISH

88 The method of labeling strands of nucleic acids in situ has undergone substantial development 

89 (Fig. 1). The earliest ISH techniques were documented in a pair of companion papers by Gall and 

90 Pardue (Gall & Pardue, 1969; Pardue & Gall, 1969). Gall & Pardue (1969) used RNA-based 

91 probes to label DNA in oocytes of the toad Xenopus. Pardue & Gall (1969) used DNA-based 

92 probes to label DNA in the same cells from the same species. In both cases, these probes 

93 required autoradiography for visualization. The first fluorescence in situ detection of DNA with 

94 indirect immunofluorescence was performed by Rudkin & Stollar (1977) to label polytene 

95 chromosomes in Drosophila melanogaster. The authors used RNA probes with hapten-labeled 

PeerJ reviewing PDF | (2019:08:40312:1:0:NEW 11 Feb 2020)

Manuscript to be reviewed



96 nucleotides that could be targeted with rhodamine-labeled antibodies and subsequently 

97 visualized with a fluorescence microscope. These probes circumvented many of the 

98 disadvantages associated with autoradiography (Bauman et al., 1980; Kislauskis et al., 1993). 

99 Direct fluorescence in situ detection (of DNA) without the need for antibodies was later 

100 performed by Bauman et al. (1980). The authors labeled mitochondrial DNA in the insect 

101 trypanosome Crithilia luciliae using an RNA probe with rhodamine directly incorporated into 

102 the probe (RNA was oxidized with NaIO4 and coupled to tetramethyl rhodamine thio-

103 semicarbazide). 

104

105 Although RNA-based probes had been used to this point, FISH had only been used to label 

106 DNA. Singer & Ward (1982) performed the first true RNA-FISH to visualize actin mRNA in a 

107 culture of chicken skeletal muscle. The authors used DNA probes labeled with biotin as a hapten 

108 (biotinated dUTP was incorporated via nick-translation). Following hybridization, these probes 

109 were targeted with primary antibodies and then with secondary anti-biotin rhodamine-conjugated 

110 antibodies. The secondary antibody labeling allowed Singer and Ward to produce stronger 

111 fluorescence compared to the direct detection method of Bauman et al. (1980). In the early 

112 development of RNA-FISH, probes had relied on either one fluorophore per probe molecule (and 

113 thus per hybridized transcript) or signal amplification using immunofluorescence. Neither of 

114 these methods produced adequately strong signals at a fixed fluorophore ratio per hybridized 

115 transcript that allows for absolute transcript quantification. Thus, only relative quantification of 

116 gene expression was possible.  

117
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118 Singer and colleagues later introduced the method of smFISH using multiple probes that were 

119 directly labeled with several Cy3 molecules per probe molecule. This method was sensitive 

120 enough to resolve individual mRNA transcripts (Femino et al., 1998). Due to the close proximity 

121 of fluorophores of the heavily labeled probe, the fluorophores underwent self-quenching 

122 (Randolph & Waggoner, 1997). This increased variability and interfered with quantification of 

123 the number of probe molecules bound to each transcript (Femino et al., 1998). In subsequent 

124 iterations of smFISH protocol development, the introduction of greater numbers of shorter 

125 singly-labeled probes resulted in labeling that was precise enough to allow for semi-automated 

126 quantification using companion image analysis software (Raj et al., 2006; Raj et al., 2008; Raj & 

127 van Oudenaarden, 2009; Taniguchi et al., 2010; Lyubimova et al., 2013). Raj et al. (2006, 2008) 

128 used a series of 20-mer oligonucleotide probes to collectively span the length of the transcripts of 

129 interest. Each probe was tagged with a single Alexa 594 fluorophore at the 3’-terminus to yield a 

130 predictable number of fluorophores per transcript. Raj et al. (2008) found that this approach 

131 achieved a similar sensitivity in labeling individual transcripts compared to the method of 

132 Femino et al. (1998), however, the newer method could more unambiguously discriminate 

133 between signal and background and had a simplified probe synthesis process. In parallel 

134 developments, other protocols were established using multiple nucleic acid-based probes with 

135 different fluorophores to measure the expression of multiple genes within individual cells 

136 (Levsky et al., 2002; Raj & van Oudenaarden, 2009). smFISH has also been paired with 

137 immunofluorescence and flow cytometry to simultaneously measure mRNA and protein 

138 abundance (Yoon, Pendergrass & Lee, 2016; Arrigucci et al., 2017; Eliscovich, Shenoy & 

139 Singer, 2017). 

140  
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141 Technical aspects of FISH

142 Many permutations of the FISH methodology exist for a variety of niche purposes (Volpi and 

143 Bridger 2008). Despite the range of techniques available, there is a core set of processing steps 

144 which are common to most: tissue preparation (pre-hybridization), hybridization, and washing 

145 (post-hybridization). These processes are essential to a FISH protocol, and each requires specific 

146 reagents to be effective. Generally, the required reagents are similar for cytological, histological, 

147 and whole-mount preparations. However, there are some differences which are highlighted 

148 below. Note that the design and synthesis of a probe or multiple probes is also a critical phase of 

149 any ISH experiment that we will not discuss in depth here. However, characteristics such as the 

150 GC content, the propensity to form secondary structures, the overall length and specificity and 

151 probe quantity and quality must be considered (Kucho et al., 2004). It should be noted here that 

152 the use of purely synthetic oligonucleotide probes and short PCR-derived probes are gaining 

153 popularity over in vitro transcription-derived probes that span the majority of a transcript. 

154 Synthetic probes give the user great control over probe characteristics that affect hybridization 

155 (Beliveau et al., 2012, 2018; Bienko et al., 2013) and omit the standard practice of cloning the 

156 target gene which would delay the FISH process.

157

158 Tissue preparation and permeabilization

159 Tissue preparation is one of the most critical aspects of a FISH protocol. Tissue preparation 

160 typically comprises both fixation and tissue permeabilization, and the balance of these is 

161 important in determining the degree of probe penetration as well as the morphological integrity 

162 of the sample. Prior to fixation, and critical for some species and sample types while less 

163 important for others, is the issue of relaxation of the sample of interest; a clear FISH signal can 
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164 be obscured or rendered uninterpretable if it is concealed by a contracted morphology. Muscle 

165 relaxants are extremely species-specific and beyond the scope of this review, however an 

166 adequately relaxed tissue preparation (especially for whole-mounts) will make the visualization 

167 and interpretation of any signal significantly easier. We encourage the reader to survey the 

168 literature for appropriate relaxants for their species of interest. The most common fixatives are 

169 4% formaldehyde or paraformaldehyde in phosphate buffered saline (PBS; Nakamura, 

170 Nakamura & Hamada, 2013; Neufeld et al., 2013; Kernohan & Bérubé, 2014; Shiura et al., 2014; 

171 Oka & Sato, 2015; Thiruketheeswaran, Kiehl & D’Haese, 2016). Formaldehyde is a crosslinking 

172 fixative that forms covalent links between macromolecules such as lipids, peptides and DNA; 

173 this creates a mesh inside the cells or tissues to hold their components in place and minimize 

174 enzymatic degradation over time (Eltoum et al., 2001). Paraformaldehyde (PFA) solutions 

175 produced from a powder will contain pure fixative, however, prepared 4% PFA solutions will 

176 produce polymers over time and become less effective as the polymers precipitate from the 

177 solution (Thavarajah et al., 2012). Thus, PFA solutions should be made fresh for each 

178 experiment. Alternatively, commercial formalin contains 37% monomeric formaldehyde in water 

179 and is supplemented with 10% methanol as a stabilizer to prevent polymer formation. Thus, a 

180 1:10 dilution of commercial formalin solution is a common substitute for 4% PFA that does not 

181 require fresh preparation for each experiment (Thavarajah et al., 2012). 

182

183 Fixation protocols are generally consistent among cytological, histological, and whole-mount 

184 preparations, although whole mounts generally require longer treatments to ensure complete 

185 penetration of the fixative. Fixation protocols often consist of a treatment with 4% PFA or 

186 formaldehyde in PBS for varied lengths of time and temperatures (Table S1). These examples, 
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187 and the link between sample size and density (larger and more dense samples need longer 

188 fixation) can provide some scope when estimating a fixation duration for other sample types. 

189 Optimal fixation of planarian worms is achieved with 4% formaldehyde for 20 minutes (Pearson 

190 et al., 2009; Rink, Vu & Alvarado, 2011). For bacterial species or eukaryotic cells, 4% PFA is 

191 used to fix cells for as little as 10 minutes or as much as 90 minutes (Shaffer et al., 2013; Skinner 

192 et al., 2013; Chen et al., 2015; Wang et al., 2015; Aistleitner et al., 2018; Cardinale et al., 2018; 

193 Rocha, Almeida & Azevedo, 2018). Fruit fly (Drosophila melanogaster) embryos are typically 

194 fixed in 4% PFA for 20 – 30 minutes (Hauptmann et al., 2016; Jandura et al., 2017; Little & 

195 Gregor, 2018; Szabo et al., 2018). Zebrafish (Danio rerio) embryos and the annelid Platynereis 

196 dumerilii can be suitably fixed in 4% PFA for 2 hours at room temperature (Jékely & Arendt, 

197 2007; Steinmetz et al., 2011) but can alternatively be fixed overnight at 4˚C (Oxtoby & Jowett, 

198 1993; Lauter, Söll & Hauptmann, 2011a,b; Marra et al., 2017). Arms of the brittle star 

199 (Amphiura filiformis) are also sufficiently fixed in 4% PFA overnight at 4˚C. Embryos of the 

200 brachiopods Terebratalia transversa and Novocrania anomala should be fixed in 4% 

201 formaldehyde for 4 hours (Schiemann et al., 2017; Gąsiorowski & Hejnol, 2019). The starlet sea 

202 anemone (Nematostella vectensis) and an acoelomorph worm (Convolutriloba longifissura) have 

203 been successfully fixed for ISH with 3.7% formaldehyde supplemented with 0.3% 

204 glutaraldehyde which is another strong cross-linking agent (Finnerty et al., 2003; Martindale, 

205 Pang & Finnerty, 2004; Hejnol & Martindale, 2008). Note, however, that glutaraldehyde is 

206 known to increase autofluorescence, at least with immunohistochemistry protocols. Whole 

207 mouse brains are often fixed in 4% PFA for up to 6 hours at room temperature or overnight at 

208 4˚C, although fixation of brain tissue is recommended not to exceed 24 hours (Kernohan & 

209 Bérubé, 2014; Kasai et al., 2016; Lanfranco et al., 2017; Hua et al., 2018). 
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210

211 As an alternative to formaldehyde, some protocols employ alcohol-based fixation using either 

212 ethanol (Schurter, LeBrun & Harrison, 2002) or methanol (Legendre et al., 2013). Ethanol and 

213 methanol are coagulant fixatives that replace free water in the tissue to dehydrate cells and 

214 destabilize hydrophobic and hydrogen bonds (Eltoum et al., 2001). Alcohol-based fixation is 

215 common for cultured cells and ice-cold (-20˚C) ethanol and methanol have been used to fix 

216 multiple cultured cell lines in as little as 10 minutes (Shaffer et al. 2013). To fix tissue sections or 

217 whole-mounts, alcohol is commonly combined with other fixatives such as formaldehyde 

218 (Finnerty et al., 2003; Martindale, Pang & Finnerty, 2004; Hejnol & Martindale, 2008; Pearson 

219 et al., 2009). Although methanol has been used successfully with immunofluorescence (Levitt 

220 and King, 1987), methanol has a propensity to disrupt native protein structure and is generally 

221 not recommended for use in multiplex FISH and immunohistochemistry (Fowler et al., 2011). 

222 Methanol will strip membrane lipids to improve permeability (Hoetelmans et al., 2001) and 

223 ethanol can strip the external wax and lipids from plant tissues (Bleckmann & Dresselhaus, 

224 2016). Thus, if cross-linking is also desired, formalin may improve tissue permeability over 

225 paraformaldehyde due to the added methanol. For example, fixative solutions that contain 

226 alcohol and formaldehyde improve permeability in gram-positive bacterial preparations and may 

227 retain higher DNA quality in cytological preparations (Manz et al., 1994; Shaffer et al., 2013). 

228

229 Beyond the choice of fixative, fixation temperature can also have a substantial impact on the 

230 final tissue quality (Fox et al., 1985; Thavarajah et al., 2012). With the use of formaldehyde, heat 

231 can accelerate the fixation process; although heat also increases the release of formaldehyde 

232 fumes which are hazardous to human health (Fox et al., 1985; Titford, 2001). Additionally, heat 
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233 can denature proteins and cause a loss of antigenicity which would negatively affect multiplex 

234 FISH and immunohistochemistry (Fowler et al., 2011). For nucleic acid visualization, reduced 

235 temperatures of 4˚C have been shown to preserve RNA throughout the fixation process 

236 (Bussolati et al., 2011). Additionally, ice-cold solutions of alcohol fixatives are recommended as 

237 the reduced temperatures will reduce the risk of over-permeabilization and subsequent leakage of 

238 target molecules.

239

240 Following fixation, samples are generally permeabilized to allow for proper penetration of 

241 hybridization reagents. Detergent treatment of fixed tissue is commonly employed at a 

242 concentration of 0.1% as it substantially improves permeability of the tissues via disruption of 

243 cellular membranes. The use of Tween-20 is common but other detergents including sodium 

244 dodecyl sulfate (SDS) and Triton X-100 can also be used. The detergent 3-[(3-

245 cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) is commonly used as an 

246 additive detergent to multiplex FISH with immunofluorescence as it effectively protects the 

247 native structure of proteins (Meyer, Garzia & Tuschl, 2017; Sepsi et al., 2018). Whole-mount 

248 preparations generally require stronger detergent treatments compared to cytological 

249 preparations or sectioned tissue, thus, a more aggressive detergent treatment such as 4% Triton 

250 X-100 can be effective in whole-mounts (Croll et al., 1999).

251

252 Treatment with a nonspecific protease such as proteinase K will permeabilize the tissues after 

253 fixation and can also release target nucleic acid molecules from bound proteins (such as RNA 

254 binding proteins), making them more accessible for hybridization. There is generally an inverse 

255 relationship between fixation time and the strength of the proteinase treatment as more highly 
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256 fixed tissues will require a stronger protease digestion to become permeable to the probe. A 

257 protease treatment is not always necessary for bacterial or eukaryotic cells as a detergent is 

258 usually sufficient, however, a brief treatment with a dilute solution of proteinase K should be 

259 considered if probe penetration is the suspected cause of an issue (Carr et al., 2005). Zebrafish 

260 embryos are treated with 10 µg/mL proteinase K in PBST for 2 – 20 minutes depending on the 

261 age (Oxtoby & Jowett, 1993; Marra et al., 2017). The same treatment is also recommended for 

262 snail embryos as well as whole-mount planarian worms and is sometimes applied to fruit fly 

263 embryos, although several other permeabilization strategies including acetone are also frequently 

264 used for Drosophila (Paré et al., 2009; Pearson et al., 2009; Jackson, Herlitze & Hohagen, 2016; 

265 Hauptmann et al., 2016; Trcek et al., 2017). Some protocols call for brain sections to be treated 

266 with proteinase K, however, many protocols omit this step as permeability is less of an issue with 

267 sectioned material (Kasai et al., 2016; Hua et al., 2018). The proteinase K treatment will require 

268 careful optimization as too little digestion will prevent probe penetration whereas too much 

269 digestion will destroy the morphology of the tissue and lead to increased background (Tessmar-

270 Raible et al., 2005; Bleckmann & Dresselhaus, 2016). As the degree of permeabilization with 

271 proteinase K can be a critical factor in the success of a FISH experiment, we recommend the use 

272 of accurately and consistently assayed batches of proteinase K enzyme such as supplied by New 

273 England Biolabs (Catalog: P8107S). As an alternative to proteinase K, pepsin has also been used 

274 to achieve more mild digestion of the tissue. Pepsin is preferred for cultured cells (Buxbaum, Wu 

275 & Singer, 2014) and tissue sections (Moorman et al., 2001; Teng et al., 2017) but potentially 

276 could be adapted to whole embryos. A treatment of 1 mg/mL pepsin in 0.01 N HCl is a common 

277 treatment, although the treatment length varies from 30 seconds to 10 minutes depending on the 

278 sample type (Moorman et al., 2001; Buxbaum, Wu & Singer, 2014; Teng et al., 2017).
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279

280 Further permeabilization treatments are available as an alternative or an addition to protease 

281 treatments. A treatment of 1 M HCl at 37˚C for 30–50 minutes is effective to improve 

282 permeability of mycolic-acid-containing bacterial cells whereas other bacteria (including 

283 Escherichia coli) can be permeabilized in only 10 minutes (Macnaughton, O’Donnell & Embley, 

284 1994). The addition of Triton X-100 or other detergent directly to the fixative in the initial 

285 fixation protocol has also been used to improve the permeability of bacterial cells through its 

286 interaction with cell envelope lipid molecules (Jackson, Herlitze & Hohagen, 2016; Rocha, 

287 Almeida & Azevedo, 2018). Protease-free detergent-based methods have also been successful 

288 for permeabilization of Drosophila embryos (Boettiger & Levine, 2013). Zebrafish embryos that 

289 are stored in methanol can be treated with 2% H2O2 for 20 minutes at room temperature to 

290 improve permeability (Lauter, Söll & Hauptmann, 2011b). This H2O2 treatment can also quench 

291 endogenous peroxidase activity and bleach tissues to reduce background in horseradish 

292 peroxidase-based assays (Marra et al., 2017). Organic solvents such as acetone have been used as 

293 an alternative to protease digestion of fragile embryos, and this method can also retain 

294 antigenicity for immunohistochemistry (Nagaso et al. 2001). In the preparation of whole-mounts 

295 with particularly tough integument, a digestion with 0.25% collagenase can be incorporated to 

296 improve permeability of dermal layers (Wyeth & Croll, 2011). Ultimately, careful optimization 

297 of the balance between fixation (strength, length and temperature thereof) and a proteinase based 

298 permeabilization is necessary to achieve a consistently high signal to noise ratio.

299

300 Hybridization
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301 For efficient and complete hybridization of probe to target, the optimal environment must be 

302 provided. The hybridization reaction can contain an array of different components (Table S1). In 

303 addition to the tissue, most documented hybridization solutions comprise a saline-sodium citrate 

304 buffer (SSC) with formamide, vanadyl-ribonucleoside complex (VRC), dextran sulfate, bovine 

305 serum albumin (BSA), competitor tRNA or DNA, and the probe (Pinkel et al., 1988; Singer, 

306 1998; Shaffer et al., 2013; Kernohan & Bérubé, 2014; Oka & Sato, 2015). Alternative 

307 components include Denhardt’s solution, ethylenediaminetetraacetic acid (EDTA), and Tween-

308 20 (Langenbacher et al., 2015; Parker et al., 2019). In addition to the recipe of the hybridization 

309 solution, there are several reaction conditions that must be considered, including salt 

310 concentration, pH, and the temperature and duration of the hybridization reaction.

311

312 Formamide reduces the free energy of binding of nucleic acid strands to allow hybridization to 

313 take place at lower temperatures without a loss in specificity, thus improving structural 

314 preservation of the tissue (McConaughy, Laird & McCarthy, 1969; Bauman et al., 1980; Blake & 

315 Delcourt, 1996; Fontenete et al., 2016). As formamide stabilizes free bases and single-stranded 

316 DNA in solution, the melting temperature of DNA is decreased in a linear fashion by 2.4 – 2.9˚C 

317 per mole of formamide in the hybridization buffer (Blake & Delcourt, 1996). Formamide 

318 generally composes between 10 – 50% of the final volume of the hybridization buffer, but this 

319 range may be exceeded under specific circumstances (Table S1). Formamide is a toxic substance 

320 and, therefore, proper safety precautions must be made to avoid inhalation and direct contact 

321 with formamide (Warheit et al., 1989). Protocols that use safer alternatives to formamide, such as 

322 urea (Sinigaglia et al., 2018) have been developed but have yet to gain popularity (Volpi, 2017). 

323
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324 VRC is an RNase inhibitor that is used to protect RNA-based probes or targets from enzymatic 

325 degradation (Berger & Birkenmeier, 1979; Frazier & Champney, 2012). VRC is typically added 

326 to the hybridization buffer at a final concentration of 10 mM as a precautionary measure. VRC is 

327 not compatible with solutions that contain EDTA as an equimolar concentration of a chelating 

328 agent will sequester the cations required for proper VRC function (Puskas et al., 1982). An 

329 RNase inhibitor is not absolutely necessary for successful ISH, but one should be considered if 

330 RNase contamination is a suspected problem. 

331

332 Dextran sulfate is an anhydroglucose polymer that absorbs water molecules to reduce the free 

333 water in the reaction. This forces the probe and the target closer together, an effect referred to as 

334 molecular crowding, which enhances the rate of hybridization of the probe to the target 

335 (Lederman, Kawasaki & Szabo, 1981). Dextran sulfate can also improve fluorescent signals (van 

336 Gijlswijk et al., 1996; Franks et al., 1998). Dextran sulfate is a synthetic analogue of heparin 

337 which can also be used in the hybridization buffer and has also been reported to reduce 

338 background signal (Singh & Jones, 1984). Dextran sulfate is most often employed at a 

339 concentration of 50 to 100 mg/mL (Table S1; Singer & Ward, 1982; Oka & Sato, 2015; Parker et 

340 al., 2019).

341

342 BSA is used as a blocking agent to reduce background signal and thus improve the contrast of 

343 the probe (Choo, 2008). BSA blocks nonspecific binding of probe molecules to nucleic acid 

344 binding sites on proteins within the tissue as it can saturate the binding sites prior to the 

345 introduction of the probe. The use of BSA as a blocking agent may be especially important when 
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346 using antibody-based detection methods. BSA is generally used at a concentration of 1 mg/mL 

347 (Thiruketheeswaran, Kiehl & D’Haese, 2016) up to 10 mg/mL (Singer & Ward, 1982)

348

349 Finally, sheared salmon sperm DNA or tRNA from E. coli or yeast is usually included in the 

350 hybridization buffer. The purpose of competitive nucleic acids is also to saturate nonspecific 

351 binding sites for probes to reduce background. Additionally, the competitor tRNA may protect 

352 target mRNA molecules via nonspecific blocking of RNase molecules that may have 

353 contaminated the solution. The optimal concentration of tRNA within the hybridization buffer 

354 should be empirically determined as it may vary widely depending on the tissue sample and the 

355 probe (Table S1; Langenbacher et al., 2015; Liu et al., 2019).

356

357 There are several alternative hybridization buffer components that can be used to facilitate an 

358 optimal hybridization environment. Denhardt’s solution is a broad blocking reagent composed of 

359 BSA, Ficoll type 400 and polyvinylpyrrolidone that can be used in place of BSA alone. EDTA is 

360 a chelating agent that can be added to a final concentration of 10 mM to remove free divalent 

361 ions such as magnesium. As EDTA can inactivate the VRC, these components are mutually 

362 exclusive. 

363

364 When the reagent recipe has been established to create a supportive hybridization solution, the 

365 hybridization conditions must also be determined to facilitate optimal hybridization. We believe 

366 attention should be first given to the following parameters regarding hybridization: salt 

367 concentration, pH, hybridization temperature, and duration of hybridization. Optimal 

368 hybridization will occur under conditions that allow the hybridization of the probe to the target 
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369 but prevent the formation of nonspecific hybrids. Conditions that promote the sole formation of 

370 highly stable hybrids are known as highly stringent conditions whereas more permissive 

371 conditions that may allow the formation of nonspecific hybrids are considered less stringent. The 

372 stringency of the hybridization is affected by the concentration of salt in the hybridization 

373 solution (lower concentrations are more stringent) as well as the hybridization temperature 

374 (higher temperatures are more stringent). It is most common to keep the salt concentration 

375 constant (750 mM NaCl, 87.5 mM sodium citrate), with pH roughly between 7.0 and 8.5, and 

376 simply adjust the hybridization temperature to achieve the ideal stringency (Pearson et al., 2009; 

377 Zhang et al., 2012; Jackson, Herlitze & Hohagen, 2016). An initial denaturation step of 75˚C for 

378 10 minutes can be used to denature all target and probe RNA facilitate hybridization, the sample 

379 is then immediately adjusted to the designated hybridization temperature (Jékely & Arendt, 

380 2007; Jackson, Herlitze & Hohagen, 2016). The optimal hybridization temperature is dependent 

381 on the length and composition of the probe, with higher temperatures being more stringent and 

382 less conducive to hybridization. Although the hybridization temperature should be empirically 

383 optimized for every probe individually, short oligonucleotide probes (20-50 nucleotides) 

384 typically require lower hybridization temperatures of 37˚C whereas longer riboprobes of 1000+ 

385 nucleotides may hybridize at temperatures >55°C (Pearson et al., 2009; Jackson, Herlitze & 

386 Hohagen, 2016; Fontenete et al., 2016). Generally, the hybridization step cannot be over-

387 incubated and usually involves determining the minimum duration after which labeling no longer 

388 improves. Thus, an extended hybridization should be performed to allow probes to completely 

389 occupy available targets. Most often, 12 – 24 hours is sufficient, regardless of the probe type 

390 (Carleton et al., 2014; Jackson, Herlitze & Hohagen, 2016; Meyer, Garzia & Tuschl, 2017; 

391 Jandura et al., 2017). Rapid hybridization has been achieved in cultured cells in as little as five 
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392 minutes with the Turbo FISH method (Shaffer et al., 2013), but this is not a prudent point of 

393 entry for new protocols, especially for whole-mount material. Ultimately, salt concentration, 

394 hybridization temperature, and hybridization duration can be adjusted to create the optimal 

395 hybridization conditions with enough stringency to exclude non-specific labeling.

396

397 Post-hybridization treatments

398 The purpose of the post-hybridization washes is to separate nonspecific hybrids and remove 

399 unbound probe molecules from the tissue to minimize background signal. Samples are typically 

400 subjected to increasingly stringent washes in SSC buffer containing formamide and a detergent 

401 (Table S1; Jackson, Herlitze & Hohagen, 2016; Thiruketheeswaran, Kiehl & D’Haese, 2016). 

402 Increased stringency can be achieved through sequential washes with incrementally reduced salt 

403 concentrations while the wash temperature is matched to the hybridization temperature 

404 (Martindale, Pang & Finnerty, 2004; Hejnol & Martindale, 2008; Jackson, Herlitze & Hohagen, 

405 2016; Schiemann et al., 2017; Gąsiorowski & Hejnol, 2019). At the end of washing, the goal is 

406 to allow only the specific and stable hybrids to remain. A wash progression that finishes with a 

407 higher concentration of salt (or at a lower temperature, i.e. lower stringency) will be less likely to 

408 denature and remove nonspecific hybrids, but also may preserve greater intensity of specific 

409 labeling.

410

411 In addition to nonspecific hybrids, autofluorescence and excessive background are issues that 

412 can diminish the visibility of true signal and influence the interpretation of the results. Treatment 

413 with 0.1% Sudan Black B in 70% ethanol is effective to minimize autofluorescence in sectioned 

414 brain tissue as well as cultured cells (Oliveira et al., 2010; Qi et al., 2017). If background signal 
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415 is an issue, tissues can also be acetylated with 0.3% acetic anhydride in triethanolamine for 5 – 

416 10 minutes (Jackson, Herlitze & Hohagen, 2016). This acetylation blocks positively charged 

417 proteins and amine groups (exposed during enzymatic permeabilization) in the tissue that could 

418 otherwise engage in electrostatic interactions with negatively charged probes. 

419

420 The final process prior to visualization of results is tissue clearing to prevent lateral light 

421 scattering within the tissue, clearing becomes more critical with physically larger specimens 

422 (Richardson & Lichtman, 2015). Common methods of tissue clearing may involve either 

423 dehydration or hyperhydration of the tissue sample. An organic solvent-based method of clearing 

424 via a two-to-one mixture of benzyl benzoate and benzyl alcohol has been successfully used to 

425 visualize whole snail embryos (Jackson, Herlitze & Hohagen, 2016), however, the tissue must 

426 first be dehydrated with a graded series of ethanol. One potential issue with solvent-based 

427 clearing is that the dehydration process can cause substantial shrinkage of tissues (Richardson & 

428 Lichtman, 2015). Other methods of clearing that involve hyperhydration include the formamide-

429 based ClearT (Kuwajima et al., 2013) as well as the urea-based CUBIC (Susaki et al., 2014; 

430 Tainaka et al., 2014). Methods of hyperhydration often involve large quantities of detergent and 

431 are most suitable when it is desirable to remove the majority of lipids from the tissue sample. A 

432 more advanced method of tissue clearing involves the use of anchor probes to fix the hybrids 

433 within a polymer matrix with subsequent digestion of non-RNA material (Moffit et al., 2016b), 

434 however, this technique is most suitable for highly multiplexed FISH experiments.

435

436 Probe selection and optimization for FISH
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437 Probes are nucleic acid strands that may be composed of DNA, cDNA or RNA; they may be 

438 single-stranded or double-stranded and may vary in length from 20 bases to over 1500 bases. 

439 Regardless of the probe type, the sequence of the probes must be complementary to the target 

440 sequence to ensure proper hybridization. Probes can be modified with a fluorophore directly 

441 attached to the probe to be detectable with fluorescence microscopy, or fluorophores may be 

442 covalently linked to an antibody that binds to an antigen incorporated into the probe (Fig. 2). 

443

444 Despite the advantages and increasing popularity of chemically synthesized short probes 

445 (employed for example in smRNA-FISH), single-stranded RNA probes (riboprobes) of 500 – 

446 1500 bases are commonly employed as they are inexpensive and simple for a standardly 

447 equipped molecular biology laboratory to produce. Such riboprobes are typically generated 

448 through in vitro transcription of a target sequence that has been cloned. In this way target DNA 

449 sequences with flanking RNA polymerase promoters can be used with an appropriate RNA 

450 polymerase to produce single-stranded complementary RNA probes. Secondary detection is most 

451 common with riboprobes as nucleotides tagged with hapten molecules, such as digoxigenin, can 

452 be easily incorporated into the transcription reaction. The hapten molecules in the transcribed 

453 probe are then subsequently targeted by fluorophore-bound antibodies (Fig. 2). One advantage of 

454 riboprobes (rather than DNA-based probes) is that an RNase treatment can follow the post-

455 hybridization step to reduce background. This is only appropriate with riboprobes as RNA:RNA 

456 hybrids are unaffected by RNases whereas DNA:RNA hybrids will be degraded (Keller & 

457 Crouch, 1972; Donà & Houseley, 2014). Note, however, that unintentional RNase contamination 

458 earlier in the protocol will be detrimental as single-stranded riboprobes are sensitive to RNases 

459 prior to hybridization.
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460

461 The other prominent probe type in modern FISH protocols is the oligonucleotide probe – a 

462 cocktail of short single-stranded synthetic DNA probes that collectively span the length of the 

463 target (Fig. 2; Femino et al., 1998; Raj et al., 2008; Zenklusen & Singer, 2010). Each individual 

464 probe molecule can be labeled with a fluorophore on the 5’ end, the 3’ end, or both ends. A 

465 broad selection of fluorophores are available including Cy3, Cy5, Alexa fluor (Invitrogen), and 

466 Quasar (LGC Biosearch Technologies) depending on the desired absorption/emission spectra, 

467 budget, or personal preference. Oligonucleotide probes can be advantageous for particularly 

468 challenging tissues as the small probes can penetrate the tissue more efficiently. Furthermore, as 

469 each oligonucleotide probe binds to the target, the transcript will relax and facilitate the 

470 hybridization of additional probe molecules (Baker, 2012). Oligonucleotides also have the 

471 highest specificity possible as they are less tolerant of mismatches that lead to nonspecific 

472 binding (Hougaard, Hansen & Larsson, 1997; Insam, Franke-Whittle & Goberna, 2009). One 

473 aspect of oligonucleotide probes that may deter new users is the level of difficulty associated 

474 with their production, or the high cost associated with outsourcing through a commercial supplier 

475 (Raj et al. 2008; Zenklusen & Singer, 2010). 

476

477 Controls for an in situ hybridization experiment

478 An often overlooked aspect of FISH experiments is how to employ controls to detect false 

479 positive results and to ensure that staining patterns represent genuine biological signal; if a 

480 staining pattern is observed following a FISH experiment, it may indicate successful 

481 hybridization, but it could also be the result of non-specific binding of the probe. Additionally, a 

482 lack of observable signal could mean that the mRNA target is not expressed, but it may also 
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483 indicate a technical issue with the protocol despite the presence of the target. We would 

484 encourage creativity in carefully designing control experiments to identify the causes of 

485 undesired or absent results. Some potential control treatments are suggested below.

486

487 Several positive controls can potentially be used to verify both the efficacy of the FISH protocol 

488 and the expected behaviour of all reagents. An example of a positive control to verify basic 

489 protocol function is to use a probe against a widely (temporally and in many tissue types) 

490 expressed gene such as actin or tubulin with a spatially discrete and predictable staining pattern 

491 (Oschwald, Richter & Grunz, 1991; Kaplan et al., 1992). It can also be informative to target 

492 specific genes that are only expressed in known tissue layers or cell types (e.g. neuronal- or 

493 epithelial-specific markers). Considering the relative ease and falling cost of generating 

494 transcriptome data, it is feasible to also select genes from such data with high levels of 

495 expression for use as positive controls in the tissue or developmental stage of interest. Finally, if 

496 no signal can be generated in situ with a positive control it may be informative to perform a 

497 simple in vitro dot blot. By spotting a diluted series of the probe onto a membrane and detecting 

498 these spots with the same reagents used in the in situ experiment any technical problems arising 

499 from the reagents can be ruled out or quickly identified.

500

501 Conversely, negative controls can identify nonspecific probe binding for direct labeling and 

502 nonspecific antibody binding for indirect labeling experiments. Parallel treatments in which one 

503 sample has been pre-treated with RNase will also indicate if the probe is binding exclusively to 

504 RNA (no signal is expected in the RNase treated sample). A similar treatment with DNAse will 

505 identify any binding to DNA. A sense probe can also be used in parallel with the normal 
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506 antisense probe. A sense probe should not form a hybrid within the fixed tissue as it will not be 

507 complementary to a target, and thus can only produce non-specific binding. If sense and 

508 antisense probes are used in parallel and only the antisense probe produces a signal, and all other 

509 controls are also verified, it is likely that the probe is specific and hybridized to the desired 

510 mRNA target (Piette et al., 2008). While this combination of controls is commonly employed in 

511 the literature and requested by reviewers, it has been reported that some genes are transcribed 

512 from both the sense and anti-sense DNA strands (Katayama et al., 2005; Zhang et al., 2006; 

513 Hongay et al., 2006; Finocchiaro et al., 2007). A combination of the above controls and 

514 experience with a range of probes against different genes will quickly give the user a sense of 

515 what is a general non-specific background versus a genuine biological signal. 

516

517 Recent advances in FISH protocol development

518 Since the inception of FISH, the core reagents required to perform the technique have remained 

519 relatively constant, however, significant advances have been made on the front of probe design 

520 and production, as well as signal amplification and detection (Pichon et al., 2018). Recent 

521 developments include improvements in the signal strength that can be achieved in small-scale 

522 experiments with complex whole-mounts (Choi et al., 2016, 2018; Marras, Bushkin & Tyagi, 

523 2019) as well as the high-throughput protocols that allow for visualization of thousands of 

524 transcripts in single cells with quantitative semi-automated data analysis (Moffitt et al., 2016a; 

525 Eng et al., 2019). 

526

527 Amplification of FISH signal was first achieved through the use of fluorochrome-labeled 

528 tyramides that would accumulate at the site of the in situ hybrid due to the use of hapten-labeled 
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529 probes and anti-hapten antibodies conjugated to horseradish peroxidase (Raap et al., 1995). This 

530 method of tyramide signal amplification (TSA) for FISH is still frequently used to great effect in 

531 many sample types including whole-mount invertebrate embryos (Martín-Durán et al., 2016; 

532 Schiemann et al., 2017; Gąsiorowski & Hejnol, 2019) as well as vertebrate embryos and organs 

533 (Lauter, Söll & Hauptmann, 2011; Legendre et al., 2013; Row & Martin, 2017). A more recent 

534 development for FISH signal amplification was introduced by Choi et al. (2010), expanded on by 

535 Marras et al. (2019) and is based on the hybridization chain reaction (HCR) introduced by Dirks 

536 & Pierce (2004). In situ HCR uses RNA (Choi et al., 2010, 2014) or DNA (Dirks & Pierce 2004; 

537 Choi et al., 2016, 2018) probes that carry overhang initiator sequences to initiate multiple chain 

538 reactions whereby multiple fluorophore-tagged DNA hairpins unfold and assemble into a chain 

539 in the vicinity of the probe. This effectively produces multiple strands of fluorophore-laden DNA 

540 that are tethered to the probe, thus substantially enhancing the signal. In situ HCR is a non-

541 enzymatic method that boasts shorter protocol lengths (36 hours) and does not exhibit the signal 

542 diffusion that has been associated with enzyme-based amplification and detection methods.

543

544 Methods for highly multiplexed FISH generally rely on either combinatorial (Lubeck & Cai, 

545 2012; Chen et al., 2015; Moffitt et al., 2016a; Moffitt et al., 2018) or sequential (Lubeck et al., 

546 2014; Shah et al., 2018; Eng et al., 2019) labeling of individual transcripts using probes bearing 

547 different fluorophores to create RNA sequence-specific barcodes. Of the modern high-

548 throughput multiplex approaches, multiplexed error robust FISH (MERFISH; Chen et al., 2015) 

549 and sequential FISH (seqFISH+; Eng et al., 2019) are two of the most robust options. MERFISH 

550 utilizes multiple oligonucleotide probes per target, each probe with a 5’ and 3’ overhang readout 

551 sequence that can be separately targeted by a fluorophore-tagged secondary probe. SeqFISH+ 
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552 also utilizes multiple singly-labeled oligonucleotide probes per transcript, however, the 

553 DNA:RNA hybrids are visualized, destroyed with DNase I, and then replaced using identical 

554 probes tagged with a spectrally distinct fluorophore to be imaged again. In both cases, the signals 

555 produced by all fluorophores are captured and the patterns are decoded using software to reveal 

556 the expression patterns of each gene. With these methods, 10,000 genes can be interrogated 

557 simultaneously within a single cell (Eng et al., 2019), or up to 40,000 cells within an 18 hour 

558 measurement period (Moffitt et al., 2016a).

559

560 For most FISH protocols that involve labeling one or two target transcripts, qualitative analysis 

561 using confocal microscopy is sufficient, however, modern highly multiplexed FISH protocols 

562 require computer-assisted image analysis. Currently, single mRNA molecules can be detected 

563 using a standard epifluorescence microscope equipped with a charge-coupled device (CCD) 

564 camera, although data is typically collected from multiple optical slices using a confocal 

565 microscope (Zenklusen & Singer, 2010; Skinner et al., 2013). For analysis of standard smFISH 

566 experiments in cultured cells, it is generally possible to condense the full z-stack to a 2D image 

567 as for most genes, abundance is low enough that it is unlikely that two mRNA molecules will 

568 occupy the same position in the x-y plane but differ in the z plane (Zenklusen & Singer, 2010; 

569 Trcek et al., 2012). One of the most popular methods to extract data from these images involves 

570 fitting a 2D Gaussian mask over each diffraction limited spot to determine the exact signal 

571 intensity from each mRNA molecule (Thompson, Larson & Webb, 2002). Complex high-

572 throughput datasets like those from MERFISH or seqFISH+ require specifically designed 

573 algorithms and substantial computational power to decode signals from hundreds of genes across 

574 multiple images from a single cell. The details of these analyses are beyond the scope of this 
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575 review, but access to the computational pipelines is available through the respective MERFISH 

576 (Moffitt et al., 2016a) and seqFISH+ (Eng et al., 2019) publications.

577

578 Since the introduction of RNA-FISH, great progress has been made with respect to the number 

579 of targets that can be simultaneously visualized and quantified in situ. Substantial progress has 

580 also been made in terms of the complexity of tissues that can be processed, from cultured cells 

581 (Singer & Ward, 1982) to whole embryos (Tautz & Pfeifle, 1989). Whole mount FISH can be 

582 multiplexed to examine several transcripts simultaneously (Meissner et al., 2019) and MERFISH 

583 can be performed in tissue sections (Moffitt et al., 2016b). However, whole-mount techniques 

584 have not advanced to match what is possible in cultured cells. One requirement to close this gap 

585 is further development of imaging technology to visualize single transcripts using highly-

586 multiplexed FISH in whole mounts. Furthermore, the development of signal enhancement 

587 methods such as branched DNA ISH (Player et al., 2001; Battich, Stoeger & Pelkmans, 2015) 

588 and HCR (Choi et al., 2010) will likely be a key to acquiring sensitive deep-tissue FISH signals 

589 in more complex samples. 

590

591 Conclusions

592 FISH is a powerful technique that can interrogate the spatial patterns and mechanisms of gene 

593 expression in biological systems on scales ranging from the single cell to tissue sections to whole 

594 organisms. When coupled with other modern methods that afford broad molecular insight (for 

595 example genomics, transcriptomics and gene editing), FISH can increase the precision of genetic 

596 information that can be ascertained from unconventional model organisms. However, 

597 establishing any kind of ISH method in an understudied system can be extremely time-
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598 consuming. This problem is compounded for the inexperienced user whose first step may be to 

599 consult an extremely varied, and at times contradictory, technical literature. In this review, we 

600 have attempted to summarise some of the main principles of FISH, and to emphasise those steps 

601 that are critical to success. As a starting method, we recommend 4% PFA or 3.7% formalin for 

602 fixation with 10 µg/mL proteinase K for permeabilization. The hybridization solution should 

603 contain at least formamide (generally 50%), dextran sulfate, and competitor DNA, but other 

604 ingredients and the duration of the hybridization are probe-dependent. Non-specific hybrids can 

605 then be removed during the post-hybridization washes using formamide and Tween-20 in SSC at 

606 the hybridization temperature, while progressively decreasing salt concentration. Finally, we 

607 have also highlighted some of the recent advances in the field and hope that in bringing these 

608 points to the attention of the reader, the process of FISH method development and optimisation 

609 may be expedited.
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Figure 1
Schematic representation of the technical development of fluorescent in situ
hybridization (FISH).

In situ hybridization (ISH) was first performed by Gall and Parude in 1969 using radioactive
probes. Fluorescent ISH (FISH) against DNA was first performed by Rudkin and Stollar in
1977. FISH against RNA (RNA-FISH) was first performed by Singer and Ward in 1982. RNA-
FISH that could be used to resolve individual mRNA transcripts was first performed by Femino
et al. in 1998 and later improved upon in whole mount tissue by Raj et al. in 2008.
Horseradish peroxidase-based chromogenic (or colorimetric) ISH was later introduced by
Tanner et al. in 2000 as an alternative FISH without the need for a fluorescence microscope.
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Figure 2
Schematic representation of the riboprobe and oligonucleotide in situ hybridization
probe types.

A) Hapten-labeled RNA probes must be bound by an antibody labeled with a fluorophore to
allow for visualization. B) DNA oligomers directly labeled with a fluorophore can be directly
visualized.
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