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ABSTRACT
Background: Iron overload is one of common complications of β-thalassemia.
Systemic iron homeostasis is regulated by iron-regulatory hormone, hepcidin, which
inhibits intestinal iron absorption and iron recycling by reticuloendothelial system.
In addition, body iron status and requirement can be altered with age. In adolescence,
iron requirement is increased due to blood volume expansion and growth spurt.
Heterozygous β-globin knockout mice (Hbbth3/+; BKO) is a mouse model of
thalassemia widely used to study iron homeostasis under this pathological condition.
However, effects of age on iron homeostasis, particularly the expression of genes
involved in hemoglobin metabolism as well as erythroid regulators in the spleen,
during adolescence have not been explored in this mouse model.
Methods: Iron parameters as well as the mRNA expression of hepcidin and genes
involved in iron transport and metabolism in wildtype (WT) and BKO mice during
adolescence (6–7 weeks old) and adulthood (16–20 weeks old) were analyzed and
compared by 2-way ANOVA.
Results: The transition of adolescence to adulthood was associated with reductions in
duodenal iron transporter mRNA expression and serum iron levels of both WT and
BKO mice. Erythrocyte parameters in BKO mice remained abnormal in both age
groups despite persistent induction of genes involved in hemoglobin metabolism in
the spleen and progressively increased extramedullary erythropiesis. In BKO mice,
adulthood was associated with increased liver hepcidin and ferroportin mRNA
expression along with splenic erythroferrone mRNA suppression compared to
adolescence.
Conclusion: Our results demonstrate that iron homeostasis in a mouse model of
thalassemia intermedia is altered between adolescence and adulthood. The present
study underscores the importance of the age of thalassemic mice in the study of
molecular or pathophysiological changes under thalassemic condition.
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INTRODUCTION
Iron, one of essential trace elements, is involved in several biological processes such as
oxidative phosphorylation and hemoglobin synthesis (Jandl et al., 1959; Pollycove &
Mortimer, 1961; Hentze, Muckenthaler & Andrews, 2004). Iron is transported in the
plasma by apotransferrin protein. Transferrin-bound iron is taken up into cells by
transferrin receptor 1 (TfR1) for cellular storage or utilization. In erythroid cells, the
acquired iron is used for the production of hemoglobin which involves several proteins
including mitoferrin 1 (Mfrn1) a mitochondrial iron transporter and 5-aminolevulinic
acid synthase 2 (ALAS2) an enzyme catalyzing the first reaction of erythroid heme
biosynthetic pathway (Shaw et al., 2006; Paradkar et al., 2009; Amigo et al., 2011; Lane
et al., 2015). Reticuloendothelial (RE) cells are responsible for the reutilization of iron in
hemoglobin of senescent red blood cells. Upon erythrophagocytosis of senescent
erythrocytes by RE cells, hemoglobin is degraded by heme oxygenase-1 (HO-1) and iron is
released into the circulation for reutilization. This RE iron recycling process accounts
for the majority of iron in the plasma. The minority of plasma iron is acquired from
intestinal iron absorption (Kong, Gao & Chang, 2014; Wallace, 2016).

Several molecules are involved in the absorption of iron. Firstly, dietary iron (Fe3+)
is reduced by duodenal cytochrome b (Dcytb) located at the apical membrane of
enterocytes (McKie et al., 2001). The resultant ferrous is taken up into enterocytes by
divalent metal transporter 1 (DMT1) (Gunshin et al., 1997) and then transferred into the
circulation by an iron efflux protein, ferroportin (McKie et al., 2000; Donovan et al., 2000;
Abboud & Haile, 2000). The ferrous is subsequently oxidized by hephaestin into ferric
which is then transported along the plasma by apotransferrin (Vulpe et al., 1999).
Ferroportin not only involves in cellular export of dietary iron but also facilitates iron
efflux from splenic macrophages and hepatocytes. In addition to intestinal iron uptake,
DMT1 is also involved in the transport of transferrin-bound iron from endosome into
cytoplasm.

Cellular iron homeostasis is regulated by iron responsive elements (IRE), which are
located at either 5′ or 3′ untranslated region of several mRNAs encoding proteins related
to cellular iron metabolism including TfR1, DMT1, ferroportin and ALAS2 (Koeller et al.,
1989; Cox et al., 1991; Dandekar et al., 1991; Abboud & Haile, 2000; McKie et al., 2000;
Hubert & Hentze, 2002). The expression of these proteins is post-transcriptionally
controlled in response to cellular iron levels through the interaction between IRE and iron
regulatory protein (IRP). TfR1 and DMT1 expression is increased under iron depletion
state and vise versa under iron repletion. On the other hand, the expression of ferroportin
and ALAS2 is suppressed in response to iron deficiency and enhanced during iron loading.

Systemic iron homeostasis is regulated by hepcidin, the liver-secreted iron regulatory
hormone, which binds ferroportin and induces its internalization and degradation
(Nemeth et al., 2004). Consequently, intestinal iron absorption and RE iron recycling is
inhibited resulting in reduced serum iron levels. The expression of hepcidin is influenced
by several factors. Body iron status and inflammation have been shown induce hepcidin
expression whereas erythropoietic iron demand and hypoxia are hepcidin suppressors
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(Pigeon et al., 2001; Nicolas et al., 2002a, 2002b). Bone morphogenetic protein 6 (Bmp6)
has been shown to play a crucial role in hepcidin induction in response to iron stores
(Andriopoulos et al., 2009). In addition to the aforementioned factors, ineffective
erythropoiesis can also suppress the expression of hepcidin. Growth differentiation
factor 15 (Gdf15), twisted gastrulation 1 (Twsg1) and erythroferrone (Erfe) which are
produced by erythroid precursors have been proposed to be potential candidates for
hepcidin regulator under such conditions including thalassemia (Tanno et al., 2007, 2009;
Kautz et al., 2014).

Thalassemia is a hematological disease caused by mutations of globin-encoding
genes or their promoters leading to decreased production of the respective globin
chains. In β-thalassemia, the production of β-globin is reduced or absent leading to the
accumulation of unmatched a-globin, erythroid cell death, ineffective erythropoiesis
and, subsequently, anemia. Furthermore, systemic iron overload occurs as a result of
increased intestinal iron absorption and/or regular blood transfusion with inadequate iron
chelation (Weatherall & Clegg, 2001; Higgs, Engel & Stamatoyannopoulos, 2012). Animal
models especially mouse (Mus Musculus) is the most widely used model to study
the pathophysiological changes or treatment of human disease (Capecchi, 2005).
Heterozygous β-globin knockout mice (Hbbth3/+; BKO), one of commonly utilized
thalassemia mouse model, were generated by heterozygous deletion of both murine
β-globin genes (Hbb-b1 and Hbb-b2) (Detloff et al., 1994; Yang et al., 1995). Phenotypic
characterization of this mouse model includes mild-to-moderate anemia, growth
retardation, ineffective erythropoiesis, extramedullary erythropoiesis and parenchymal
iron loading in several tissues such as liver, spleen and heart which resemble clinical
features of thalassemia in human (Yang et al., 1995).

Several factors including age, gender and strain have been shown to influence iron
parameters as well as the expression of hepcidin and other iron regulatory genes
(Ahluwalia et al., 2000; Courselaud et al., 2004; Krijt et al., 2004; Weizer-Stern et al., 2006;
Hahn et al., 2009; McLachlan et al., 2017). A previous study reported that iron levels in
various tissues were generally higher in aged mice than younger adult mice (Hahn et al.,
2009). The expression of genes involved in iron metabolism was proposed to be dynamic
as a result of age and iron stores (De Franceschi et al., 2006). Additionally, another
previous study proposed that age must be considered in the studies of iron metabolism
(Chen et al., 2009). It is noteworthy that mice at different ages might have distinctive
responses to alterations in iron metabolism. Indeed, the study in β-thalassemia mouse
model (Hbbth3/+) aged 2, 5 and 12 months demonstrated different systemic iron regulatory
responses in young adult and elderly thalassemic mice (Gardenghi et al., 2007). Although
BKO mice have been widely used as an animal model in thalassemia research, little is
known whether the expression of hepcidin along with major iron transporters in these
mice differ across different age groups particularly in adolescence. Murine adolescent age
is defined as the postnatal period ranging from weaning (PND 21) to adulthood (PND 60)
(Laviola et al., 2003). It is also suggested that adult mice should be at least 3 months of
age as most biological processes and structures continue to rapidly grow or mature after
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the age of sexual maturation (35 days) until roughly 3 months old (Flurkey, Currer &
Harrison, 2007). Moreover, iron status and iron homeostasis might be altered in
adolescence as a result of increased body iron requirement for growth and development
(Beard, 2000). Thus, the present study aims to explore the effects of age on iron parameters
as well as the mRNA expression of hepcidin and major iron transport machineries in
WT and thalassemic mouse model aged 6–7 weeks old and 16–20 weeks old, which
represent adolescence and adulthood, respectively.

MATERIALS AND METHODS
Animal
Male C57BL/6 wild type (WT) and heterozygous β-globin knockout mice (Hbbth3/+;
BKO) at two age groups: 6–7 weeks old and 16–20 weeks old were used (five mice per
each of the age group). All mice were obtained from the Thalassemia Research Center,
Institute of Molecular Biosciences, Mahidol University, Thailand. The mice were given
rodent chow (C.P. mice feed 082G containing 180 ppm of iron, Perfect Companion Group,
Samut Prakan, Thailand) and water ad libitum. The temperature and humidity were
maintained at 25 ± 2 �C and 55 ± 10%, respectively, with 12-h light/dark cycle. The mice
were sacrificed and blood samples were collected by cardiac puncture. Liver, spleen and
duodenum samples were snapped frozen and stored at −80 �C. Animal protocols were
approved by Institute of Molecular Biosciences Animal Care and Use Committee, Mahidol
University, Thailand (COA.NO.MB-ACUC 2016/003).

Measurement of hematological and iron parameters
Hematological parameters were analyzed using an automated hematological analyzer
(Mindray, Shenzhen, China). Serum iron level was determined using QuantiChrom iron
assay kit (BioAssay Systems, Hayward, CA, USA) according to the manufacturer’s
protocol. Liver and spleen non-heme iron contents were determined by a modification
of the method of Foy et al. (1967) as described by Simpson & Peters (1990).

Histopathological studies
Liver, spleen and duodenal tissue samples were fixed in 10% formalin buffer. The fixed
tissue samples were then dehydrated, embedded in paraffin and sectioned at 4 µm
thickness. Tissue sections were stained with hematoxylin and eosin (H&E) for
morphological examination and Perl’s Prussian blue for iron accumulation according to
standard protocols. The stained slides were analyzed using a Nikon ECLIPSE 80i light
microscope (Nikon, Shinagawa, Tokyo, Japan).

The amounts of mononuclear, polymorphonuclear and hematopoietic cells in the liver
were evaluated in 10 non-overlapping areas acquired by random sampling. The numbers
of cells were scored using a grading criteria described by Yatmark et al. (2014) as follows:
score 0 = absent; score 1 = mild (1–10 cells); score 2 = moderate (11–50 cells); score
3 = severe (more than 50 cells).

For iron accumulation assessment, the whole tissue section of each mouse (five mice per
group) was examined and the overall extent of iron deposition in each mouse was
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estimated by a modification of grading system described by Barton et al. (1995) and
Yatmark et al. (2014) as follows:

(a) Liver iron deposition: score 0 = no visible iron deposition; score 1 = slight iron
deposition in the cytoplasm of Kupffer cells; score 2 = prominent iron accumulation in
Kupffer cells; score 3 = iron deposition in hepatocytes; score 4 = iron deposition in
hepatocytes and fibrous tissue of portal tracts or septa.

(b) Splenic iron deposition: score 0 = no visible iron deposition; score 1 = indicated iron
deposits in marginal sinus of spleen; score 2 = densely aggregated iron deposition;
score 3 = clumps of iron accumulation; score 4 = clumps of iron aggregation with
frequent iron clumps.

(c) Duodenal iron deposition: score 0 = no visible iron deposition; score 1 = iron deposits
in the supranuclear region of enterocyte; score 2 = densely aggregated iron deposition;
score 3 = visible clumps of iron accumulation; 4 = clumps of iron aggregation with
frequent iron clumps.

Quantitative RT-PCR
RNA was extracted from the liver, spleen and duodenum using TRIzol reagent
(Ambion, Austin, TX, USA) and complementary DNA was synthesized using a Tetro
cDNA synthesis kit (Bioline USA, Taunton, MA, USA) as per manufacturers’ protocols.
Quantitative RT-PCR was performed using the CFX96 Thermal Cycler (Bio-Rad,
Hercules, CA, USA). The gene expression was normalized to β-actin (Actb) expression.
The results were presented as minus delta Ct values [-(Cttarget – CtActb)] (Livak &
Schmittgen, 2001). The sequence of gene-specific primers is listed in Table 1.

Statistical analysis
All data were expressed as mean ± standard error of the means (SEM). The comparison
of the means across groups was performed by 2-way ANOVA with Bonferroni post-hoc
test. A P-value less than 0.05 was considered significant. All statistical analyses were
performed using GraphPad Prism 6 software (GraphPad Software, Inc., La Jolla,
CA, USA).

RESULTS
Iron parameters, but not hematological parameters, of thalassemic
mice were affected by age
To explore whether hematological parameters were affected by the age of mice, EDTA
blood samples from WT and BKO mice aged 6–7 weeks and 16–20 weeks were analyzed
for complete blood count. As shown in Table 2, significant effects of phenotype on several
hematological parameters were observed. BKO mice had lower hemoglobin, hematocrit,
MCV and RBC count along with higher RDW than age-matched WT which corresponded
with thalassemia phenotype. Furthermore, such findings remained unaltered between
adolescent and adult BKO mice. In WT mice, adulthood was associated with increased
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RBC count, hemoglobin, hematocrit along with reduced MCV and RDW compared to
adolescence.

Serum iron levels as well as non-heme iron levels in the liver and spleen were measured
to determine body iron status. Increased liver and spleen non-heme iron levels were
observed in BKO mice whereas serum iron levels did not differ from WT mice (Table 2).
In both WT and BKO mice, a significant reduction in serum iron levels were observed in

Table 1 Sequence of gene-specific primers.

Gene product Forward primer Reverse primer

Actb (β-actin) CAGCCTTCCTTCTTGGGTA TTTACGGATGTCAACGTCACAC

Alas2 (ALAS2) AGCCATTGTCCTTTCATGCT CAGCAGGTCTGTCTTGAAAGTCT

Bmp6 (Bmp6) GCCAACTACTGTGATGGAGAGTGTT CTCGGGATTCATAAGGTGGACCA

Cybrd1 (Dcytb) TTTGTCCTGAAACACCCCTC AGAAGGCCCAGCGTATTTGT

Fam132b (Erfe) TCCTCTATCTACAGGCAGGAC ACTGCGTACCGTGAGGGA

Gdf15 (Gdf15) GAGCTACGGGGTCGCTTC GGGACCCCAATCTCACCT

Hamp (Hepcidin) CAGGGCAGACATTGCGATAC GTGGCTCTAGGCTATGTTTTGC

Hmox1 (HO-1) CAGAGCCGTCTCGAGCATAG CAAATCCTGGGGCATGCTGT

Slc11a2 (DMT1) TTCTACTTGGGTTGGCAGTGTT CAGCAGGACTTTCGAGATGC

Slc25a37 (Mfrn1) ACGCCATGTATTTTGCCTGC ACTCCCAGCTACCCCATTAG

Slc40a1 (ferroportin) ATCCCCATAGTCTCTGTCAGC CAGCAACTGTGTCACCGTCA

Tfrc (TfR1) TCCTTTCCTTGCATATTCTGG CCAAATAAGGATAGTCTGCATCC

Twsg1 (Twsg1) GCTGTCACACCATGAAAACCTAG ACTGTGCACATGCGCTCTT

Table 2 Hematological data and iron parameters of male wild type and thalassemic mice at the age of 6–7 weeks and 16–20 weeks.

WT BKO P values (2-way ANOVA)

6–7 weeks 16–20 weeks 6–7 weeks 16–20 weeks Age Phenotype Age × phenotype

RBC count (106/µl) 6.25 ± 0.45 8.91 ± 0.35a 4.95 ± 0.45 4.68 ± 0.66b 0.0270 <0.0001 0.0087

Hemoglobin (g/dL) 9.84 ± 0.66 14.38 ± 0.65a 6.46 ± 0.10a 5.68 ± 0.90b 0.0104 <0.0001 0.0008

Hematocrit (%) 35.42 ± 1.98 44.66 ± 1.40a 22.72 ± 1.70a 19.18 ± 2.54b 0.1634 <0.0001 0.0048

MCV (fL) 57.06 ± 1.71 50.16 ± 0.47a 46.38 ± 1.51a 41.40 ± 1.87b 0.0011 <0.0001 0.5295

MCH (pg) 15.82 ± 0.65 16.12 ± 0.15 13.58 ± 1.52 12.24 ± 1.25b 0.6235 0.0095 0.4415

MCHC (g/dL) 27.78 ± 1.10 32.14 ± 0.52 29.04 ± 2.24 29.34 ± 1.79 0.1541 0.6277 0.2109

RDW (%) 23.02 ± 1.62 12.88 ± 0.05a 34.62 ± 2.69a 27.28 ± 3.28b 0.0014 <0.0001 0.5462

Serum iron (µM) 53.21 ± 3.55 18.47 ± 1.69a 44.44 ± 2.44 20.49 ± 3.27c <0.0001 0.2509 0.0750

Liver non-heme iron
(nmole/mg wet weight)

2.30 ± 0.34 1.92 ± 0.27 9.05 ± 1.67a 8.72 ± 0.91b 0.7207 <0.0001 0.9799

Spleen non-heme iron
(nmole/mg wet weight)

5.37 ± 0.40 7.50 ± 0.48 18.97 ± 1.33a 59.22 ± 5.72b,c <0.0001 <0.0001 <0.0001

Notes:
a P-value < 0.05 compared with WT aged 6–7 weeks.
b P-value < 0.05 compared with WT aged 16–20 weeks.
c P-value < 0.05 compared with BKO aged 6–7 weeks.
RBC, red blood cell; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, red cell
distribution width.
Data are expressed as mean ± SEM (n = 5/group). Statistical analysis was performed by 2-way ANOVA with Bonferroni post-hoc test.
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adult mice compared to adolescent mice while liver non-heme iron levels were unaltered.
Interestingly, adulthood was associated with a significant increase in spleen non-heme iron
levels only in BKO mice.

Perl’s Prussian blue staining revealed iron accumulation in the liver and spleen of
BKO mice (Figs. 1C–1D and 1G–1H). Notably, iron deposition was mainly confined in
hepatic Kupffer cells and splenic macrophages in both red and white pulps. Additionally, a
weakly positive iron staining was observed in the supranuclear region of duodenal
enterocytes (Figs. 1K and 1L). The degree of iron staining was relatively higher in the
spleen than the liver and duodenum (Table 3). In agreement with non-heme iron
results, an increase in iron deposition score was found in the spleen of adult BKO group
compared to adolescent BKO mice whereas liver and duodenal iron deposition score was
unaltered between different age groups.

The extent of extramedullary hematopoiesis in thalassemic mice was
progressively increased with increasing age
Microscopic examination of liver and spleen tissue samples revealed hematopoietic and
mononuclear cell infiltration in the liver and spleen of BKO mice which was suggestive for
the presence of extramedullary hematopoiesis (Figs. 2C–2D and 2G–2H). As shown in
Table 4, the livers of adult BKO mice had increased number of mononuclear cell
infiltration and hematopoietic cells than adolescent BKOmice suggesting that the extent of
extramedullary hematopoiesis progressively increased at least during the studied age range.

Furthermore, genes involved in hemoglobin synthesis (Tfrc, Slc25a37 and Alas2) and
degradation (Hmox1) were induced in the spleen of BKO mice compared to WT mice
(Fig. 3). Interestingly, mRNA levels of these genes were significantly decreased in adult WT
mice compared to adolescent counterpart while the expression in BKO mice was similar
between the two age groups.

Thalassemic mice had decreased liver hepcidin mRNA expression
relative to liver non-heme iron contents during both adolescence and
adulthood
Quantitative RT-PCR revealed that the levels of liver hepcidin mRNA were similar
between WT and BKO mice during adolescence (Fig. 4A). In adulthood, hepcidin mRNA
expression in BKO mice was higher than adolescent mice. On the contrary, hepcidin
mRNA levels in WT were not affected by age. To account for liver iron overload, the
mRNA expression of hepcidin was corrected by liver non-heme iron contents. As shown
in Fig. 4B, BKO mice in both age groups had lower hepcidin mRNA levels relative to
liver non-heme iron contents than WT mice. No effect of age on this parameter was
observed.

The mRNA expression of upstream hepcidin regulators in the liver and spleen was also
determined. Liver Bmp6 mRNA levels as well as splenic mRNA expression of Gdf15,
Twsg1 and Erfe were higher in BKOmice compared to WTmice (Figs. 4C–4F). In general,
the mRNA levels of these hepcidin regulators was not altered between adolescent and adult
mice except splenic Erfe mRNA expression which was downregulated in adult BKO mice.
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Figure 1 Iron accumulation in the tissues of BKO mice. Perl’s Prussian blue staining of representative
paraffin-embedded tissue sections from (A–D) the liver, (E–H) spleen and (I–L) duodenum of male WT
and BKO mice aged 6–7 weeks and 16–20 weeks. The blue stain represents iron accumulation.
The arrows indicate iron accumulation in brush border of enterocytes (Nikon ECLIPSE 80i light
microscope; magnification ×400). Full-size DOI: 10.7717/peerj.8802/fig-1
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Iron transporter mRNA expression was differentially affected by
thalassemia and age
In the liver, DMT1 mRNA expression was not affected by thalassemia and age (Fig. 5A).
In contrast, ferroportin mRNA levels were increased in BKO mice (Fig. 5B). A significant
ferroportin mRNA induction was observed in adult BKO mice compared to adolescent
counterpart.

In addition, increased splenic mRNA levels of DMT1 and ferroportin were noted in
BKO mice but the expression was not altered between adolescent and adult mice (Figs. 5C
and 5D).

As shown in Fig. 6, thalassemia had significant positive effects of the mRNA expression
of Dytb and DMT1 in the duodenum. Furthermore, Dcytb and DMT1 mRNA levels
were significantly reduced in adult WT and BKO mice compared to respective adolescent
group. On the other hand, duodenal ferroportin mRNA expression was not significantly
affected by phenotype or age.

DISCUSSION
Our study reveals that iron parameters and the expression of genes involved in iron
homeostasis of WT and thalassemic mice differ between adolescence and adulthood.
Although, previous study has determined hematological parameters and the expression of
iron genes in thalassemic mice at different ages, the study focused on gene expression
in the liver (De Franceschi et al., 2006). In addition, it was conducted only in mature
adult and aged mice. The study by Gardenghi et al. (2007) utilized thalassemic mice aged 2,
5 and 12 months to compare iron status and iron homeostasis, however, the expression of
splenic iron transporters as well as genes involved in hemoglobin synthesis and genes
encoding erythriod regulators (Erfe, Gdf15, Twsg1) was not explored.

In accordance with previous studies (Jamsai et al., 2005; Nai et al., 2012; Upanan et al.,
2015), we observed thalassemia intermedia phenotype in BKO mice during adolescence
and adulthood as characterized by microcytic anemia, extramedullary hematopoiesis as
well as iron accumulation in the liver and spleen. In the present study, hematological
results revealed relatively lower red blood cell count and hemoglobin levels in both WT

Table 3 Iron deposition score in the liver, spleen and duodenum of male wild type and thalassemic
mice at the age of 6–7 weeks and 16–20 weeks.

Age Iron deposition score

Liver Spleen Duodenum

WT

6–7 weeks 0 1 0

16–20 weeks 0 1 0

BKO

6–7 weeks 1 2 1

16–20 weeks 1 3 1

Note:
The same deposition score was obtained from the mouse within same group (n = 5 per group).
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Figure 2 Hematopoietic and mononuclear cell infiltration in the liver and spleen of BKO mice.
Hematoxylin and eosin staining of representative paraffin-embedded tissue sections from (A–D) the
liver, (E–H) spleen and (I–L) duodenum of male WT and BKO mice aged 6–7 weeks and 16–20 weeks.
The arrows indicate mononuclear cells and hematopoietic cells in the liver and spleen (Nikon ECLIPSE
80i light microscope; magnification ×400). Full-size DOI: 10.7717/peerj.8802/fig-2
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and BKO mice than previously reported values (De Franceschi et al., 2006; Weizer-
Stern et al., 2006; Gardenghi et al., 2007; Vogiatzi et al., 2010; Nai et al., 2012; Gelderman
et al., 2015; Kautz et al., 2015; Li et al., 2017). However, comparable hematological
parameters were also reported in 20-week-old WT and BKO mice obtained from the same
animal facility as our study (Wannasuphaphol et al., 2005). Furthermore, we found that
adolescent WT mice had significantly lower RBC count, hemoglobin and hematocrit
along with significantly higher MCV and RDW than adult WT mice. Physiological
changes in hematological parameters of young mice including lower hemoglobin, lower
hematocrit, higher MCV have previously been documented (Everds, 2007). In agreement

Figure 3 The expression of genes involved in hemoglobin biosynthesis and degradation in the spleen of wild type and thalassemic mice.
Quantitative RT-PCR of (A) Tfrc (TfR1) (B) Slc25a37 (Mfrn1) (C) Alas2 (ALAS2) (D) Hmox1 (HO-1) mRNA in the spleen of WT and BKO
mice aged 6–7 weeks and 16–20 weeks. Relative mRNA expression was acquired by normalizing to Actb (β-actin) mRNA. Values are presented as
means and SEM for minus delta Ct values (n = 5 per group). Statistical analysis was performed by 2-way ANOVA with Bonferroni post-hoc test. P-
values for the effects of phenotype, age and interaction are shown in the figure. Statistical significance for pairwise comparison is indicated by �

symbols (��P < 0.01, ���P < 0.001). Full-size DOI: 10.7717/peerj.8802/fig-3

Table 4 Mononuclear cells and hematopoietic cells score in the liver of male wild type and thalassemic mice at the age of 6–7 weeks and 16–20
weeks.

WT BKO P values (2-way ANOVA)

6–7 weeks 16–20 weeks 6–7 weeks 16–20 weeks Age Phenotype Age × phenotype

Mononuclear cells and hematopoietic cells score 0.12 ± 0.02 0.16 ± 0.14 1.86 ± 0.08a 2.92 ± 0.15b,c 0.0001 <0.0001 0.0003

Notes:
a P-value < 0.05 compared with WT aged 6–7 weeks.
b P-value < 0.05 compared with WT aged 16–20 weeks.
c P-value < 0.05 compared with BKO aged 6–7 weeks.
Data are expressed as mean ± SEM (n = 5/group). Statistical analysis was performed by 2-way ANOVA with Bonferroni post-hoc test.
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Figure 5 The expression of major iron transporters in the liver and spleen of wild type and thalassemic mice. Quantitative RT-PCR of (A) Liver
Slc11a2 (DMT1) mRNA (B) Liver Slc40a1 (ferroportin) mRNA (C) Spleen Slc11a2 (DMT1) mRNA (D) Spleen Slc40a1 (ferroportin) mRNA of WT
and BKO mice aged 6–7 weeks and 16–20 weeks. Relative mRNA expression was acquired by normalizing to Actb (β-actin) mRNA. Values are
presented as means and SEM for minus delta Ct values (n = 5 per group). Statistical analysis was performed by 2-way ANOVA with Bonferroni
post-hoc test. P-values for the effects of phenotype, age and interaction are shown in the figure. Statistical significance for pairwise comparison is
indicated by � symbols (��P < 0.01, ���P < 0.001). Full-size DOI: 10.7717/peerj.8802/fig-5

Figure 4 The expression of hepcidin and upstream regulators of hepcidin in wild type and thalassemic mice.Quantitative RT-PCR of (A)Hamp
(hepcidin) mRNA in the liver (B) Liver hepcidin mRNA relative to liver iron content (C) Bmp6 (Bmp6) mRNA in the liver (D–F) upstream
regulators of hepcidin (Gdf15, Twsg1, Fam132b) mRNA in the spleen of WT and BKO mice aged 6–7 weeks and 16–20 weeks. Relative mRNA
expression was acquired by normalizing to Actb (β-actin) mRNA. Values are presented as means and SEM for minus delta Ct values (n = 5 per
group). Statistical analysis was performed by 2-way ANOVA with Bonferroni post-hoc test. P-values for the effects of phenotype, age and interaction
are shown in the figure. Statistical significance for pairwise comparison is indicated by � symbols (�P < 0.05, ��P < 0.01, ���P < 0.001).

Full-size DOI: 10.7717/peerj.8802/fig-4
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with our results on RDW values, variable red blood cells morphology has also been
noted in young mice (Bannerman, 1983). In contrast to WT mice, the hematological
abnormalities in BKO mice persisted in both age groups indicating for the persistence
of thalassemic phenotype in these mice. In addition to age-associated hematological
changes, increased serum iron levels during adolescence were observed in both WT and
BKO mice. A similar trend has previously been reported in normal mice and rats

Figure 6 The expression of major iron transport machineries in the duodenum of wild type and
thalassemic mice. Quantitative RT-PCR of (A) Cybrd1 (Dcytb) (B) Slc11a2 (DMT1) (C) Slc40a1 (fer-
roportin) mRNA in the duodenum of WT and BKO mice aged 6–7 weeks and 16–20 weeks. Relative
mRNA expression was acquired by normalizing to Actb (β-actin) mRNA. Values are presented as means
and SEM for minus delta Ct values (n = 5 per group). Statistical analysis was performed by 2-way
ANOVA with Bonferroni post-hoc test. P-values for the effects of phenotype, age and interaction are
shown in the figure. Statistical significance for pairwise comparison is indicated by � symbols (�P < 0.05,
��P < 0.01, ���P < 0.001). Full-size DOI: 10.7717/peerj.8802/fig-6
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(Lesbordes-Brion et al., 2006; Kong et al., 2015). We speculate that serum iron levels were
increased during adolescence as a result of increased iron requirement for erythropoiesis.

Several proteins are involved in the synthesis of hemoglobin in red blood cells. TfR1
is the essential iron acquisition machinery of maturing erythroid cells (Kong, Gao &
Chang, 2014; Gammella et al., 2017), while Mfrn1 and ALAS2 are required for
heme biosynthesis (Hentze, Muckenthaler & Andrews, 2004; Amigo et al., 2011;
Chiabrando, Mercurio & Tolosano, 2014). The expression of Mfrn1 and ALAS2 is
transcriptionally regulated by transcription factor GATA-1 during erythroid maturation
(Amigo et al., 2011; Tanimura et al., 2016). In the present study, quantitative real-time PCR
reveals that genes involved in heme biosynthesis and degradation were upregulated in
spleen of BKO mice. Interestingly, adulthood was associated with reduced splenic mRNA
expression of these genes in WT mice whereas the mRNA levels in adult BKO
mice were persistently induced. In accordance, splenic mRNA levels of DMT1, which plays
the central role in erythroid iron transport across endosomes (Canonne-Hergaux et al.,
2001), were also induced in adolescent and adult BKO mice. These findings indicate
that extramedullary hematopoiesis in BKO mice was induced during both age
groups. In accordance, histopathological examination also showed that the extent of
extramedullary hematopoiesis in BKO mice was progressively increased with increasing
age. Furthermore, the presence of anemia despite enhanced extramedullary erythropoiesis
in BKO mice is indicative for ineffective erythropoiesis.

In this study, both tissue non-heme iron measurement and histopathological
examination revealed progressive iron accumulation in the spleen of thalassemic mice
particularly in adulthood. In contrast, liver iron deposition was not significantly altered
between adolescent and adult BKO mice. Notably, Gardenghi et al. (2007) reported a
differential pace of iron accumulation in BKO mice between the spleen and hepatic
Kupffer cells. In accordance with our findings, the previous work by Kautz et al. (2015)
demonstrated that iron content in the liver of BKO mice was markedly increased during
early adolescence and reached plateau during late adolescence and early adulthood.
The alteration in the pattern of tissue iron deposition between adolescence and adulthood
suggests that systemic iron homeostasis could differ with age.

The expression of hepcidin, the systemic iron regulatory peptide, is regulated by several
factors. Under thalassemic conditions, hepcidin might be concurrently affected by
systemic iron loading, anemia and ineffective erythropoiesis. It has been proposed that
although erythropoiesis, iron status and inflammation all contribute to variation in
hepcidin expression, erythropoietic drive appears to be the strongest contributor (Karafin
et al., 2015). In agreement with the work by Gardenghi et al. (2007), our data suggests
that hepcidin expression is determined by both anemia and iron overload which have
opposing effects. Furthermore, the net effect of these two factors on hepcidin expression
may vary depending on age. In this study, the expression of Bmp6, a positive hepcidin
regulator, and erythroid-secreted hepcidin suppressors (Erfe, Gdf15 and Twsg1) was
induced in thalassemic mice. The lower hepcidin mRNA levels relative to liver non-heme
iron contents in BKO mice suggest that hepcidin was influenced by erythroid regulators
under thalassemic condition. On the contrary, liver hepcidin mRNA levels which
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reflect the net effects of hepcidin regulators did not differ between WT and BKO mice
during adolescence. Therefore, we speculate that Bmp6 and erythroid regulators both
contributed on hepcidin expression in adolescent thalassemic mice. In accordance with
previous studies, we observed increased hepcidin expression in thalassemic mice during
adulthood (Nai et al., 2012; Kumfu et al., 2016) compared to adolescence. However, the
hepcidin-to-liver iron ratio in BKO mice did not alter between the two age groups
suggesting that the increase in hepcidin mRNA levels was appropriate for the increase in
liver iron contents. Additionally, we observed decreased splenic Erfe mRNA expression in
adult BKO mice compared to adolescent counterpart. Interestingly, Erfe has recently been
demonstrated to inhibit BMP6-induced hepcidin expression (Arezes et al., 2018).
Accordingly, the relative reduction in Erfe mRNA expression in thalassemic mice
during adulthood would allow hepcidin induction by Bmp6 in response to increased
liver iron accumulation. Notably, the previous study demonstrated that Erfe mRNA
expression was consistently induced in the spleen of thalassemic mice during the age of
3–12 weeks (Kautz et al., 2015). A study to further explore whether Erfe mRNA levels in
the spleen is altered in adult and aged thalassemic mice should be conducted.

We demonstrated that ferroportin mRNA expression in the spleen was induced in BKO
mice and corresponded with the induction of genes involved in hemoglobin synthesis and
degradation. Therefore, it is possible that increased erythropoiesis and the subsequent
degradation of erythroid cells are responsible for the increased splenic ferroportin
expression in adult BKO mice. In agreement, erythrophagocytosis has been shown to
induce ferroportin and HO-1 transcription in vitro (Knutson et al., 2003; Delaby et al.,
2008). Furthermore, the expression of ferroportin in iron-recycling macrophages is
upregulated by both heme and iron acquired from the degradation of hemoglobin in
senescent red blood cells. Heme has been shown to transcriptionally induce ferroportin
whereas the regulation of ferroportin expression by iron occurs at the translational level
through IRP-IRE interaction (Marro et al., 2010; Drakesmith, Nemeth & Ganz, 2015).
In the liver, ferroportin mRNA expression was induced in adolescent and adult
thalassemic mice, possibly, as a result of liver iron accumulation, which was present in both
periods of lifespan. In line with our findings, iron dextran administration has been shown
to induce liver ferroportin mRNA expression in C3HeB/FeJ mice (Liu et al., 2005).
In contrast to ferroportin, we found that DMT1 mRNA expression in the liver was not
affected by thalassemia or age. In thalassemia, the increase in iron levels in the circulation
exceeds the binding capacity of apotransferrin resulting in the presence of non-transferrin
bound iron (NTBI). Notably, a previous study reported that DMT1 does not play an
essential role in the uptake of NTBI in the liver (Wang & Knutson, 2013). Further studies
should be performed to delineate the roles of other NTBI transporters such as Zip14 in the
pathophysiology of liver iron overload under thalassemic condition and to determine
whether the expression of these transporters differs with age.

Intestinal iron hyperabsorption as a result of hepcidin downregulation has previously
been reported in thalassemic mice (Gardenghi et al., 2007). In agreement, we demonstrated
significant effects of thalassemia on the mRNA expression of apical iron transport
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machineries, Dcytb and DMT1, in the duodenum. Interestingly, reduced Dcytb and DMT1
mRNA expression was observed in the duodenum of adult WT and BKO mice compared
to adolescent counterparts. These changes in duodenal iron transporter expression also
coincided with the reduction in serum iron levels of both WT and BKO mice during
adulthood. It has previously been shown that hepcidin expression inversely correlates with
duodenal iron transporters mRNA expression and iron absorption in rats (Frazer et al.,
2002, 2004; Millard et al., 2004). However, our study observed Dcytb and DMT1
downregulation in adult WT mice compared to adolescent WT mice although hepcidin
expression was unaltered between these two age groups. Therefore, we speculate that
hepcidin did not directly involve in the altered Dcytb and DMT1 expression between
adolescence and adulthood. A previous study in rat reported that the expression of Dcytb,
DMT1 and ferroportin was significantly affected by age (Kong et al., 2015). Moreover,
hypoxia-inducible factor 2 alpha (HIF-2a) has been shown to transcriptionally induce
Dcytb and DMT1 in response to iron deficiency (Mastrogiannaki et al., 2009; Shah et al.,
2009). In the present study, we not only found anemia in BKOmice but also reduced levels
of RBC count, hemoglobin and hematocrit in adolescent WT mice compared to adult WT
mice. It is, therefore, possible that anemia-associated hypoxia was responsible for the
upregulation of intestinal iron transporters observed in our adolescent mice.
The mechanisms of age-associated changes in duodenal iron transporters including the
possible roles of HIF-2a remain to be elucidated.

In summary, our study found that several hematological and iron homeostatic
parameters were different between adolescence and adulthood. As the mice progressed
from adolescence to adulthood, duodenal iron transporter mRNA expression and
serum iron levels of both WT and BKO mice were decreased. Reduced splenic mRNA
expression of genes involved in hemoglobin metabolism as well as alteration in erythrocyte
parameters were found only in WT mice. In BKO mice, erythrocyte abnormalities
along with induction of genes involved in hemoglobin metabolism in the spleen were
persistent in both adolescence and adulthood. Interestingly, adulthood was associated
with increased liver hepcidin and ferroportin mRNA expression along with splenic Erfe
mRNA suppression only in BKO mice. The limitations of the present study include the
lack of findings on serum hepcidin and Erfe levels as well as gene expression in the bone
marrow. In addition, the expression of iron transporters at the protein level should be
performed in future studies.

CONCLUSIONS
Our study shows that iron homeostasis in a mouse model of thalassemia intermedia differs
between adolescence and adulthood. During adolescence, increased mRNA expression
of duodenal iron transporters is associated with liver iron accumulation. In adult BKO
mice, the induction of splenic Erfe and duodenal iron transporters is diminished compared
to adolescent BKO mice. Furthermore, extramedullary erythropoiesis is enhanced and
the spleen becomes preferential site of tissue iron loading. The present study demonstrates
that iron homeostasis in thalassemia intermedia might be altered with the age per se as well
as disease progression. This study, thus, underscores the significance of age on the
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expression of genes involved in iron metabolism as well as the pathophysiology of iron
loading in thalassemia intermedia. Therefore, the age of thalassemic mice should be
considered in the study of iron homeostasis under thalassemic condition.
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