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ABSTRACT
Background: The “dark matter” of the genome harbors several non-coding RNA
species including Long non-coding RNAs (lncRNAs), which have been implicated in
neoplasia but remain understudied. RNA-seq has provided deep insights into the
nature of lncRNAs in cancer but current RNA-seq data are rarely accompanied by
longitudinal patient survival information. In contrast, a plethora of microarray
studies have collected these clinical metadata that can be leveraged to identify novel
associations between gene expression and clinical phenotypes.
Methods: In this study, we developed an analysis framework that computationally
integrates RNA-seq and microarray data to systematically screen 9,463 lncRNAs for
association with mortality risk across 20 cancer types.
Results: In total, we identified a comprehensive list of associations between lncRNAs
and patient survival and demonstrate that these prognostic lncRNAs are under
selective pressure and may be functional. Our results provide valuable insights that
facilitate further exploration of lncRNAs and their potential as cancer biomarkers
and drug targets.
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INTRODUCTION
Long non-coding RNAs (lncRNAs) constitute a relatively unexplored repertoire of gene
products that exhibit diverse functions and are involved in several biological processes.
As such, the ENCODE consortium reported that 80% of the genome is transcribed into
a variety of functional products including non-coding RNAs (The ENCODE Project
Consortium, 2012). Several high-level characteristics of lncRNAs provide evidence that
they are indeed functional, including their association with chromatin signatures of
active transcription, being transcribed by RNA polymerase II, and undergoing
post-transcriptional modifications such as polyadenylation and alternative splicing
(Wang & Chang, 2011; Rinn & Chang, 2012; Kung, Colognori & Lee, 2013).
The mechanisms by which lncRNAs regulate biological processes have not been studied

How to cite this article Ung M, Schaafsma E, Mattox D, Wang GL, Cheng C. 2020. Pan-cancer systematic identification of lncRNAs
associated with cancer prognosis. PeerJ 8:e8797 DOI 10.7717/peerj.8797

Submitted 21 November 2019
Accepted 25 February 2020
Published 24 March 2020

Corresponding author
Chao Cheng,
chao.cheng@dartmouth.edu

Academic editor
Stephen Piccolo

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj.8797

Copyright
2020 Ung et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.8797
mailto:chao.�cheng@�dartmouth.�edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.8797
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


in detail but evidence suggest that they can function at the transcriptional, post-
transcriptional and post-translational level by acting as biological signals, decoys, guides
and scaffolds (Wang & Chang, 2011; Rinn & Chang, 2012; Kung, Colognori & Lee, 2013).
Moreover, the organization of lncRNAs across the genome is quite diverse in that they
can be transcribed from intergenic regions, sites anti-sense to protein coding genes,
bi-directional promoters, or within gene introns (Ponting, Oliver & Reik, 2009; Kung,
Colognori & Lee, 2013).

Having been previously referred to as transcriptomic noise or “junk” DNA, lncRNAs
are now being investigated as molecular players in several disease processes including
cancer (Mattick & Makunin, 2006; Esteller, 2011; The ENCODE Project Consortium, 2012;
Sahu, Singhal & Chinnaiyan, 2015; Schmitt & Chang, 2016; Bartonicek, Maag & Dinger,
2016; Evans, Feng & Chinnaiyan, 2016). In this particular context, lncRNAs have been
implicated in all hallmarks of cancer including sustaining proliferative signaling,
evading growth suppressors, enabling replicative immortality, activating invasion and
metastasis, inducing angiogenesis and resisting cell death (Hanahan & Weinberg, 2000;
Gutschner & Diederichs, 2012; Ali et al., 2018; Chiu et al., 2018). Aberrant expression
of lncRNAs might be due to their close association with certain key driver genes
(Ashouri et al., 2016) or the establishment of cancer-specific genomic features in lncRNA
loci itself, including mutational events, methylation, copy number and SNP events
(Iyer et al., 2015; Yan et al., 2015). Several studies have performed pan-cancer screens
for lncRNAs involved in the disease and found that several of them were differentially
expressed compared to normal samples, revealing their potential as biomarker
candidates (Cabanski et al., 2015; Yan et al., 2015; Byron et al., 2016; Ching et al., 2016).
For instance, PCA3 is a lncRNA that is currently approved for clinical use as a prostate
cancer diagnostic biomarker and can be detected in patient urine samples (De Kok et al.,
2002). Thus, dissecting the molecular characteristics of these understudied RNAs and their
associations with disease phenotypes may yield findings that can be translated into the
clinic.

In light of these findings, there is a paucity of patient samples with matched RNA-seq
data and clinical information which limits the ability to perform pan-cancer screening
for prognostic lncRNAs. Furthermore, few of these matched datasets contains sufficiently
long follow-up times which limits statistical power when performing survival analyses,
especially in cancer types where patients exhibit high survival rates (Clark et al., 2003).
In stark contrast, there is a plethora of microarray gene expression data that are available,
many of which are accompanied by comprehensive clinical information with long
follow-up times.

Thus, using primarily protein-coding gene expression from microarray to infer the
expression of their non-coding counterparts can re-purpose these valuable data and
generate novel hypotheses about lncRNAs associated with patient mortality across several
cancer types. To this end, multiple studies have attempted to utilize data from microarray
to make inferences about lncRNA activity and their clinical relevance. Du et al. (2013)
re-annotated probes from microarray data to identify prognostic transcriptional activity
for ~10,000 lncRNAs in prostate cancer, glioblastoma, ovarian cancer and lung squamous
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cell carcinoma. From this screen, they identified novel lncRNA markers of mortality risk
and validated several of them experimentally. Furthermore, Guo, Yao & Jiang (2016)
performed a “guilt-by-association” analysis whereby lncRNAs that share an edge with
prognostic protein coding genes in a biological network defined a priori were also
considered prognostic. Although these studies have provided valuable insights into
lncRNA biology, the reannotation of microarray probes might have missed prognostic
lncRNAs not captured by microarray probes. In addition, lncRNA inference based on
known protein coding target genes might bias lncRNA expression if not all target genes are
known.

Therefore, we introduce a lncRNA inference approach that generates cancer-specific
weighted lncRNA regulon network profiles de novo using RNA-seq data from The Cancer
Genome Atlas (TCGA), and apply them to infer lncRNA expression in the PRECOG
(Gentles et al., 2015) and METABRIC (Curtis et al., 2012) microarray compendia, which
provide expression of protein-coding genes but not for most lncRNAs. Afterwards, we
systematically interrogated each lncRNA to identify those that significantly associate with
patient prognosis using clinical metadata included in the microarray studies. In total we
screened 9,463 unique lncRNAs across 20 different cancer types to identify novel
associations.

MATERIALS AND METHODS
Data source and pre-processing
The lncRNA gene list with Ensembl IDs was derived from the TANRIC resource (Li et al.,
2015). Level 3 RNA-seq count data from tumor samples encompassing 23 different cancer
types along with corresponding clinical information were downloaded from the National
Cancer Institute’s Genomic Data Commons data portal (https://portal.gdc.cancer.gov/).
The count data was normalized by library size and subjected to a variance stabilizing
transformation implemented using DESeq2 (Love, Huber & Anders, 2014). This
transforms the expression values so that they are homoskedastic by fitting the dispersion to
a negative binomial distribution. A total of 141 microarray gene expression datasets
across 20 cancer types were downloaded from the PRECOG resource (Gentles et al., 2015).
Normalized breast cancer gene expression and copy number alteration (CNA) datasets
from METABRIC (n = 1,992) were downloaded from the European Genome-Phenome
Archive (http://www.ebi.ac.uk/ega/) under the accession number EGAS00000000083.
CRISPRi screening data on functional lncRNAs in MDA-MB-231 and K562 cell lines were
downloaded from Liu et al. (2017).

Construction of cancer-specific regulons
The ARACNe-AP algorithm was applied to each processed TCGA RNA-seq cancer dataset
using the TANRIC lncRNA Ensembl gene IDs as the regulator mapping set. Briefly,
ARACNe-AP calculates the mutual information between a lncRNA and potential
target genes and removes edges that are unlikely to represent a biological link using the
concept of data processing inequality (Margolin et al., 2006; Lachmann et al., 2016).
We implemented the algorithm using 100 bootstrap iterations and a p-value threshold of
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0.01. Each regulon in the cancer-specific network consisted of a lncRNA and its associated
genes. Each edge in the regulon was assigned a weight using the mutual information
scores outputted by ARACNe-AP (Alvarez et al., 2016). The mutual information scores
were divided by the maximum score within each regulon so that they had a range from 0 to
1. The sign of the edge was assigned by computing a Pearson correlation coefficient
between the lncRNA’s expression and the associated gene’s expression across the samples.
Since genes in a regulon are positively or negatively correlated with the corresponding
lncRNA in a specific cancer type, their expression can be used to impute the expression
level of the lncRNA.

Inference of lncRNA expression in microarray datasets
For each cancer-specific regulon, we defined a pair of profiles—the genes with a positive
weight were assigned to an “up-regulated” profile and the genes with a negative weight
were assigned to a “down-regulated” profile. In the up-regulated profile, all genes that
had a negative weight were assigned a value of 0 and all genes in the down-regulated profile
that had a positive weight were assigned a value of 0. The values in the down-regulated
profile were then forced to be positive. Only profiles with 20 or more associated genes were
used. Thus, each lncRNA was assigned two regulon weight profiles that capture the
magnitude and direction of the genes it was associated with. Genes with higher weights
in the two profiles will contribute more to the imputation of lncRNA expression.

After constructing the regulon weight profiles, lncRNA expression was inferred in
microarray datasets by using the regulon weight profile derived from the same cancer type
(or most related cancer type) as the microarray experiment (Supplemental Results).
To apply the regulon weight profiles to infer lncRNA expression in microarray samples, we
utilized the BASE algorithm (Cheng et al., 2007) which outputs a predicted expression
value for each lncRNA in every patient sample. BASE imputes the relative expression level
of a lncRNA based on the expression of genes that it correlates with (i.e., regulon genes).
Specifically, the algorithm sorts each patient’s gene expression profile from highest to
lowest expressed genes and weights them using the two regulon weight profiles. BASE then
calculates a running sum statistic by moving down the profile and calculating a foreground
function which captures the weighted enrichment of the lncRNA’s associated genes at
the top and bottom of the patient’s gene expression profile. The foreground function is
then compared to a background function and the maximum deviation between the
foreground and background functions is computed. The maximum deviation calculated
from the down-regulated profile is subtracted from the maximum deviation calculated
from the up-regulated profile to yield a pre-inferred lncRNA expression value (pre-iExpr).
For a lncRNA, if positively associated genes tend to be highly expressed (at the top of
the expression profile) in a tumor sample while negatively associated genes tend to be lowly
expressed (at the bottom of the expression profile), we will observe a high pre-iExpr value.
The patient’s gene expression profile is then randomly permuted and the procedure is
repeated; this is performed 1,000 times to yield a null pre-iExpr distribution. The pre-iExpr
score is then normalized by dividing by the mean of the null pre-iExpr values to yield
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the final inferred expression of the lncRNA (iExpr). The formulas describing the details of
this algorithm are provided in the Supplemental Methods.

Systematic inference of prognostic lncRNAs
A univariate Cox proportional hazards model was fit to the inferred and actual expression
values for each lncRNA, separately for TCGA, PRECOG and METABRIC datasets.
Actual expression was available for a small set of lncRNAs in the PRECOG and
METABRIC datasets and were used for downstream validation. From the models,
z-scores were calculated by dividing the Cox regression coefficient by its standard error.
A z-score < 0 indicates that a lncRNA is protective and positively associated with survival.
Conversely, a z-score > 0 indicates that a lncRNA is hazardous and negatively associated
with survival.

In the PRECOG dataset, there were several microarray datasets belonging to the same
cancer type. After computing the inferred expression for all lncRNAs within each dataset,
we fitted a univariate Cox regression model to measure the association between a
lncRNA and all-cause or disease-specific mortality (if available). z-scores were extracted
from the fitted models and a meta z-score was calculated for each lncRNA across all
the microarray datasets belonging to the same cancer type. The meta z-score was
calculated using weighted Stouffer’s z-score method using the dataset sample size as
weights. A meta z-score < 1 indicates a positive association and a meta z-score > 1 indicates
a negative association with survival. In addition, robust meta z-scores were calculated for
each lncRNA by leaving out the dataset yielding the most significant association and
repeating the procedure. Meta p-values were calculated from the meta z-scores by referring
to the standard normal distribution. Meta p-values were adjusted for each cancer type
using Benjamini–Hochberg and Bonferroni multiple testing correction methods.
Kaplan–Meier analysis of lncRNAs was performed by dichotomizing patients into high
(>0) and low (<0) inferred lncRNA expression groups and performing a log-rank test to
calculate statistical significance.

In the METABRIC dataset, a multiple Cox regression model was applied and included
age at diagnosis, tumor size, stage, ER and HER2 status as covariates. Disease-specific
mortality was used as the outcome.

Validation of survival analysis
To compare survival results across datasets, we performed two validation analyses:
(1) Cross-dataset analysis comparing Cox regression results using actual lncRNA
expression from TCGA with results using inferred lncRNA expression from PRECOG and
(2) Within-dataset comparison of survival results generated by models fitted to inferred
or actual lncRNA expression in PRECOG and METABRIC. Pearson correlation was
used to evaluate the consistency between lncRNA regression z-scores derived from actual
and inferred expression within and between datasets. A one-sided Fisher’s exact test
was used to compute the enrichment of prognostic TCGA lncRNAs (actual lncRNA
expression) in the set of prognostic PRECOG lncRNAs (inferred lncRNA expression).
Prognostic lncRNAs were selected using FDR < 0.05 and non-prognostic lncRNAs were
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selected using a FDR > 0.1. Protective (hazard ratio < 1) and hazardous (hazard ratio > 1)
lncRNAs were analyzed using separate enrichment tests.

Revealing lncRNA-based subtypes in breast cancer
In the METABRIC dataset, feature selection was performed by selecting the top 500
lncRNAs with the highest variation of inferred expression across patients. The inferred
expression levels were then z-transformed across patients and gene-wise unsupervised
clustering was performed using Euclidean distance and complete linkage.

Analysis of prognostic and essential lncRNAs
Hazardous lncRNAs identified from the PRECOG meta-analysis of breast cancer and
hematopoietic cancer datasets were selected using a z-score cutoff of >0 and p-value cutoff
of ≤0.1. LncRNA functional screening data were downloaded from Liu et al. (2017) and
contained averaged phenotype scores derived from systematic CRISPRi knockout of
lncRNAs. Essential lncRNAs were defined as those that when knocked down, result in
ablation of cell proliferation and cell death and was quantified by a phenotype score
included in the dataset. Essential lncRNAs in the MDA-MB-231 (breast) or K562
(hematopoietic) cell lines were selected using an average phenotype score cutoff of <0 and
a p-value cutoff of ≤0.1. The average phenotype score measured the growth effect on the
cell line when a particular lncRNA has been knocked down; a value <0 indicated
essentiality and a value >0 indicated non-essentiality. The enrichment overlap between
essential MDA-MB-251 lncRNAs and hazardous breast cancer lncRNAs was computed
using a one-sided Fisher’s exact test. The same test was used to calculate the enrichment
overlap between essential K562 lncRNAs and hazardous hematopoietic cancer lncRNAs.

Prognostic lncRNAs and CNAs
Long non-coding RNAs associated with prognosis in the METABRIC dataset were
mapped to the genome for each patient. Hazardous lncRNAs were selected using z-score
> 0 and FDR ≤ 0.01 as the cutoff. Protective lncRNAs were selected using z-score < 0
and FDR ≤ 0.01 as the cutoff. The CNA dataset provides the copy number signal of
genomic segments throughout the genome for each patient along with binary calls
indicating amplification (1) or deletion (−1). For each patient, a Fisher’s exact test was
performed to measure significant enrichment of hazardous lncRNAs (compared to
protective lncRNAs) in genomic segments that had undergone copy number amplification
or deletion. When constructing the contingency table for a Fisher’s exact test, every cell
had to have at least five counts in order for the test to be performed for the patient to
ensure robust enrichment results. In total, 1,595 METABRIC patients were used to test
enrichment of hazardous lncRNAs in amplified regions and 901 patients were used to test
enrichment of protective lncRNAs in deleted regions. The Benjamini–Hochberg procedure
was used to adjust for multiple hypothesis testing. When calculating the CNA signal
corresponding to each lncRNA, the average copy number signal of all segments
overlapping the gene region (transcription start site to the termination site) was used.
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When performing the CNA enrichment analysis in the TCGA dataset, lncRNAs
associated with prognosis in glioblastoma or ovarian cancer were selected using an
unadjusted p-value cutoff of <0.05. An FDR cutoff of 0.1 was used to identify prognostic
lncRNAs in pancreatic cancer and lung adenocarcinoma. These significance cutoffs were
chosen to ensure a sufficient number of prognostic lncRNAs for enrichment analysis.
Segments were selected using a CNA signal of >0 and <0 for amplification and deletion,
respectively.

RESULTS
Overview of analysis
To systematically identify lncRNAs associated with patient prognosis, we applied the
ARACNe-AP algorithm (Lachmann et al., 2016) to 23 TCGA RNA-seq datasets to
generate lncRNA regulons for each cancer type. ARACNe-AP calculates the mutual
information between a lncRNA and potential target genes and removes edges that are
unlikely to represent a biological link using the concept of data processing inequality
(Margolin et al., 2006; Lachmann et al., 2016). The resulting regulons represent a network
where the edges encode the magnitude and direction of association between lncRNAs
and other genes based on their gene expression across samples (See “Methods”).
A lncRNA’s expression can be inferred within a microarray dataset lacking lncRNA probes
by analyzing the aggregate expression of the protein coding genes composing that
lncRNA’s regulon. In total, we generated cancer-specific lncRNA regulons for 23 different
cancer types using TCGA RNA-seq datasets. Once these regulons were generated, we
transformed them into weight profiles and validated their predictive accuracy in TCGA.
We then extended our analysis by inferring lncRNA expression in microarray data
compendia from PRECOG and METABRIC using the regulon weight profiles and the
BASE algorithm (Cheng et al., 2007). The BASE algorithm outputs a predicted expression
value for each lncRNA in every patient sample by imputing the relative expression level of
a lncRNA based on the expression of genes that it correlates with (i.e., regulon genes).
Regulon weight profiles were selected to interrogate microarray data based on matched
cancer type. After inferring the expression of thousands of lncRNAs, we performed a
systematic pan-cancer screen for prognostic lncRNAs using survival information included
in the microarray gene expression data compendia (Fig. 1).

Inferred lncRNA expression strongly correlates with actual expression
By implementing the ARACNe-AP algorithm in TCGA RNA-seq datasets, we constructed
thousands of lncRNA regulons for each TCGA cancer type (Fig. 2A). Each regulon
contains a lncRNA and its associated genes, which can be used as features to infer that
specific lncRNA’s expression. An example of an inferred lncRNA expression pattern and
the expression of its associated genes is provided in Fig. S1. The number of regulons varied
across cancer types depending on whether any genes were found to have high mutual
information with any given lncRNA based on expression signal. To confirm that the
inferred expression of the lncRNAs was indeed accurate, we correlated each lncRNA’s
inferred expression with its actual expression in all TCGA RNA-seq datasets. We observed
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that for the majority of lncRNAs, their inferred and actual expression were highly
correlated across 23 cancer types as shown by the left-skewed distribution of correlation
coefficients (Fig. 2B). These results indicate that it is possible to infer the expression levels
of lncRNAs based on the aggregate expression of its associated genes.

Furthermore, we inferred lncRNA expression in the METABRIC dataset and compared
the inferred and actual expression of 95 lncRNAs, which had probes present in the
microarray platform. We observed that 82 of these lncRNAs had inferred expression
values positively correlated with probe expression with 59 having significant associations
(Fig. 3A; p ≤ 0.05). As an example, the correlation between the inferred and actual
expression of HOTAIR and PVT1 was 0.54 and 0.60, respectively (Figs. 3B and 3C). This
analysis was repeated in each PRECOG dataset and we again observed that the correlation
coefficient distributions were left-skewed indicating that approximately 95% of the

Figure 1 Overview of analysis. TCGA RNA-seq data from 23 cancer types were used as input into the
ARACNe algorithm to generate cancer type specific lncRNA-target gene regulons. These regulons were
used with the BASE algorithm to infer lncRNA expression in PRECOG and METABRIC microarray
datasets. The BASE algorithm infers the expression of lncRNAs in microarray data using the aggregate
expression of the lncRNAs’ associated protein coding genes. Lastly, a systematic pan-cancer analysis of
9,463 lncRNAs was carried out to identify prognostic lncRNAs across 20 different cancer types in the
microarray data compendia. Full-size DOI: 10.7717/peerj.8797/fig-1
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inferred lncRNA expression values were positively correlated with actual probe expression
(Figs. 3D–3F), with a median correlation coefficient of 0.6. These results demonstrate
that lncRNA expression can be inferred using the expression of protein coding genes in
microarray datasets. Furthermore, we show our lncRNA inference platform is robust and
can be generalized to different datasets as demonstrated by our analysis of TCGA,
PRECOG and METABRIC.

Previous studies have shown that the expression patterns of lncRNAs recapitulate the
four well-known molecular subtypes in breast cancer (Su et al., 2014), which are associated

Figure 2 Comparison of inferred lncRNA expression and actual lncRNA expression. (A) Number of
lncRNA regulons identified in 23 TCGA cancer types from the ARACne algorithm. Each regulon consists
of a lncRNA and its associated protein coding genes. (B) Distribution of Spearman correlation coeffi-
cients from comparing inferred lncRNA expression with its actual expression using RNA-seq data from
23 TCGA cancer types. Full-size DOI: 10.7717/peerj.8797/fig-2
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Figure 3 Comparison of inferred and actual lncRNA expression in METABRIC using available
probes. (A) Waterfall plot showing correlation of inferred lncRNA expression and lncRNA probe
expression in the METABRIC microarray dataset. Each lncRNA that had an available probe in the
METABRIC microarray platform was selected to compare its inferred expression with its actual
expression using Spearman correlation. Scatterplots show correlation of inferred and actual expression
for (B) HOTAIR and (C) PVT1. (D–F) Distribution of correlation coefficients between inferred lncRNA
expression and actual probe expression for 141 microarray datasets across 20 cancer types in the
PRECOG compendium. Dashed vertical line indicates no correlation. Panels separated to increase leg-
ibility. (G) Heatmap showing inferred lncRNA expression differences between Luminal A, Luminal B,
Normal-like, HER2-enriched and Basal breast cancer subtypes. Color bar shows z-score spectrum.

Full-size DOI: 10.7717/peerj.8797/fig-3
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with tumor behavior and patient prognosis (Perou et al., 2000). We sought to confirm
whether inferred lncRNA expression could similarly distinguish between the different
breast cancer subtypes. Using the METABRIC dataset, we performed hierarchical
clustering of the genes using the inferred expression values of 500 lncRNAs with highest
variance across samples and indeed found subtype-specific differences in inferred
lncRNA expression (Fig. 3G). This finding implies that lncRNA activity varies across
breast cancer molecular subtypes and may play a role in tumor behavior.

Exploring the prognostic landscape of lncRNAs across 20 tumor types
In light of the current dearth of RNA-seq datasets with survival metadata and the
expansive trove of microarray datasets that do have this valuable clinical information, we
first used the PRECOG compendia to systematically infer lncRNA expression. Datasets
in PRECOG all include patient survival information, and many patients within these
datasets have been followed-up for longer periods of time compared to those recorded in
TCGA, offering greater statistical power when performing survival analyses (Clark et al.,
2003). We carried out a systematic inference of prognostic lncRNAs in PRECOG
datasets with a sufficient number of probes (500) and performed a meta-analysis by
combining the results within each tissue type. From this systematic screen, we identified a
number of prognostic lncRNAs associated with both increased and decreased patient
mortality risk in 13 PRECOG cancer types (Fig. 4A). These results suggest that lncRNAs
may play a substantial role in the progression of all neoplasia. An overview of all lncRNAs
and their associations with prognosis is available in the Supplemental Results.

Furthermore, we found that some lncRNAs including HOTAIR and H19 were
associated with poor survival across multiple cancer types (Fig. 4A). These results are in
accordance with several reports implicating these lncRNAs in neoplastic progression and
metastasis across different cancer types (Matouk et al., 2007; Gupta et al., 2010). It has
been suggested that HOTAIR promotes cancer invasiveness and metastasis by the
induction of a more embryonic-like state (Gupta et al., 2010), which leads to increased
resistance to known therapies and is a marker for poor prognosis in almost all cancer types
(Ge et al., 2017; Shibue & Weinberg, 2017). However, some lncRNAs like TINCR were
associated with both good and poor prognosis depending on the cancer type (Fig. 4B).
Particularly, TINCR was associated with unfavorable prognosis in breast cancer, which is
consistent with the implication of TINCR in promoting breast cancer tumorigenesis
(Xu et al., 2017; Liu et al., 2018). TINCR can stabilize mRNA by preventing
Staufen-mediated mRNA decay of differentiation genes in epidermal tissue (Kretz et al.,
2013), but it is unclear whether this mechanism plays a role in tumor evolution.

To provide evidence that the identified prognostic lncRNAs are functionally
relevant, we performed an integrative analysis of CRISPRi data generated from a high-
throughput, systematic screen for lncRNAs that are essential for cancer cell growth
(Liu et al., 2017). We calculated the enrichment of functional lncRNAs identified in MDA-
MB-231 and K562 cell lines in the set of prognostic lncRNAs identified in breast
and hematopoietic cancers, respectively. We observed that hazardous lncRNAs in
hematopoietic cancers were enriched in essential lncRNAs (Odds ratio = 2.26, p = 7.1E−5)
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and protective lncRNAs were depleted in essential lncRNAs (Odds ratio = 0.73, p = 0.16)
indicating that hazardous lncRNAs in hematopoietic cancers tend to be required for
cancer cell growth compared to protective or non-prognostic lncRNAs (Figs. 4C and 4D).
Likewise, we discovered that hazardous lncRNAs in breast cancer was also enriched in
essential lncRNAs (Odds ratio = 3.04, p = 5.4E−3) and protective lncRNAs were depleted
in essential lncRNAs (Odds ratio = 0.30, p = 3.2E−4), again suggesting that hazardous
lncRNAs are more likely to be essential because they contribute to cell growth and are thus
associated with increased mortality risk (Figs. 4E and 4F). Together, these results indicate

Figure 4 Systematic screening of prognostic lncRNAs in PRECOG compendium. (A) Table showing the number of lncRNAs identified to
be associated with patient prognosis across PRECOG cancer types using standard and robust meta-analysis methods. Different cutoffs for the
Benjamini meta-FDR and Robust Benjamini-FDR are displayed. Haz. indicates hazardous and Pro. indicates protective. (B) Selected prognostic
lncRNAs (Adjusted p < 0.001) and their association with prognosis in each cancer type. White cells indicate associations with p > 0.05 or lncRNAs
whose expression cannot be inferred in that cancer type. Bar plots showing odds ratio indicating enrichment overlap between essential lncRNAs in
(C) K562 cells and (D) lncRNAs associated with prognosis in hematopoietic cancers in PRECOG. Bar plots showing odds ratio indicating
enrichment overlap between essential lncRNAs in (E) MDA-MB-231 cells and (F) lncRNAs associated with prognosis in breast cancer in PRECOG.
Haz. indicates hazardous and Pro. indicates protective. Kaplan–Meier plots showing association of (G) TINCR; (H) H19; (I) EGOT and (J) RP11-
108P20.4 inferred expression with patient prognosis in selected brain, liver, breast cancer and prostate cancer datasets from PRECOG.

Full-size DOI: 10.7717/peerj.8797/fig-4
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that hazardous lncRNAs identified in our analysis of breast and hematopoietic cancers are
functionally relevant, at least in the context of in vitro cancer cell growth.

In addition to known cancer-associated lncRNAs, our screen also generated novel
hypotheses about lncRNAs that have not been well-studied in certain cancer types.
To highlight, high TINCR inferred expression was associated with improved survival in
patients with brain tumors (Fig. 4G; p = 5E−8). Moreover, high H19 inferred expression
was associated with decreased mortality risk among patients with liver tumors (Fig. 4H;
p = 0.002). EGOT inferred expression was associated with decreased mortality risk in
patients with breast cancer (Fig. 4I; p = 9E−11). This is consistent with a previous study,
which showed that downregulation of EGOT correlates with worse clinicopathological
features and poor prognosis in breast cancer (Xu et al., 2015). Lastly, we found that high
inferred RP11-108P20.4 expression was associated with improved survival in prostate
cancer (Fig. 4J; p = 2E−15), which coincides with a recent report introducing RP11-
108P20.4 as part of a four lncRNA gene prognostic risk signature for prostate cancer
(Huang et al., 2002). These results demonstrate that novel prognostic lncRNAs can be
identified across several cancer types from common microarray datasets.

Furthermore, to assess the reproducibility of our screen, we performed a survival
analysis of 23 TCGA cancer types to identify prognostic lncRNAs using their actual
expression in each dataset. From this screen, prognostic lncRNAs (FDR < 0.05) were
identified in five cancer types (LUAD, LGG, BLCA, LIHC and LAML). We stratified the
lncRNAs into protective or hazardous and computed their enrichment, respectively, in
protective or hazardous lncRNAs predicted from the PRECOG datasets. We identified
significant overlap between the two sets of prognostic lncRNAs in all five cancer types
(Fig. 5A). Moreover, we compared the Cox regression z-scores (TCGA) and meta z-scores
(PRECOG) for all lncRNAs within lung adenocarcinoma, low-grade glioma and
bladder cancer datasets and observed significant correlations (Figs. 5B–5D). These z-scores
were calculated by dividing the Cox regression coefficient by its standard error and the
meta z-scores were calculated using weighted Stouffer’s z-score method using the dataset
sample size as weights. Several well-studied lncRNAs including H19, BCAR4, GAS5, XIST,
HOTAIR and EGOT had concordant z-scores (Figs. 5B–5D).

lncRNAs associated with prognosis localize to genomic regions under
selective pressure
Operating under the hypothesis that genomic amplifications and deletions indicate regions
of positive and negative selective pressure by the tumor, respectively (Zack et al., 2013),
we aimed to provide further evidence that lncRNAs associated with prognosis are also
linked to genomic structural abnormalities that confer a selective advantage to neoplastic
cells. Thus, we analyzed CNA together with inferred lncRNA expression of each patient
sample in the METABRIC data set. Strikingly, we observed a significant enrichment of
lncRNAs associated with poor prognosis (hazardous) in amplified regions of the genome
in 448 METABRIC patient tumors (Fig. 6A). In comparison, we only observed 54 patient
tumors where amplified regions were significantly depleted of hazardous lncRNAs
(Fig. 6B). Likewise, we observed 47 patients with deleted genomic regions enriched in
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lncRNAs associated with decreased mortality (protective), compared to 17 patients who
had protective lncRNAs depleted in deleted genomic regions. We also explored whether
prognostic lncRNAs were enriched in amplified or deleted regions of the genome in
pancreatic cancer, lung adenocarcinoma and glioblastoma TCGA datasets and observed
consistent results (Fig. S2). In summary, these results indicate that prognostic lncRNAs
localize to genomic regions that undergo CNA suggesting that they are under both positive
and negative selective pressure by the tumor.

To demonstrate that lncRNAs associated with mortality risk are under selection, we
highlight JRK and CADM3-AS1. In our analysis of JRK, we discovered that patients with

Figure 5 Prognostic lncRNAs identified in TCGA and PRECOG. (A) Barplots showing odds ratios
from enrichment analysis of prognostic lncRNAs identified in TCGA and PRECOG for LUAD, LGG,
BLCA, LIHC and LAML. Enrichment analysis was performed separately for lncRNAs with hazard ratios
>1 (Red) and <1 (Blue). Vertical black line denotes an odds ratio of 1. Scatterplots showing correlation of
z-scores and meta z-scores for all lncRNAs screened in TCGA and PRECOG, respectively, in (B) lung
cancer, (C) brain cancer and (D) bladder cancer. Labeled points denote lncRNAs that have been char-
acterized in previous literature. Full-size DOI: 10.7717/peerj.8797/fig-5
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Figure 6 Enrichment of prognostic lncRNAs in genomic regions with copy number alterations. Waterfall plots showing enrichment of
(A) hazardous and (B) protective lncRNAs in amplified and deleted regions of the genome for each patient, respectively. Log2 odds ratio >0 indicates
enrichment and log2 odds ratio <0 indicates depletion. Purple bars indicate statistically significant enrichment. (C) High JRK inferred expression is
associated with poor prognosis. (D) High JRK inferred expression is concentrated in regions with higher copy number signal across all METABRIC
patients. (E) High CADM3-AS1 inferred expression is associated with favorable prognosis. (F) High CADM3-AS1 inferred expression is con-
centrated in genomic regions with lower copy number signal across all METABRIC patients. Full-size DOI: 10.7717/peerj.8797/fig-6
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high inferred JRK expression exhibited a higher mortality rate compared to patients with
low inferred JRK expression (Fig. 6C). In conjunction with this result, we also observed
higher amplification signal of the region harboring JRK in patients with high inferred
JRK expression compared to patients with low inferred JRK expression (Fig. 6D). These
results suggest that JRK exhibits a pro-oncogenic effect because it is under positive
selection by breast tumors, which consistently coincides with their association with
increased mortality risk. In contrast, we found that high CADM3-AS1 inferred expression
was associated with a more favorable prognosis compared to patients with low
CADM3-AS1 inferred expression (Fig. 6E). In agreement with our prediction, we found
that the genomic region harboring CADM3-AS1 was significantly more amplified in
patients with low CADM3-AS1 expression compared to patients with high CADM3-AS1
expression (Fig. 6F). Together, these results suggest that due to CADM3-AS1’s association
with decreased mortality risk, it exhibits anti-tumor effects that are not selected for by
breast neoplasms. Our analysis of prognostic lncRNAs in the context of CNA indicates
that they are under selective pressure and provides evidence that they are functionally
involved in cancer development. This hypothesis compliments a recent publication
showing that somatic copy number variations in lncRNA loci were predictive of target
gene expression and might be responsible for the dysregulation of dozens of
cancer-associated genes (Chiu et al., 2018).

DISCUSSION
Investigation into lncRNAs using integrative and systematic approaches can help provide
insight into the genome’s “dark matter” and how it may influence disease and ultimately
patient prognosis in cancer. Studies are now underway to characterize and dissect the
intricacies of lncRNA regulatory mechanisms in several biological contexts which may
revise our current understanding of genome regulation (Cech & Steitz, 2014). Hypothesis
generating projects are essential for guiding the biomedical community towards
investigating more promising leads as to accelerate the discovery of novel drug targets and
biomarkers for cancer and other diseases. We have proposed a novel analysis framework
to infer lncRNA expression in microarray gene expression data compendia and
subsequently carry out systematic survival analysis to identify prognostic lncRNAs across
20 cancer types. Our approach is novel in that we utilize expression information from
TCGA RNA-seq data to generate cancer-specific lncRNA regulon profiles that capture the
lncRNA-gene relationships within a specific tissue context. We then apply these profiles to
microarray gene expression data using a sensitive enrichment algorithm, BASE, to infer
lncRNA expression based primarily on protein coding gene expression. We perform this
analysis at a pan-cancer scale to identify new prognostic lncRNAs that have global and
tissue-specific associations with survival. In contrast to other prognostic lncRNA
pan-cancer analyses, we evaluated lncRNA expression in a large number of microarray
datasets, providing us with a more comprehensive view of prognostic lncRNAs in cancer.

In particular, we were able to validate that the inferred lncRNA expression values
are accurate and reproducible within and across several datasets. We identified novel
associations between lncRNAs and patient mortality risk across 13 (out of 20 total) cancer
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types that can be further evaluated in more detail. We confirmed that associations between
lncRNA expression and mortality risk were consistent regardless of whether inferred or
actual expression were used and showed that prognostic lncRNAs identified in breast
and hematopoietic cancers were significantly enriched in functional lncRNAs required for
cell growth. Furthermore, we demonstrated that hazardous lncRNAs were enriched within
regions under positive selective pressure.

In spite of the evidence we provide, this study does have limitations that are imposed by
the data. First, in each microarray dataset, we used the regulon profile that was generated
from the TCGA cancer type that was the best match based on tissue. However, it was
not always possible to find an exact cancer type match for each microarray dataset. Thus,
using an inappropriately matched regulon profile may yield false associations. Second,
univariate Cox regression models were used to screen for prognostic lncRNAs, which
do not account for other clinical or demographic factors that may modify the associations.
These may include age, gender, race, histological marker status, stage and grade. However,
as an initial screen our framework can be further improved to include multivariate
analyses in follow up studies if more specific hypotheses are to be tested (McNamee, 2005).
Third, not all lncRNAs are poly-adenylated and are thus captured in poly-(A)-enriched
RNA-seq or microarray studies. Due to this, we likely did not include all known
lncRNAs in our study. Lastly, our analysis does not account for all cancer subtypes to
address the issue of molecular heterogeneity within the same cancer type (Gerdes et al.,
2014). As a result, certain associations between lncRNA expression and prognosis may
only be valid in certain subtypes of the same cancer type. As stated previously, future
analyses can address this issue by performing subgroup analyses within specific subtypes.

CONCLUSIONS
Our approach can be extended to other microarray gene expression datasets by utilizing
our regulon profiles to infer lncRNA expression. As a result, it is possible to identify novel
associations between lncRNAs and other disease phenotypes other than survival.
Moreover, is possible to generate regulon profiles for other non-coding RNA species
and infer their expression in microarray datasets. In summary, our systematic analysis
introduces new avenues to investigate clinically relevant lncRNAs and demonstrate that
these long, diverse transcripts constitute a new source of gene products that can serve as
novel drug targets or biomarkers.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by American Cancer Society Research grant #IRG-82-003-30,
the National Center for Advancing Translational Sciences of the National Institutes of
Health under Award Number KL2TR001088, the Rosaline Borison Memorial Pre-doctoral
fellowship provided to Matthew H. Ung, the Cancer Prevention Research Institute of
Texas (CPRIT) (RR180061 to Chao Cheng) and the National Cancer Institute of the
National Institutes of Health (1R21CA227996 to Chao Cheng). Chao Cheng is a CPRIT

Ung et al. (2020), PeerJ, DOI 10.7717/peerj.8797 17/21

http://dx.doi.org/10.7717/peerj.8797
https://peerj.com/


Scholar in Cancer Research. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
American Cancer Society Research: #IRG-82-003-30.
National Center for Advancing Translational Sciences of the National Institutes of Health:
KL2TR001088.
Rosaline Borison Memorial Pre-Doctoral Fellowship.
Cancer Prevention Research Institute of Texas (CPRIT): RR180061.
National Cancer Institute of the National Institutes of Health: 1R21CA227996.
CPRIT Scholar in Cancer Research.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Matthew Ung conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

� Evelien Schaafsma analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the paper, and approved the final draft.

� Daniel Mattox analyzed the data, prepared figures and/or tables, and approved the final
draft.

� George L. Wang analyzed the data, prepared figures and/or tables, and approved the
final draft.

� Chao Cheng conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

All significant associations between inferred lncRNA expression and patient prognosis
are available as a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.8797#supplemental-information.

REFERENCES
Ali MM, Akhade VS, Kosalai ST, Subhash S, Statello L, Meryet-Figuiere M, Abrahamsson J,

Mondal T, Kanduri C. 2018. PAN-cancer analysis of S-phase enriched lncRNAs identifies
oncogenic drivers and biomarkers. Nature Communications 9:883
DOI 10.1038/s41467-018-03265-1.

Ung et al. (2020), PeerJ, DOI 10.7717/peerj.8797 18/21

http://dx.doi.org/10.7717/peerj.8797#supplemental-information
http://dx.doi.org/10.7717/peerj.8797#supplemental-information
http://dx.doi.org/10.7717/peerj.8797#supplemental-information
http://dx.doi.org/10.1038/s41467-018-03265-1
http://dx.doi.org/10.7717/peerj.8797
https://peerj.com/


Alvarez MJ, Shen Y, Giorgi FM, Lachmann A, Ding BB, Ye BH, Califano A. 2016. Functional
characterization of somatic mutations in cancer using network-based inference of protein
activity. Nature Genetics 48(8):838–847 DOI 10.1038/ng.3593.

Ashouri A, Sayin VI, Van den Eynden J, Singh SX, Papagiannakopoulos T, Larsson E. 2016.
Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational
driver events. Nature Communications 7:13197 DOI 10.1038/ncomms13197.

Bartonicek N, Maag JLV, Dinger ME. 2016. Long noncoding RNAs in cancer: mechanisms of
action and technological advancements. Molecular Cancer 15(1):43
DOI 10.1186/s12943-016-0530-6.

Byron SA, Keuren-Jensen KRV, Engelthaler DM, Carpten JD, Craig DW. 2016. Translating
RNA sequencing into clinical diagnostics: opportunities and challenges. Nature Reviews Genetics
17(5):257–271 DOI 10.1038/nrg.2016.10.

Cabanski CR, White NM, Dang HX, Silva-Fisher JM, Rauck CE, Cicka D, Maher CA. 2015.
Pan-cancer transcriptome analysis reveals long noncoding RNAs with conserved function.
RNA Biology 12(6):628–642 DOI 10.1080/15476286.2015.1038012.

Cech TR, Steitz JA. 2014. The noncoding RNA revolution—trashing old rules to forge new ones.
Cell 157(1):77–94 DOI 10.1016/j.cell.2014.03.008.

Cheng C, Yan X, Sun F, Li LM. 2007. Inferring activity changes of transcription factors by binding
association with sorted expression profiles. BMC Bioinformatics 8(1):452
DOI 10.1186/1471-2105-8-452.

Ching T, Peplowska K, Huang S, Zhu X, Shen Y, Molnar J, Yu H, Tiirikainen M, Fogelgren B,
Fan R, Garmire LX. 2016. Pan-cancer analyses reveal long intergenic non-coding RNAs
relevant to tumor diagnosis, subtyping and prognosis. EBioMedicine 7:62–72
DOI 10.1016/j.ebiom.2016.03.023.

Chiu H-S, Somvanshi S, Patel E, Chen T-W, Singh VP, Zorman B, Patil SL, Pan Y,
Chatterjee SS, Sood AK, Gunaratne PH, Sumazin P, Cancer Genome Atlas Research
Network. 2018. Pan-cancer analysis of lncRNA regulation supports their targeting of cancer
genes in each tumor context. Cell Reports 23:297–312 DOI 10.1016/j.celrep.2018.03.064.

Clark TG, Bradburn MJ, Love SB, Altman DG. 2003. Survival analysis part I: basic concepts and
first analyses. British Journal of Cancer 89(2):232–238 DOI 10.1038/sj.bjc.6601118.

The ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the
human genome. Nature 489(7414):57–74 DOI 10.1038/nature11247.

Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG,
Samarajiwa S, Yuan Y, Gräf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S,
Langerød A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F,
Murphy L, Ellis I, Purushotham A, Børresen-Dale A-L, Brenton JD, Tavaré S, Caldas C,
Aparicio S, METABRIC Group. 2012. The genomic and transcriptomic architecture of 2,000
breast tumours reveals novel subgroups. Nature 486:346–352 DOI 10.1038/nature10983.

De Kok JB, Verhaegh GW, Roelofs RW, Hessels D, Kiemeney LA, Aalders TW, Swinkels DW,
Schalken JA. 2002. DD3 (PCA3), a very sensitive and specific marker to detect prostate tumors.
Cancer Research 62(9):2695–2698.

Du Z, Fei T, Verhaak RGW, Su Z, Zhang Y, Brown M, Chen Y, Liu XS. 2013. Integrative
genomic analyses reveal clinically relevant long noncoding RNAs in human cancer.
Nature Structural & Molecular Biology 20(7):908–913 DOI 10.1038/nsmb.2591.

Esteller M. 2011. Non-coding RNAs in human disease. Nature Reviews Genetics 12(12):861–874
DOI 10.1038/nrg3074.

Ung et al. (2020), PeerJ, DOI 10.7717/peerj.8797 19/21

http://dx.doi.org/10.1038/ng.3593
http://dx.doi.org/10.1038/ncomms13197
http://dx.doi.org/10.1186/s12943-016-0530-6
http://dx.doi.org/10.1038/nrg.2016.10
http://dx.doi.org/10.1080/15476286.2015.1038012
http://dx.doi.org/10.1016/j.cell.2014.03.008
http://dx.doi.org/10.1186/1471-2105-8-452
http://dx.doi.org/10.1016/j.ebiom.2016.03.023
http://dx.doi.org/10.1016/j.celrep.2018.03.064
http://dx.doi.org/10.1038/sj.bjc.6601118
http://dx.doi.org/10.1038/nature11247
http://dx.doi.org/10.1038/nature10983
http://dx.doi.org/10.1038/nsmb.2591
http://dx.doi.org/10.1038/nrg3074
http://dx.doi.org/10.7717/peerj.8797
https://peerj.com/


Evans JR, Feng FY, Chinnaiyan AM. 2016. The bright side of dark matter: lncRNAs in cancer.
Journal of Clinical Investigation 126(8):2775–2782 DOI 10.1172/JCI84421.

Ge Y, Gomez NC, Adam RC, Nikolova M, Yang H, Verma A, Lu CP-J, Polak L, Yuan S,
Elemento O, Fuchs E. 2017. Stem cell lineage infidelity drives wound repair and cancer. Cell
169(4):636–650 DOI 10.1016/j.cell.2017.03.042.

Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A,
Hoang CD, Diehn M, West RB, Plevritis SK, Alizadeh AA. 2015. The prognostic landscape of
genes and infiltrating immune cells across human cancers. Nature Medicine 21(8):938–945
DOI 10.1038/nm.3909.

Gerdes MJ, Sood A, Sevinsky C, Pris AD, Zavodszky MI, Ginty F. 2014. Emerging understanding
of multiscale tumor heterogeneity. Frontiers in Oncology 4(Suppl. 6):366
DOI 10.3389/fonc.2014.00366.

Guo L, Yao L, Jiang Y. 2016. A novel integrative approach to identify lncRNAs associated with the
survival of melanoma patients. Gene 585(2):216–220 DOI 10.1016/j.gene.2016.03.036.

Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai M-C, Hung T, Argani P,
Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, Van de Vijver MJ, Sukumar S,
Chang HY. 2010. Long non-coding RNA HOTAIR reprograms chromatin state to promote
cancer metastasis. Nature 464(7291):1071–1076 DOI 10.1038/nature08975.

Gutschner T, Diederichs S. 2012. The hallmarks of cancer: a long non-coding RNA point of view.
RNA Biology 9(6):703–719 DOI 10.4161/rna.20481.

Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100(1):57–70
DOI 10.1016/S0092-8674(00)81683-9.

Huang K-C, Rao PH, Lau CC, Heard E, Ng S-K, Brown C, Mok SC, Berkowitz RS, Ng S-W.
2002. Relationship of XIST expression and responses of ovarian cancer to chemotherapy.
Molecular Cancer Therapeutics 1:769–776.

Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR,
Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu Y-M, Robinson DR, Beer DG,
Feng FY, Iyer HK, Chinnaiyan AM. 2015. The landscape of long noncoding RNAs in the
human transcriptome. Nature Genetics 47(3):199–208 DOI 10.1038/ng.3192.

Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF,
Chow J, Johnston D, Kim GE, Spitale RC, Flynn RA, Zheng GXY, Aiyer S, Raj A, Rinn JL,
Chang HY, Khavari PA. 2013. Control of somatic tissue differentiation by the long non-coding
RNA TINCR. Nature 493(7431):231–235 DOI 10.1038/nature11661.

Kung JTY, Colognori D, Lee JT. 2013. Long noncoding RNAs: past, present, and future. Genetics
193(3):651–669 DOI 10.1534/genetics.112.146704.

Lachmann A, Giorgi FM, Lopez G, Califano A. 2016. ARACNe-AP: gene network reverse
engineering through adaptive partitioning inference of mutual information. Bioinformatics
32(14):2233–2235 DOI 10.1093/bioinformatics/btw216.

Li J, Han L, Roebuck P, Diao L, Liu L, Yuan Y, Weinstein JN, Liang H. 2015. TANRIC: an
interactive open platform to explore the function of lncRNAs in cancer. Cancer Research
75(18):3728–3737 DOI 10.1158/0008-5472.CAN-15-0273.

Liu Y, Du Y, Hu X, Zhao L, Xia W. 2018. Up-regulation of ceRNA TINCR by SP1 contributes to
tumorigenesis in breast cancer. BMC Cancer 18(1):367 DOI 10.1186/s12885-018-4255-3.

Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M, He D, Attenello FJ, Villalta JE, Cho MY,
Chen Y, Mandegar MA, Olvera MP, Gilbert LA, Conklin BR, Chang HY, Weissman JS,
Lim DA. 2017. CRISPRi-based genome-scale identification of functional long noncoding RNA
loci in human cells. Science 355(6320):eaah7111 DOI 10.1126/science.aah7111.

Ung et al. (2020), PeerJ, DOI 10.7717/peerj.8797 20/21

http://dx.doi.org/10.1172/JCI84421
http://dx.doi.org/10.1016/j.cell.2017.03.042
http://dx.doi.org/10.1038/nm.3909
http://dx.doi.org/10.3389/fonc.2014.00366
http://dx.doi.org/10.1016/j.gene.2016.03.036
http://dx.doi.org/10.1038/nature08975
http://dx.doi.org/10.4161/rna.20481
http://dx.doi.org/10.1016/S0092-8674(00)81683-9
http://dx.doi.org/10.1038/ng.3192
http://dx.doi.org/10.1038/nature11661
http://dx.doi.org/10.1534/genetics.112.146704
http://dx.doi.org/10.1093/bioinformatics/btw216
http://dx.doi.org/10.1158/0008-5472.CAN-15-0273
http://dx.doi.org/10.1186/s12885-018-4255-3
http://dx.doi.org/10.1126/science.aah7111
http://dx.doi.org/10.7717/peerj.8797
https://peerj.com/


Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biology 15(12):550 DOI 10.1186/s13059-014-0550-8.

Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A. 2006.
ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian
cellular context. BMC Bioinformatics 7(Suppl. 1):S7 DOI 10.1186/1471-2105-7-S1-S7.

Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, Galun E. 2007. The H19
non-coding RNA is essential for human tumor growth. PLOS ONE 2(9):e845
DOI 10.1371/journal.pone.0000845.

Mattick JS, Makunin IV. 2006. Non-coding RNA. Human Molecular Genetics 15(1):R17–R29
DOI 10.1093/hmg/ddl046.

McNamee R. 2005. Regression modelling and other methods to control confounding. Occupational
and Environmental Medicine 62(7):500–506 DOI 10.1136/oem.2002.001115.

Perou CM, Sørlie T, Eisen MB, Van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT,
Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE,
Børresen-Dale A-L, Brown PO, Botstein D. 2000. Molecular portraits of human breast
tumours. Nature 406(6797):747–752 DOI 10.1038/35021093.

Ponting CP, Oliver PL, Reik W. 2009. Evolution and functions of long noncoding RNAs. Cell
136(4):629–641 DOI 10.1016/j.cell.2009.02.006.

Rinn JL, Chang HY. 2012. Genome regulation by long noncoding RNAs. Annual Review of
Biochemistry 81(1):145–166 DOI 10.1146/annurev-biochem-051410-092902.

Sahu A, Singhal U, Chinnaiyan AM. 2015. Long noncoding RNAs in cancer: from function to
translation. Trends in Cancer 1(2):93–109 DOI 10.1016/j.trecan.2015.08.010.

Schmitt AM, Chang HY. 2016. Long noncoding RNAs in cancer pathways. Cancer Cell
29(4):452–463 DOI 10.1016/j.ccell.2016.03.010.

Shibue T, Weinberg RA. 2017. EMT, CSCs, and drug resistance: the mechanistic link and clinical
implications. Nature Reviews Clinical Oncology 14(10):611–629 DOI 10.1038/nrclinonc.2017.44.

Su X, Malouf GG, Chen Y, Zhang J, Yao H, Valero V, Weinstein JN, Spano J-P, Meric-
Bernstam F, Khayat D, Esteva FJ. 2014. Comprehensive analysis of long non-coding RNAs in
human breast cancer clinical subtypes. Oncotarget 5:9864–9876.

Wang KC, Chang HY. 2011. Molecular mechanisms of long noncoding RNAs. Molecular Cell
43(6):904–914 DOI 10.1016/j.molcel.2011.08.018.

Xu S, Kong D, Chen Q, Ping Y, Pang D. 2017. Oncogenic long noncoding RNA landscape in
breast cancer. Molecular Cancer 16(1):129 DOI 10.1186/s12943-017-0696-6.

Xu S-P, Zhang J-F, Sui S-Y, Bai N-X, Gao S, Zhang G-W, Shi Q-Y, You Z-L, Zhan C, Pang D.
2015. Downregulation of the long noncoding RNA EGOT correlates with malignant status and
poor prognosis in breast cancer. Tumour Biology 36(12):9807–9812
DOI 10.1007/s13277-015-3746-y.

Yan X, Hu Z, Feng Y, Hu X, Yuan J, Zhao SD, Zhang Y, Yang L, Shan W, He Q, Fan L,
Kandalaft LE, Tanyi JL, Li C, Yuan C-X, Zhang D, Yuan H, Hua K, Lu Y, Katsaros D,
Huang Q, Montone K, Fan Y, Coukos G, Boyd J, Sood AK, Rebbeck T, Mills GB, Dang CV,
Zhang L. 2015. Comprehensive genomic characterization of long non-coding RNAs across
human cancers. Cancer Cell 28(4):529–540 DOI 10.1016/j.ccell.2015.09.006.

Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS,
Zhsng C-Z, Wala J, Mermel CH, Sougnez C, Gabriel SB, Hernandez B, Shen H, Laird PW,
Getz G, Meyerson M, Beroukhim R. 2013. Pan-cancer patterns of somatic copy number
alteration. Nature Genetics 45(10):1134–1140 DOI 10.1038/ng.2760.

Ung et al. (2020), PeerJ, DOI 10.7717/peerj.8797 21/21

http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1186/1471-2105-7-S1-S7
http://dx.doi.org/10.1371/journal.pone.0000845
http://dx.doi.org/10.1093/hmg/ddl046
http://dx.doi.org/10.1136/oem.2002.001115
http://dx.doi.org/10.1038/35021093
http://dx.doi.org/10.1016/j.cell.2009.02.006
http://dx.doi.org/10.1146/annurev-biochem-051410-092902
http://dx.doi.org/10.1016/j.trecan.2015.08.010
http://dx.doi.org/10.1016/j.ccell.2016.03.010
http://dx.doi.org/10.1038/nrclinonc.2017.44
http://dx.doi.org/10.1016/j.molcel.2011.08.018
http://dx.doi.org/10.1186/s12943-017-0696-6
http://dx.doi.org/10.1007/s13277-015-3746-y
http://dx.doi.org/10.1016/j.ccell.2015.09.006
http://dx.doi.org/10.1038/ng.2760
http://dx.doi.org/10.7717/peerj.8797
https://peerj.com/

	Pan-cancer systematic identification of lncRNAs associated with cancer prognosis
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


