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ABSTRACT
Chitons are a group of marine mollusks (class Polyplacophora) characterized by
having eight articulating shell plates on their dorsal body surface. They represent
suitable materials for studying the spatiotemporal processes that underlie population
differentiation and speciation in ocean environments. Here we performed population
genetic analyses on the northwestern Pacific chiton Acanthochitona cf. rubrolineata
(Lischke, 1873) using two mitochondrial gene fragments (COI and 16S) from 180
individuals sampled from 11 populations among the coastal waters of Korea, Japan, and
China. The phylogenetic network uncovered a reticulated relationship with several sub-
haplogroups for allA. cf. rubrolineata haplotypes. SAMOVA analyses suggested the best
grouping occurred at three groups (8CT = 0.151, P < 0.0001), which geographically
corresponds to hydrographic discontinuity among the coastal regions of Korea, Japan,
and China. The assumed limited dispersal ability of A. cf. rubrolineata, coupled with
northeasterly flowing, trifurcate warm currents, might have contributed to the genetic
differentiation among the three groups.Meanwhile, a high level of within-group genetic
homogeneity was detected, indicating extensive coastal currents might facilitate gene
flow among the populations within each group. Bayesian skyline plots demonstrated
significant population expansion after the Last Glacial Period (110-25 thousand years
ago) for all studied populations except the Japan group. Together these results suggest
that the present-day phylogeographic patterns ofA. cf. rubrolineata are strongly affected
by the interplay of historical and/or contemporary oceanography and species-specific
life-history features.
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INTRODUCTION
The northwestern Pacific (NWP) is a vast region comprising the coastlines of China, Korea,
Japan, and Russia. It features a unique tectonic and hydrological setting and provides an
ideal system to test some interesting biogeographic questions that underlie marine species’
evolution (Liu et al., 2007; Ni et al., 2014). During recent years, many phylogeographic
studies on diverse species have revealed the impacts of different environmental factors in
the NWP region (e.g., Guo et al., 2015; Han et al., 2015; Li et al., 2017; Ni et al., 2012; Zhao
et al., 2018). However, most of these studies have focused on cryptic lineages promoted by
separation of marginal seas during the Pleistocene (e.g., Liu et al., 2011; Qiu et al., 2016;
Wang et al., 2017; Xu et al., 2009), leaving the effects of some other biotic and/or abiotic
factors largely unexplored (Ni et al., 2015b). Oceanographic features, habitat discontinuity,
and species-specific life history can also contribute to shaping population genetic structure
and patterns in various marine species (Dong et al., 2012; Ni et al., 2017).

The Yellow Sea (YS), including the Bohai Gulf, is a marginal sea of the NWP located
between the west coast of Korea and the east coast of China (Fig. 1). With a total area of
458,000 km2, it is characterized by an extensive continental shelf with an average depth
of 55 m (Park & Yi, 1995; Wang, 1999). Past climate changes during the Pleistocene might
have dramatically impacted the environments and tectonic configurations of the YS.
When glaciers advanced during glacial periods, the sea level was about 120 m lower than
the present-day, resulting in the complete exposure of the YS shelf (Wang, 1999; Wang
&Wang, 1980). Marine populations inhabiting these coastal regions, especially those of
macrobenthic species, were exterminated or forced to migrate southeastward and survived
in the assumed refugium of the Okinawa Trough (Liu et al., 2011; Ni et al., 2015a). When
the sea level rose during interglacial periods, surviving refugial populations repopulated
the newly-formed coasts of the YS (Han et al., 2015; He et al., 2010; Liu et al., 2007). These
populations were presumably genetically homogeneous because they would have originated
from a panmictic ancestral population in the trough after the last glacial maximum (Liu et
al., 2011).

Present-day oceanographic features also shape phylogeographic patterns of marine
species (He et al., 2015; Li et al., 2017). Two ocean current systems, including a coastal
current system and a warm current system, are operating in the YS. Several main coastal
currents flow along the coastlines: the Korea Coastal Current flows from north to south
along the western coast of the Korean peninsula; and the China Coast Current begins in the
Bohai Sea and flows southward along the Chinese coast (Guan, 1994; Su & Yuan, 2005).
Additionally, there are several branches of the Kuroshio Current in this region, including
the Yellow Sea Warm Current flowing between northern China and the Korea peninsula,
and the Tsushima Warm Current flowing through the Korean/Tsushima Strait, separating
the Korean peninsula and the Japanese islands (Isobe, 1999; Su & Yuan, 2005).

Acanthochitona is a genus of the family Acanthochitonidae (Polyplacophora) and is
distributed worldwide. It is one of the most taxonomically complicated molluskan groups
due to its extremely high morphological variability (Bonfitto et al., 2011; Taki, 1938). Some
Acanthochitona species are abundant in coastal areas of the NWP (Hong & Richard, 1990;
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Figure 1 The northwestern Pacific map.Map showing the sampling sites of Acanthochitona cf. rubrolin-
eata and the ocean currents operating in this portion of the northwestern Pacific. The warm currents are
shown in pink (KC, Kuroshio Current; TWC, Tsushima Warm Current; YSWC, Yellow Sea Warm Cur-
rent; KE, Kuroshio Extension), while the coastal currents are shown in blue (CCC, China Coastal Current;
KCC, Korea Coastal Current).

Full-size DOI: 10.7717/peerj.8794/fig-1

Saito, 2017), providing good materials for understanding the spatiotemporal processes
that underlie marine population differentiation and speciation. In this study, we focus on
phylogeographic patterns of a chiton species A. cf. rubrolineata (Lischke, 1873) in the NWP.
Although our identifications correspond to the conventional use of A. cf. rubrolineata for
this species, Eernisse, Draeger & Pilgrim (2018) found that it is part of a species complex
of at least six species of this genus and associated the name with a different species than
we do. In their work, A. sp. B sensu Eernisse, Draeger & Pilgrim (2018) corresponds to our
A. cf. rubrolineata. They associated A. cf. rubrolineata with a different species based on
comparisons with Taki’s (1938) description and also based on the sequences of Russian
specimens identified as that species by B. Sirenko (DJ Eernisse, 2019, pers. comm.). The
assignment here is primarily based on the fact that we had the opportunity to sequence the
first eight specimens sampled from the vicinity of the ‘‘Nagasaki Japan’’ type locality for A.
rubrolineata, but we agree with them that it is still necessary to compare Lischke’s (1873)
type material to both species, and also further sample the Nagasaki region to determine
whether both species might be present in the vicinity of the type locality.

According to existing literature and our field sampling, A. cf. rubrolineata has a wide
distribution in the NWP from Kyushu, Japan, to the southern and western coasts of Korea,
to the northern coast of east China (Saito, 2017). The chitons are often found on hard
surfaces like rocks (or in rock crevices) in intertidal zones, usually forming an intertidal
community with other macrobenthic species such as Mytilus edulis or Corallina pilulifera
(Hong & Richard, 1990). There is no direct information about the larval development of A.
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cf. rubrolineata, but evidence from a wide range of chiton species suggests an overall short
planktonic time of < one week (Pearse, 1979). A. cf. rubrolineata is therefore assumed to
have low dispersal capacity that may contribute to significant population structure among
populations. However, how these life-history characteristics have acted in concert with
ocean current systems to shape phylogeographic patterns in A. cf. rubrolineata still warrants
a detailed genetic appraisal.

In this study, we determined the sequences of two mitochondrial genes [cytochrome
oxidase subunit I (COI) and 16S ribosomal DNA (16S)] for 180 NWP individuals of A. cf.
rubrolineata, including 102 specimens sampled from the southern coastal areas of the
Korean Peninsula, 18 specimens from populations in the Nagasaki Prefecture, Kyushu
Island, Japan (in the vicinity of the ‘‘Nagasaki’’ type locality for A. rubrolineata), and 60
specimens from northeastern China, in order to shed light on the phylogeographic patterns
of this species. We aimed to evaluate (1) the impact of a known history of sea-level changes
during the Pleistocene on the present-day phylogeographic pattern of this chiton species,
(2) population structure for a chiton species, which belongs to a marine molluskan taxon
characterized by lecithotrophic development and limited planktonic larval duration; and
(3) gene flow among the three regions and the influence of ocean currents on contemporary
population structure.

MATERIAL AND METHODS
Sampling, DNA extraction, PCR and sequencing
A total of 180A. cf. rubrolineata individuals were sampled from 11 localities in Korea, Japan,
and China, and about 20 specimens per population except for the Japanese populations
were sequenced for mitochondrial COI and 16S (Fig. 1 and Table 1). Collected samples
were fixed and kept in 95% ethanol until DNA extraction. Genomic DNA was extracted
using the E.Z.N.A. Mollusc DNA Kit (OMEGA Bio-tek, Norcross, GA, USA) following the
manufacturer’s protocol. Two fragments of mitochondrial COI and 16S were amplified
using the universal primer sets of LCO1490 (5′-GGT CAA CAA ATC ATA AAG ATA TTG
G-3′) and HCO2198 (5′-TAA ACT TCA GGG TGA CCA AAA AAT CA-3′) (Folmer et al.,
1994), and 16Sar (5′-CGC CTG TTT ATC AAA AAC AT-3′) and 16Sbr (5′-CCG GTC
TGA ACT CAG ATC ACG T-3′) (16S; Palumbi, 1996). The polymerase chain reaction
(PCR) was performed in a 50 µl volume containing 1.5 µl of template DNA, 5 µl of 10x
Ex Taq buffer (Takara, Shiga, Japan), 4 µl of 0.2 mM dNTP mixture, 1 µl of each primer
(10 pmole), and 0.25 µl Ex Taq Polymerase. The amplification conditions were initial
denaturation at 95 ◦C for 1 min, followed by 40 cycles of denaturation at 94 ◦C for 30 s,
annealing at 46 ◦C for 30 s for COI and 52 ◦C for 30 s for 16S, extension at 72 ◦C for 30 s,
and a final extension at 72 ◦C for 10 min. The PCR product was purified with a QIAquick
Gel Extraction Kit (Qiagen, Valencia, CA, USA) and then sequenced using an ABI PRISM
3730xl DNA analyzer (Applied Biosystems, Foster City, CA, USA) in both directions.
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Table 1 Sampling information and diversity indices for each population of Acanthochitona cf. rubrolineata.

Locality (Abbreviation) Latitude, longitude N Nh Hd Nd Pd

1. Nomomachi, Kyushu, Japan (NO) 32◦35′N, 129◦45′E 3 3 1 0.0046 5.333
2. Nabegushimen, Kyushu, Japan (NA) 33◦24′N, 129◦47′E 8 7 0.964 0.0094 10.964
3. Kinaisemen, Kyushu, Japan (KI) 33◦22′N, 129◦51′E 7 7 1 0.0098 11.333
4. Yeosu, Jeollanam-do, Korea (YE) 34◦47′N, 127◦45′E 20 19 0.995 0.0079 9.179
5. Wando, Jeollanam-do, Korea (WA) 34◦19′N, 126◦44′E 22 18 0.978 0.0078 9.009
6. Buan, Jeollabuk-do, Korea (BU) 35◦37′N, 126◦27′E 20 17 0.984 0.0085 9.837
7. Taean, Chungcheongnam-do, Korea (TA) 36◦23′N, 126◦25′E 20 13 0.905 0.0081 9.453
8. Ansan, Gyeonggi-do, Korea (AN) 37◦11′N, 126◦32′E 20 11 0.805 0.0064 7.437
9. Weihai, Shandong, China (WE) 37◦32′N, 122◦09′E 20 11 0.895 0.0087 10.089
10. Qingdao, Shandong, China (QI) 36◦02′N, 120◦21′E 20 9 0.753 0.0050 5.821
11. Lianyungang, Jiangsu, China (LI) 34◦45′N, 119◦29′E 20 10 0.758 0.0068 7.937

Notes.
N , number of individuals; Nh, number of haplotypes; Hd , haplotype diversity; Nd , nucleotide diversity; Pd , mean number of pairwise differences.

Sequence analyses
Sequences were assembled and edited in Geneious (Kearse et al., 2012) and then deposited
in GenBank (accession numbers: 16S: MN205571–MN205750; COI: MN205751–
MN205930). We merged the two mitochondrial segments for each individual using
the software FasParser (Sun, 2017), and performed a partition homogeneity test in PAUP*
4.0 b10 (Swofford, 2002) to check the congruence between COI and 16S sequences with the
heuristic search option (number of replicates= 100). The result (P-value= 0.680) suggested
there was no incongruence between the two segments, and therefore the concatenated
sequences were used in subsequent analyses. Haplotypes were defined using DnaSP v5
(Librado & Rozas, 2009), and their relationships were inferred using the TCS network in
Popart v1.7 (Leigh & Bryant, 2015). The software jModelTest 2 (Darriba et al., 2012) was
used to determine the best-fit model for sequence evolution. HKY+I was selected as the
best model based on Bayesian Information Criterion and used in the following sets. Genetic
diversity indices, including haplotype diversity (Hd), nucleotide diversity (Nd), and mean
number of pairwise differences (Pd) were calculated for each of the 11 populations in
ARLEQUIN v3.5 (Excoffier & Lischer, 2010).

For population structure analyses, population clusters were first estimated for 10
populations (excluding theNomomachi population in Japan, because only three individuals
were analyzed; see Table 1) based on FCT values using SAMOVA 2.0 (Dupanloup, Schneider
& Excoffier, 2002). The test was performed with K-values of 2-7, and the value for which
the FCT was highest was chosen as the best grouping. Based on the cluster identified from
the SAMOVA, analysis of molecular variance (AMOVA) was then conducted with 10,000
permutations in ARLEQUIN v3.5 to estimate the partitioning of genetic variation. Since the
HKY model was not available in ARLEQUIN, the most similar model, that of Tamura-Nei
(Tamura & Nei, 1993) was used to estimate population structure. Under the same model,
pairwise population comparisons (FST values) were calculated with 10,000 permutations
in ARLEQUIN v3.5.
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We used the coalescent-based program MIGRATE-N v. 3.6 (Beerli & Felsenstein, 1999;
Beerli & Palczewski, 2010) to estimate mutation-scaled migration rate (M ) among the
groups defined in SAMOVA and effective population size (2) of each group based
on maximum-likelihood estimates. Several short runs were performed to check for
convergence of chains, and appropriate upper bounds were set for each parameter after the
test runs. Three long chains were run with 2,000,000 steps and sampled every 100 steps,
and the first 20,000 steps were discarded as burn-in. A static heating scheme was set at four
temperatures of 1, 1.5, 3, and 100,000. Five replicates were run to check the consistency of
the estimates, and stationarity of the Markov chain Monte Carlo (MCMC) was assessed
by examining the effective sample size (ESS). We transformed the migration rate to the
number of migrants per generation (Nm) using the formula Nm =2*M /x (where x is the
inheritance parameter, and here x = 1 for mitochondrial gene) (Beerli & Palczewski, 2010).

Neutrality tests were applied to each group defined in SAMOVA and the entire
population (including all the sampled individuals) to infer historical demography. Tajima’s
D (Tajima, 1989) and Fu’s Fs (Fu, 1997) tests were conducted with 10,000 replications in
ARLEQUIN v3.5. In addition, a mismatch distribution analysis was performed using
DnaSP v5 to test the signal of historical expansion. Bayesian skyline plot (BSP) analysis
was performed for the COI data set using BEAST v2.4.8 (Bouckaert et al., 2014) to infer
historical demography of effective population size for the entire population and individual
groups as defined in SAMOVA. We selected the HKY model with four rate categories
of heterogeneity as the site evolution model. For the clock model, we used a log-normal
relaxed clock. There is no reliable molecular clock yet for mitochondrial COI sequences
of this chiton species. However, a molecular clock for the mtDNA COI of other two
Acanthochitona species was estimated, ranging from 1.0 to 2.0% per million years (myr)
based on the minimum splitting time between Caribbean and Eastern Pacific presumed
geminate species pairs of the Isthmus of Panama (Ríos et al., 2014). Here we applied the
lower bound of 1.0%/myr for the COI sequences and a generation time of two years
(Avila-Poveda & Abadia-Chanona, 2013; Cherns, 1999) to convert the parameters to real
demographic times. As the priors, the Coalescent Bayesian Skyline model was chosen while
setting the free standard deviation (ucldStdev) parameter to Exponential. The analysis was
performed with an MCMC chain length of 20 million iterations for the dataset including
all individuals, and 10 million for each group, sampling every 1,000 generation to estimate
the effective population size change. Tracer 1.6 was used to check and visualize the results
(available from http://beast.bio.ed.ac.uk/Tracer). The 16S data set was not used here
because it is uninformative and there is no reported molecular clock yet for this species or
any other Acanthochitona species.

RESULTS
COI and 16S gene data were obtained from the 180 examined individuals, and the final
alignment of the concentrated sequences per individual was 1,161 sites long. A total of
114 variable sites were identified, yielding 92 haplotypes. The number of haplotypes in
each population ranged from three in Nomomachi to 19 in Yeosu. The overall haplotype

Ni et al. (2020), PeerJ, DOI 10.7717/peerj.8794 6/18

https://peerj.com
http://beast.bio.ed.ac.uk/Tracer)
http://dx.doi.org/10.7717/peerj.8794


10 samples

1 sample

Nomomachi

Nabegushimen

Kinaisemen

Yeosu

Wando

Buan

Taean

Ansan Weihai

Qingdao

Lianyungang

H.2

H.1

China pops:

Japan pops:Korea pops:

Figure 2 Haplotype network. TCS network showing the relationship among all the haplotypes and the
distribution of haplotypes in each population. The circle size is proportional to the observed haplotype
frequency. The two most abundant haplotypes are labeled with H.1 and H.2, respectively.

Full-size DOI: 10.7717/peerj.8794/fig-2

diversity was 0.958, ranging from 0.753 (in Qingdao, China) to 1.000 (in Nomomachi and
Kinaisemen, Japan). Nucleotide diversity ranged from 0.0046 (in Nomomachi) to 0.0098
(in Kinaisemen), and the mean number of pairwise differences ranged from 5.333 to 11.333
(Table 1). The TCS network for all the haplotypes displayed a reticulated topology with
several sub-haplogroups (Fig. 2). Some haplotypes were clustered within a specific region:
for example, haplotype 1 dominated Chinese populations while haplotype 2 was widely
distributed in all Korean populations.

In the SAMOVA analysis, the highest FCT value occurred at K = 3 with a grouping
arrangement of (NA, KI; Japan), (YE, WA, BU, TA, AN; Korea), and (WE, QI, LI; China),
which geographically aligns with the three studied countries. Under this scenario, AMOVA
analysis showed that both variation among groups (8CT = 0.151) and variation within
populations (8ST = 0.154) were statistically significant (both P-values < 0.05), while
variation among populations within groups was not significant (P-value = 0.5537).
Variation within populations accounted for the largest percentage (84.91%) of the total
variation, followed by variation among groups (15.38%), whereas a slightly negative
variance value (−0.29%) was estimated for among populations within groups (Table 2).
The pairwise population comparison showed that 21 out of 55 FST values were statistically
significant (P < 0.05), and all of these were observed between populations of different
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Table 2 AMOVA analysis. Analysis of molecular variance (AMOVA) for the three regional groups defined from SAMOVA analysis. Significant P-
values are indicated in bold.

Grouping Source of variation df Sum of
squares

Variance
components

Percentage of
variation

Statistics P-value

Among groups 2 86.499 0.80758 15.38 8CT= 0.151 <0.0001
Among populations
within groups

7 29.243 −0.01522 −0.29 8SC= 0.003 0.5537(NA, KI); (YE, WA, BU,
TA, AN); (WE, QI, LI)

Within populations 167 744.487 4.45801 84.91 8ST= 0.154 0.0004

Table 3 Pairwise comparisons. Pairwise FST values between 11 populations. The values in bold are statistically significant (P-value < 0.05).

Locality 1. NO 2. NA 3. KI 4. YE 5.WA 6. BU 7. TA 8. AN 9.WE 10. QI

1. NO
2. NA 0.075
3. KI 0.035 −0.094
4. YE 0.051 0.073 0.043
5. WA 0.132 0.044 0.025 0.001
6. BU 0.124 0.047 0.032 0.013 −0.022
7. TA 0.180 0.058 0.051 0.041 −0.018 −0.021
8. AN 0.202 0.163 0.130 0.038 0.010 −0.015 0.010
9. WE 0.054 0.072 0.042 0.057 0.101 0.106 0.131 0.167
10. QI 0.207 0.260 0.222 0.169 0.248 0.249 0.295 0.306 0.029
11. LI 0.094 0.153 0.116 0.087 0.151 0.145 0.193 0.193 −0.010 −0.027

groups (Table 3). In contrast, the FST values between populations of the same group were
much lower and/or in some cases, not statistically significant (Table 2).

For the gene flow analyses in MIGRATE-N, the effective MCMC sample size of each
parameter was >2000, indicating stationarity of all the chains. The results revealed
asymmetric gene flow among the three groups (Fig. 3): significant migration was observed
from the China group into the Korea group [Nm(C→K): 2.331 with 95% confidence interval
(CI : 0.547–3.293) and Japan group [Nm(C→J): 2.079 (CI : 1.378–3.762)]. For the other four
directions, the estimated values were relatively smaller and had a 95% CI that overlapped
with zero, a signal that suggests impeded gene flow between pairwise groups. Effective
population size with a 95% CI for each group revealed the smallest 2 in the China group
[2C = 0.0038 (0.0010–0.0066)], with comparable values for the Korea [2K = 0.0419
(0.0178–0.0828)] and Japan [2J= 0.0597 (0.0220–0.0996)] groups.

Different signals of population size change were observed in various demographic
analyses for the entire population and the three regional groups. In the Tajima’s D test, all
the analysis showed negative values, but P values were not significant in the China or Japan
groups (Table 4). All the Fu’s FS tests also showed negative and significant values except
the China group. Mismatch distribution analyses revealed that all the groups showed a
multimodal distribution pattern, indicating that the population size of the entire population
and each regional group was at a demographic equilibrium (Fig. S1). In contrast, however,
the BSP results revealed significant signals of sudden population size expansion (Fig. 4).
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Table 4 Neutrality tests for the three groups. Results from neutrality tests (Tajima’s D and Fu’s Fs) for
the entire population and each of the three regional groups (P-value <0.05 is indicated in bold.

Group Tajima’sD Fu’s Fs

D P Fs P

1. All −1.611 0.017 −24.279 <0.001
2. Korea −1.466 0.040 −24.358 <0.001
3. China −0.712 0.260 −1.052 0.397
4. Japan −0.759 0.229 −7.401 0.005

The entire population and the Korea group showed a similar demographic trend: their
population size dramatically increased in the recent past (60–70 kya (the entire population)
and 100 kya (Korea group)), after a long period of population stasis (Figs. 4A, 4B). The
China group showed a sudden population expansion in more recent past, beginning its
expansion about 25 kya (Fig. 4C). The trajectory of the effective population size of the
Japan group showed that its population size has been gradually increasing since 550 kya
and differed from the trajectories of the other two regional groups (Korea and China)
(Fig. 4D).
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(B), China Group (C), and Japan Group (D), respectively. The mean value (solid line) with 95% highest
posterior density (dotted line) is shown.
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DISCUSSION
Significant population structure among three regional groups
A most striking pattern in A. cf. rubrolineata is the existence of significant population
structure among the populations suggested by the various analyses. The best grouping
method in SAMOVA divided all study populations into three groups, which geographically
correspond to the coastal regions of Korea, China, and Japan (Table 2). Pairwise FST
estimates also showed that all significant values came from the comparison of populations
between different groups (Table 3). Estimations in MIGRATE-N revealed asymmetric gene
flow among the three groups: among the estimations of six possible directions of gene flow,
only the directions from China to the other two regional groups were significant (Fig. 3).
These results indicate that genetic connectivity (i.e., gene flow) is limited or at least partially
impeded among populations of the three regions, contributing to significant population
structure among them. A comprehensive review of the correlation between pelagic larval
duration and dispersal distance of marine species has also shown that species with a larval
stage of less than a week usually disperse a short span of 1–10 km (Shanks, 2009). Larval
behavior (especially larval stage duration time) has been shown to play a critical role
in determining dispersal distance for many marine species (Cowen & Sponaugle, 2009;
Hellberg et al., 2002; Pineda, Hare & Sponaugle, 2007). Thus, it is not surprising to observe
here significant population structure in A. cf. rubrolineata populations, considering its
limited dispersal capacity (inferred from the life-history traits of many chiton species).
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Fertilized chiton eggs are known to hatch out after some period that mostly depends on
temperature into trochophore larvae (ciliated, free-swimming larvae) and then become
increasingly benthic and soon metamorphose into a juvenile form within a few days to
about 12 days after fertilization depending on chiton species (Pearse, 1979). From the
developmental study of a congeneric species (A. crinitus) that undergoes metamorphosis
within 3-4 days after fertilization (Fritsch et al., 2015), A. cf. rubrolineata is assumed to
have a short planktonic larval duration (albeit variable depending on temperature), likely
preventing long-distance dispersal (i.e., gene flow) of A. cf. rubrolineata populations across
our three studied regions. A short larval stage would likely affect population structure
among the three regions, especially considering their geographic separation and habitat
discontinuity, and the general lack of stepping stone habitats between them.

Contribution of the warm current system to population structure
among the regional groups
Although the magnitude of gene flow during the planktonic larval stage seems limited
for chitons (Ríos et al., 2014; Todt et al., 2008), they can still be transported via rafting
on floating macroalgae or terrestrial vegetation like trees (Eernisse, Draeger & Pilgrim,
2018). A long-distance dispersal (up to 600 km) by kelp rafting has been reported for
two species of subantarctic chitons that dispersed their propagules from subantarctic
islands to New Zealand (Fraser, Nikula & Waters, 2010). However, dispersal by rafting in
A. cf. rubrolineata may be limited by the warm current system in the YS. The trifurcated
branches of the Kuroshio Current (including the Yellow Sea Warm Current, the Tsushima
Warm Current, and Kuroshio Extension) flow northeastward into their downstream
pathways that separate the three regional groups. This oceanographic surface flow may
act as a physical barrier that, albeit not completely, limits the opportunity for gene flow
via larval dispersal and/or occasional rafting of the individuals across the three regions.
Note that, as inferred from the MIGRATE-N results, this barrier effect may be weak for the
directions from China to both Korea and Japan. Similar population structuring resulting
from hydrographic patterns has also been reported in other marine species in the NWP
(Ni et al., 2017) and other ocean systems, including the snakeskin chiton Sypharochiton
pelliserpentis in New Zealand (Veale & Lavery, 2011) and coral reef fishes in the Caribbean
(Taylor & Hellberg, 2006).

Genetic homogeneity within the regional groups
In contrast to inter-regional genetic structuring proposed to be driven by the three branches
of the Kuroshio Current, substantial genetic homogeneity was revealed within each regional
group, with no significant population structure detected (Table 3). Genetic connectivity
in each group is assumed to be facilitated by the present-day surface currents along the
coastline of each region (Fig. 1). These coastal currents may play a significant role in
maintaining genetic connectivity that contrasts with the warm currents: they are expected
to enhance gene flow by transporting planktonic larvae and/or rafting adults among
local populations, reducing genetic differentiation among the within-group populations.
Previous studies have revealed a close correlation between the coastal current system and
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population homogeneity in many organisms in the YS (e.g., Li et al., 2010; Ni et al., 2015b;
Xue et al., 2014). Relatively short distances between populations and habitat continuity
within each region are also likely potential factors underlying their genetic homogeneity.

Demographic history and the impact of Last Glacial Period
In estimating the historical population demography of A. cf. rubrolineata, results both from
the neutrality test and BSP analysis supported a sudden historical population expansion. By
reconstructing effective population size change in BSP, the estimated timing of population
expansion for the entire population and Korea group were calculated to be 60–70 kya (the
entire population) and 100 kya (Korea group) (Figs. 4A, 4B), after and/or approximately
corresponding to the onset of Last Glacial Period (LGP, 110 to 15 kya), the most recent
glacial period within the Quaternary Ice Age (Severinghaus & Brook, 1999). Abrupt climate
change and subsequent sea level fluctuation during the LGP is believed to have greatly
influenced the demographic history of contemporary marine species worldwide (Hewitt,
2004). Considering the topography of the YS, which is characterized by a flat, shallow,
and extensive continental shelf (with an average depth of 55 m), population size changes
resulting from the LGP are assumed to have been very significant for marine species in
this region (reviewed in Ni et al., 2014 and references therein). The China group showed a
significant population expansion more recently (after∼25 kya), likely reflecting the impact
of the Last GlacialMaximumabout 19–21 kya (Yokoyama et al., 2000). Different population
demography, however, was observed for the Japan group, which showed a gradual increase
since 550 kya, which is inconsistent with all other groups. We consider this result may be
an artifact from the small number of individuals (3–7 individuals/population) included in
the analysis, or else this population has its own historical demography. Note that due to
the absence of a reliable molecular clock for mitochondrial genes of A. cf. rubrolineata, the
estimated population expansion times of different groups in this study remain speculative.
In addition, the expansion times could be more recent if a molecular clock several times
faster was applied under the hypothesis of time-dependent molecular rate (Ho et al., 2011).
Population genetic analysis of this study is based on a single locus of mtDNA sequence data,
and therefore further analysis using multi-locus data from more extensive sampling of the
species (particularly additional sampling from Japanese populations) would be required to
resolve this uncertainty.

CONCLUSION
Chitons represent one of the ancient groups of marine mollusks but have so far attracted
little research effort in marine phylogeography (but see Veale & Lavery, 2011). In this
study, we investigated genetic diversity and population genetic structure based on two
mitochondrial gene fragments (COI and 16S) for A. cf. rubrolineata populations in
the NWP. In contrast to the lack of phylogeographic pattern commonly revealed for
other coastal species in the YS, we observed significant population structure (limited
gene flow among the regional groups) in A. cf. rubrolineata, which may be attributed to
both life-history features (a short planktonic larval duration) and the warm current system.
Nevertheless, within each of our three regions, we also observed genetic homogeneity, which
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might be maintained by local surface currents and habitat continuity. The phylogeographic
pattern revealed in A. cf. rubrolineata in the present study underscores the interplay
of historical and contemporary oceanography (both geography and hydrology) and
life-history features on historical demography and population structure in the NWP.
Further population genetic studies using multi-locus genetic data are needed to assess the
relative importance of biotic and abiotic factors that could more generally influence the
phylogeographic patterns of marine species in the YS.
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