
Submitted 23 July 2019
Accepted 21 February 2020
Published 24 March 2020

Corresponding author
Scott T. Kelley, skelley@sdsu.edu,
skelley@mail.sdsu.edu

Academic editor
Elliot Lefkowitz

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.8783

Copyright
2020 McGhee et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Meta-SourceTracker: application of
Bayesian source tracking to shotgun
metagenomics
Jordan J. McGhee1, Nick Rawson2, Barbara A. Bailey2,
Antonio Fernandez-Guerra3,5, Laura Sisk-Hackworth4 and Scott T. Kelley4

1Bioinformatics and Medical Informatics Program, San Diego State University, San Diego, CA,
United States of America

2Department of Mathematics and Statistics, San Diego State University, San Diego, CA,
United States of America

3Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology,
Bremen, Germany

4Department of Biology, San Diego State University, San Diego, CA, United States of America
5Current affiliation: Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen,
Copenhagen, Denmark

ABSTRACT
Background. Microbial source tracking methods are used to determine the origin of
contaminating bacteria and other microorganisms, particularly in contaminated water
systems. The Bayesian SourceTracker approach uses deep-sequencing marker gene
libraries (16S ribosomal RNA) to determine the proportional contributions of bacteria
frommany potential source environments to a given sink environment simultaneously.
Since its development, SourceTracker has been applied to an extensive diversity of
studies, from beach contamination to human behavior.
Methods. Here, we demonstrate a novel application of SourceTracker to work with
metagenomic datasets and tested this approach using sink samples from a study of
coastal marine environments. Source environment metagenomes were obtained from
metagenomics studies of gut, freshwater, marine, sand and soil environments. As
part of this effort, we implemented features for determining the stability of source
proportion estimates, including precision visualizations for performance optimization,
and performed domain-specific source-tracking analyses (i.e., Bacteria, Archaea,
Eukaryota and viruses). We also applied SourceTracker to metagenomic libraries
generated from samples collected from the International Space Station (ISS).
Results. SourceTracker proved highly effective at predicting the composition of known
sources using shotgun metagenomic libraries. In addition, we showed that different
taxonomic domains sometimes presented highly divergent pictures of environmental
source origins for both the coastal marine and ISS samples. These findings indicated
that applying SourceTracker to separate domains may provide a deeper understanding
of themicrobial origins of complex, mixed-source environments, and further suggested
that certain domains may be preferable for tracking specific sources of contamination.
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INTRODUCTION
Microbes are found in every environment, from the depths of the Pacific Ocean to the
hostile conditions of the Atacama Desert. Most microbes co-exist with other microbes in
biofilms or in complex dynamic communities referred to as ‘microbiomes’ (e.g., the gut
microbiome) that include hundreds or thousands of different microbial species, many of
which play critical roles in animal health and ecosystem function. While much is known
about the species composition ofmicrobial communities, less is understood about how they
form in the first place and howmicrobes move among different ecosystems. Understanding
the origins of microbial communities is particularly important for tracking routes of
contamination, such as polluted water systems, but also has important implications for
understanding microbiome development and ecosystem function.

Microbial source tracking (MST) approaches have been developed to determine the
source origins of particular microbes, with their primary use being the study of bacterial
contamination of municipal water (Liu et al., 2018), natural freshwater systems (streams,
rivers and lakes) (Newton et al., 2013; Staley et al., 2018), and coastal oceanwaters. Standard
MST approaches track microbial sources via one or more key bacterial strains or species
previously linked to a specific source (e.g., E. coli strains only found in cow feces).
Traditional MST methods rely on techniques such as culture isolation and PCR with
species-specific primers. Other MST approaches have relied on patterns of multiple
antibiotic-resistance and carbon utilization profiles (Simpson, Santo Domingo & Reasoner,
2002; Scott et al., 2002).More recently, improvements in next-generation sequencing (NGS)
technologies has resulted in NGS being widely in all aspects of microbiology including
MST (Van Dijk et al., 2014;Martin et al., 2018).

The widely-used SourceTracker program has provided one of the most powerful and
effective methods for using NGS data to perform MST (Knights et al., 2011). This program
uses a combination of Bayes’ theorem and Gibbs sampling to analyze data from large
bacterial 16S rRNA marker-gene NGS libraries. Unlike previous MST methods, which use
individual microbes to identify routes of colonization and contamination, SourceTracker
uses data from hundreds or thousands of species, and allows simultaneous estimation of
the proportion of multiple source environments contributing to a given sink environment,
including an estimate of unknown sources. SourceTracker uses Bayesian methods to
evaluate all assignments of sink sequences to all source samples, including an unknown
source, and creates a joint distribution of those assignments. Then, the distribution is
sampled with a Gibbs sampler to estimate the likelihood that a sequence came from a
particular source. For example, in a study of bacterial assemblages on restroom surfaces,
the researchers used SourceTracker to estimate the relative proportion of skin, feces and
soil contributing to each specific sink sample (Flores et al., 2011). At the time of this writing,
SourceTracker had been cited over 400 times with a surprising diversity of applications,
including identifying individuals within the same species based on their microbiomes,
determining which body sites contribute most to contamination of built environments
and detecting sources of early gut colonization (Flores et al., 2011; Hewitt et al., 2013; Hyde
et al., 2016; Chen et al., 2018b; Kapono et al., 2018). Other applications included applying
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SourceTracker to forensic analysis and studies of human behavior (Lax et al., 2015; Bik
et al., 2016). SourceTracker was designed for use with bacterial 16S rRNA marker genes
and has primarily been used with these data. However, it has been applied to a few
shotgun metagenomic studies, including one that tracked the source origins of antibiotic
resistance gene markers (Baral et al., 2018). While more expensive to generate and more
computationally intensive to analyze, shotgun metagenomic data provide a much broader
potential array of microbial diversity (Bacteria, Archaea, Eukaryota, and viruses) for use in
microbial source tracking.

In this study, we tested a metagenomic-SourceTracker approach, a novel application
of the SourceTracker software for metagenomic data, to determine the source origins
of complex microbial samples. Our goals were twofold: First, to test the effectiveness of
SourceTracker for metagenomic data with samples of known origins, and secondly to
provide tools for determining the reliability of proportion estimates. (We refer to the
processing of metagenomic data and application of SourceTracker to metagenome data as
metagenomic-SourceTracker, or mSourceTracker for short.) We tested mSourceTracker
with metagenome samples collected from coastal marine environments, which are
commonly a mix of different sources due to runoff from freshwater environments and
contamination from land debris. We also usedmSourceTracker to determine the sources of
contamination in samples collected from the International Space Station (ISS). Our results
showed that mSourceTracker provides a robust approach for microbial source tracking
with metagenomic datasets and further demonstrated how mSourceTracker can be used
to provide domain-specific biological insights into the movements of microbes among
ecosystems.

MATERIALS & METHODS
Data collection
Metagenome sequence libraries were obtained from samples collected from coastal marine
water, fresh water, human gut (feces), sand and soil environments from multiple studies.
These environments were chosen as likely sources of microorganisms to be found in
coastal marine waters, which tend to have runoff from rivers and possibly contaminated
with sewage. Source samples are selected from environments likely to contribute organisms
found in the sink samples. For example, metagenome samples from human skin would
be appropriate source samples for an mSourceTracker analysis of samples from surfaces
frequently touched by human hands (e.g., computer keyboards). A total of 223metagenome
samples were used for this study: 110 coastal marine samples, 30 freshwater samples, 64
soil samples, 6 sand samples, and 13 gut samples (see Table S1 for details and accession
numbers from the European Nucleotide Archive).

Sequence libraries from metagenomic studies of the International Space Station (ISS),
human skin, human gut, and soil were downloaded fromENA for a secondmSourceTracker
analysis. Soil, human skin, and human gut samples were selected as probable sources of
microbes in the ISS microbiome. 82 metagenome samples were used for this analysis: 24
samples each from soil, human skin, human gut, and 10 ISS samples (see Table S2 for
details and accession numbers.)
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Taxonomic separation of metagenomic data
Allmetagenomic sampleswere preprocessedwith fastp (version 0.2) to remove adaptors and
low-quality sequence reads (Chen et al., 2018a). Taxonomic abundances were generated
for all samples using the k-mer approach implemented in the Kaiju ver. 1.5.0 program
(Menzel, Ng & Krogh, 2016). Kaiju produces estimated taxonomic abundances primarily at
the genus level. To determine the domain of each genus (Archaea, Bacteria, Eukaryota or
virus), we wrote a programming script in python3.6 using the URL:

http://taxonomy.jgi-psf.org/tax/sc_name/{} to extract the full taxonomic lineage
information given the genus name.

For example, given the genus Salmonella, the URL: http://taxonomy.jgi-psf.org/tax/sc_
name/Salmonella returns the string:

sk:Bacteria;p:Proteobacteria;c:Gammaproteobacteria;o:Enterobacterales;f:
Enterobacteriaceae;g:Salmonella

The ‘‘genus’’ names within the Kaiju output that did not return a lineage from the
URL were manually searched in NCBI. The domain information was then added to a
dictionary within our script and later compiled into a single data frame. For domain
specific source tracking analysis, the taxonomic abundances for each sample were
separated by domain and written into corresponding data frames. Species and count
numbers from each sample were merged using species name with all previously processed
samples within each domain-specific data frame. Once all samples were processed
through our pipeline, the assembled data frames for each domain were then written
to an output table formatted to be used with mSourceTracker. Example data, code, and
instructions to perform this step may be found in the Kaiju_Table_to_OTU_table folder
at: https://github.com/residentjordan/SourceTracker2-diagnostics.

Kaiju version 1.7.2 generated taxonomic abundances for samples in the ISS analysis
dataset. This version of Kaiju returns the entire taxon string. For each sample, read count
numbers were merged into one data frame using the taxon string to make the metagenome
data frame. The metagenome data frame was then divided by domain, then each domain
and metagenome data frames were written to separate output files. Counts for species with
incomplete taxa strings were removed from the files. These files were converted to the
HDF5 biom format using the biom-format package.

Simulation data for mSourceTracker analysis
To test the prediction accuracy of mSourceTracker, 14 samples from the coastal marine
environment were defined as sinks. The rest were of the coastal marine samples were used
as sources, a set which did not include the 14 sink samples. The analysis was performed
on the combined dataset and each domain separately, with a default rarefaction limit of
1,000. Samples that did not have a minimum count of 1,000 for any given kingdom file
were removed from all datasets. Proportions for sink samples were compared using 10
and 100 draws. The number of chains was set at 5 for all comparisons. The same mapping
file was used for comparing differences in proportions between kingdom datasets. The
number of chains was held at 5 and the number of draws were variable so as to keep the
chain differences below 5%.
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As 100 draws and 5 chains were established as sufficient for chain convergence, those
values were used to calculate source proportions for the 10 ISS sink samples from gut, soil,
and skin sources. An mSourceTracker analysis with 5 chains (100 draws/chain) needed
between one and two hours to run on MacOS with a 3.4 GHz processor and 32 GB of
RAM.

mSourceTracker: diagnostic add-on feature
We wrote a new function for SourceTracker2, called via the ‘–diagnostics’ option.
This new option allows user to determine how well the Markov chains are converging
in any given sample. This option was not available with the original SourceTracker
or in the SourceTracker2 original repository. It can be accessed along with scripts,
sample test data, an instruction manual, and supplementary analysis results at:
https://github.com/residentjordan/SourceTracker2-diagnostics. In SourceTracker 2, Gibbs
sampling data computed from the SourceTracker2 ‘envcounts’ array are written to a
temporary output file along with source and sink ID’s. When the diagnostic function is
called using the command ‘–diagnostics’, the Gibbs data file is read and placed into an
array using numpy (Van der Walt, Colbert & Varoquaux, 2011). The array is split based
on the number of chains and number of draws defined by user inputs. Here, we use the
standard Markov Chain Monte Carlo terminology of ‘‘draw’’ and ‘‘chain’’. However, it
should be noted that the original SourceTracker2 codebase uses the term ‘‘restart’’ to refer
to anMCMC draw, and ‘‘draw’’ for anMCMC chain. Array data is multiplied by the alpha1
preset to convert numbers into respective proportion values. Each chain produces amoving
average via Gibbs sampling over the number of draws selected. The script then calculates
the difference between the maximum and minimum chains. If the proportion value of any
two chains differs by a default value of 5%, or by user defined parameters, all chains are
exported onto a single line graph per sample for each environment. Each line represents
a single chain and the legend displays the proportion estimate of each chain for the given
sample and environment. A single text output table displays the absolute differences
between the maximum and minimum chains for all samples in each environment.

Random forest classifier
Sample names in the feature tables used for mSourceTracker analysis were converted
to the name of the environment from which they were collected. One source was then
selected to be tested with all other sources being categorized as ‘other’ to identify features
important in classifying the selected environment. Training and testing sets were randomly
created at approximately a 3:1 ratio. Random Forest is an ensemble learning method which
classifies by the votes of its component trees. Using the scikit-learn Random Forest classifier
(Pedregosa et al., 2011) we fit and classified the data using 500 trees. Random state was set
at 0 and the out-of-bag score was made True. The classifier was run multiple times to
ensure there were no important features returned due to overfitting or other errors. The 10
most important features were graphed for each environment based on relative importance
utilizing pandas (McKinney, 2010) and matplotlib (Hunter, 2007). Confusion matrices and
statistics for the Random Forest classifier were also produced using scikit-learn modules.
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This process was performed for each of the organismal domains. A template script, sample
dataset, and instructions for performing the random forest and confusion matrix analysis
are provided in the SourceTracker2-diagnotics GitHub folder ‘‘Random_Forest.’’

RESULTS
Effects of parameter adjustments on the accuracy and precision of
mSourceTracker
In order to apply the Bayesian approach of mSourceTracker to metagenomics data, we
downloaded a total of 223 samples from 5 clearly identified environments. These sources
include 110 coastal marine samples, 30 freshwater samples, 64 soil samples, 6 sand samples,
and 13 gut samples. Fourteen of the coastal marine samples were chosen as ‘‘sink’’ samples
(indicated in boldface on Table S1). These 14 sink samples were excluded from the coastal
marine source sample set. The k-mer based Kaiju analysis identified a total of 5,725 taxa
across all sample from the four major taxonomic domains of life. Of these, 88.8% of them
were bacterial sequences. Eukaryotes and archaea comprised ∼9.0% and ∼1.9% of our
metagenomic sequences, respectively. Viral sequences comprised just ∼0.3% of all the
samples.

Since previous studies indicated that adjusting SourceTracker’s default parameters
(e.g., number of restarts) with 16S data led to more stable estimates of source proportions
(Henry et al., 2016), we determined how the proportional composition for our sink
samples would be affected if we adjusted the default parameters for metagenomic samples.
Figures 1A and 1B show how the number of draws affected proportion estimates. Because
the estimates are a moving average, increasing the number of draws to 100 resulted in a
decreased variability between each chain.We also increased the number of chains to 5 so we
could compare multiple independent proportional estimates in a single run. As indicated
in Fig. 1C, with only 10 draws source proportion estimates among the different chains
could vary considerably but increasing the number of draws to 100 (Fig. 1D) resulted in
convergence of the chains. Analysis of 14 source proportion estimates from 223 samples
using 5 chains with 10 draws per chain found an average of 3 ± 2% difference between the
two most different estimates.

Increasing the number of restarts to 100 substantially minimized the differences among
chains. Figures 1E–1H) demonstrate how increasing the number of draws and chains
reduced the variability in the source proportion estimates for metagenomic samples. As
mentioned previously, each draw is dependent on prior draws and a single chain runs
the risk of getting caught in a local maximum in the target distribution and returning an
inaccurate estimation. More draws reduce the likelihood this phenomenon could affect
the final estimations because draws are averaged together for each environment. For all
subsequent testing we adjusted the default parameters in mSourceTracker to minimize
the range between chains such that the biggest difference between chains would be less
than 5%. Increasing the number of draws to 200 did not significantly reduce the variability
among chains (see SourceTracker2-diagnostics GitHub folder ‘‘Chain_Convergence’’).
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Figure 1 Effects of increasingMarkov chain length and number on estimating source proportions for
a representative coastal marine sink sample. (A–B) Comparison between ten and one-hundred draws for
a single Markov chain. The same coastal marine sample, ERR771074, was used to create both chains. (con-
tinued on next page. . . )

Full-size DOI: 10.7717/peerj.8783/fig-1
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Figure 1 (. . .continued)
(C–D) Convergence of five independent Markov chains for a single sample using either ten or one-
hundred draws per chain. Chains represent the estimated proportions for a given ‘‘sink’’ from a single
environment or ‘‘source’’. (E–F) Absolute percent differences between the two Markov chains with the
highest and lowest average proportions over all draws for each environment or ‘‘source’’. The same
coastal marine sample was used with five chains and either 10 or 100 draws. (G–H) Pie charts showing
proportions per source for the same single sink sample after 10 and 100 draws respectively. With 10 draws,
unknown sources accounted for 13.4% of the sink sample, while after 100 draws unknown sources were
8.3% of the sink sample.

Domain specific mSourceTracker analyses
Once we established the best general parameters for mSouceTracker, we then compared
the results of combined mSourceTacker analysis to single-domain analyses of the same
samples. Figure 2 shows results for a single coastalmarine sink sample, ERR771074, inwhich
mSourceTracker had been run on each specific domain (Figs. 2A–2D) and the combined
dataset (Fig. 2E). The results of the bacteria alone most closely resembled the proportions
from the combined metagenomic data. This is likely because the Gibbs sampling approach
used to estimate the proportions would tend to pick bacterial taxa. Since the bulk of the
sequences from the metagenomic data (88.4%) were bacterial. In this particular sample
‘‘coastal marine’’ comprised the largest source proportion in both the combined and
bacterial fractions. A significant but lower portion of archaea and eukaryotes also came
from marine environments, but the proportions were lower. In contrast, we determined
an overwhelming majority of viral sequences came from a freshwater environment, while
a high proportion of archaea had sand and gut origins and the eukaryotes were evenly split
between the coastal marine, freshwater, sand and soil origins in this sample.

Figure 3 shows the estimated source proportions for all 14 of the coastal marine sink
samples by domain. In these 14 samples, on average 50.2% of the bacteria came from the
marine environments (Fig. 3A), while 42.8% of the eukaryotes hadmarine origins (Fig. 3D)
with the remaining composition evenly distributed among the other 4 environments.
Archaea samples were approximately split between the coastal marine (38.6%) and sand
(30.4%) environments (Fig. 3C). Despite the fact that these samples were coastal marine,
the source origins of the viruses in the metagenomes were predominantly freshwater (avg.
77.6%; Fig. 3B).

In addition to the analysis of coastal marine samples, we also tested mSourceTracker on
samples collected from a built environment study of the ISS, in which the authors sampled
various surfaces inside the spacecraft (Singh et al., 2018). mSourceTracker estimated
proportions of each source environment contributing to the ISS sink samples (Fig. 4).
Besides unknown sources, the bacterial taxa were predominantly from skin, averaging
24.6%, while soil contributed 2.6% (Fig. 4A). For eukaryotes, 34.3% were estimated to be
from the soil environments, 5.6% from gut, and 2.9% from skin (Fig. 4B). There were too
few archaea and viral taxa detected in the ISS samples to complete those domain-specific
analyses.
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Figure 2 Taxon-dependent source proportion estimates in a single metagenome sample.Graphs rep-
resent the estimated proportions from each ‘‘source’’ or environment for a single coastal marine ‘‘sink’’.
Pie charts depict the estimated proportions based on the (A) Bacteria, (B) Viruses, (C) Eukaryota, and (D)
Archaea in the sample (see Methods). The middle pie chart (E)‘‘Meta’’ represents the estimated propor-
tion contributed by 5 potential source environments and unknown based on the entire metagenome. The
number of chains was held at 5 and the number of draws were variable so as to keep the chain differences
below 5%.

Full-size DOI: 10.7717/peerj.8783/fig-2

Random Forest of environments by domain
We used Random Forest to determine which organisms were best at classifying samples
into each environment seen in Fig. 5. Confusion matrices for Random Forest performed on
each environmental condition are shown in Fig. 6. Accuracy scores remained above 95%
for all classifications and the out-of-bag error was below 5% for most samples (Table 1).

DISCUSSION
Our results demonstrated not only the effectiveness of mSourceTracker with metagenomic
datasets but also that the taxonomic diversity of metagenomic samples can potentially
lend deeper insight into the mixed-source origins of complex environmental samples.
The mSourceTracker analysis of the complete 14 test sink metagenomic libraries
consistently revealed the biggest sources to be coastal marine, though the proportions
varied considerably from sample to sample (Fig. 2). Domain-specific mSourceTracker
analysis, on the other hand, often revealed patterns remarkably distinct from the combined
taxa set (Figs. 2, 3). The bacterial source origins typically mirrored the full libraries
(Figs. 2A, 2E), likely because the bacteria were the most abundant in all the samples.
However, the other domains could be unique. For instance, mSourceTracker analysis of
just the identified viruses mainly identified freshwater as the primary contributor to the
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Figure 3 Taxon-dependent source proportion estimates for 14 different coastal marine samples.
Metagenome data was separated into taxa groups (see Methods) and multiple coastal marine samples were
designated as ‘‘sinks’’. Heatmaps produced by mSourceTracker represent the proportions of (A) Bacteria,
(B) Viruses, (C) Archaea, and (D) Eukaroyta from each of the source environments. mSourceTracker
default number of chains was changed to 5, and number of draws were adjusted per taxa group so absolute
values between any 2 Markov chains did not exceed 5%. Five chains were used for every environment,
but the number of draws was changed depending on the domain (100 draws for Archaea, 80 draws for
Eukaryota, 50 draws for viruses, 20 draws for Bacteria, and 20 draws for the combined dataset).

Full-size DOI: 10.7717/peerj.8783/fig-3

sink diversity; according to the virus data, freshwater contributed as much as 94% of the
diversity in some samples (Fig. 3B). Archaea-specific analysis typically identified both
coastal marine and sand as more or less equal contributors (Fig. 2D, Fig. 3C), while the
eukaryote sources were more even distributed among coastal marine, freshwater, sand, soil
and even gut (22% in one sample; Fig. 2C, Fig. 3D).

The fact that domain-specific mSourceTracker analysis resulted in different source
proportion estimates has two important ramifications. First, it shows that mSourceTracker
can be used to identify the environmental sources of a particular group of organisms. For
instance, one may conclude that, for a given sample, 75% of the viruses present originated
from freshwater, while half of the bacteria were marine in origin and 28% of the eukaryotes
came from soil runoff. Such results provide novel, taxon and sample-specific insight into
the movement and origins of the organisms in that environment, which could be especially
useful in understanding the complexity of contamination patterns or dispersal among
biomes. A separate analysis of the ISS dataset found a similar pattern. In the bacterial
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Figure 4 Source proportion estimates for 10 different ISS samples.Metagenome data were divided by
domain (see Methods) and mSourceTracker produced heatmaps showing the proportion that each source
environment contributed to each ISS sink sample for (A) Bacteria and (B) Eukaryota. Five chains and 100
draws were used in each analysis.

Full-size DOI: 10.7717/peerj.8783/fig-4
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Figure 5 Random Forest analysis of each organismal group across 4 environments. Random Forest
analysis of each organismal group (A–D) Bacteria, (E–H) Archaea, (I–L) Eukaryota and (M–P) Viruses
across four environments. Random Forest was used to determine which species were important in classify-
ing samples as belonging to a certain environment. Each source was run against all other source classified
as ‘‘other’’ and the data was randomly divided into testing and training subsets at approximately a 3:1 ra-
tio. Five hundred estimators were used each time, and the 10 most important features were graphed based
on relative importance.

Full-size DOI: 10.7717/peerj.8783/fig-5

analysis, skin was the predominant contributing source of the known environments
(Fig. 4A), while soil was the main known source environment for eukaryotes (Fig. 4B). The
high proportion of taxa from unknown sources was likely due to the extensive application
of disinfectants used in the ISS and the clean assembly rooms, which selects for organisms
from extreme environments (e.g., McMurdo Dry Valleys of Antarctica; (Singh et al., 2018).
Inclusion of metagenomic samples from extreme environments could theoretically reduce
the proportion of unknown samples.

In addition to domains, one could also easily imagine splitting datasets for
mSourceTracker analysis by phylogenetic groups at a lower taxonomic level (e.g.,
methanogens or the proteobacteria) or even using non-organismal datasets (e.g., untargeted
chemical or metabolic datasets). This is similar in principle to the approach taken by
previous research studying the origins of antibiotic resistance markers (Gou et al., 2018;
Baral et al., 2018; Li, Yin & Zhang, 2018). The identification of distinct source origins for
different taxonomic groups in the same ‘‘sink’’ samples is not without precedent in the
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Figure 6 Confusionmatrix for organismal groups across five environments with four domains.Heat
map of confusion matrices for Random Forest analysis for each domain: (A) Bacteria, (B) Archaea, (C)
Eukaryota and (D) Viruses. Data was randomly split into training and testing set at approximately a 3:1
and run using 500 estimators. Graphs display predicted source (x-axis) vs. the true source for (y-axis) for
each sample in the testing dataset. The magnitude of the color indicates the number of samples tested for
that condition.

Full-size DOI: 10.7717/peerj.8783/fig-6

literature. For example, a previous marker-gene study of restroom environments found
that the fungi appeared to have radically different origins (plants and soils) than the bacteria
from the same samples (human skin and gut) (Gibbons et al., 2015; Fouquier, Schwartz &
Kelley, 2016). Other studies have shown very different patterns of diversity and abundance
among different ‘omics datasets, indicating this is a rule rather than the exception (Bikel et
al., 2015; Guirro et al., 2018; Cocolin et al., 2018).

The second important ramification is that the diversity of environmental origins among
the taxonomic domains indicates that particular taxonomic lineages may be better than
others for tracking particular sources of contamination. For example, to study the input
of freshwater into the coastal marine environment the viruses may be superior to the
bacteria, while eukaryotes may be better for tracking soil inputs. The Random Forest
analysis identified a significant number of new taxa that were highly indicative of particular
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Table 1 Random Forest results by taxonomic group and environment type. The columns show the ac-
curacy and out-of-bag (OOB) error for predicting each environment type. Out-of-bag error is an esti-
mation of the prediction error of Random Forest computed by testing each tree against data not used in
building that tree.

Environment Type

Domain Gut Coastal Marine Freshwater Soil

Bacteria
Accuracy 0.982 0.984 0.97 0.985
OOB error 0.022 0.026 0.052 0.0174
Archaea
Accuracy 0.966 0.977 0.966 0.98
OOB error 0.0497 0.062 0.049 0.021
Eukaryota
Accuracy 0.955 0.967 0.959 0.984
OOB error 0.047 0.062 0.066 0.034
Viruses
Accuracy 0.964 0.927 0.96 0.965
OOB error 0.054 0.061 0.058 0.027

environments (Fig. 5). For every domain in every environment, we were able to identify
certain features (taxa) that contributed significantly to the classification of the environment.
In the future, such taxa could be used singly or in combination to detect particular types
of contamination. This is the same principle used by culture-based source-tracking that
tracks fecal contamination using strains of E. coli (Ravaliya et al., 2014). Recently, Stachler
& Bibby (2014) proposed using sequences of crASSphage as a highly specific indicator of
human fecal contamination (Stachler & Bibby, 2014).

One important caveat of mSourceTracker method is the general challenge of identifying
taxa from metagenomic datasets. It is well known that much of the sequences from
metagenomic datasets are not currently identifiable because databases are incomplete.
Unlike 16S, it is not possible to put all the sequences from a library into a phylogenetic
context, so many of them remain unknown and not currently useful in mSourceTracker
analysis. As databases grow, this problem should diminish. The other issue is one of
identification itself. There are many methods of identifying reads from metagenomic
libraries, both alignment and k-mer based, and sometimes they can give very different
results for the same samples (Quince et al., 2017). We expect that this may have a profound
effect in some cases, and future research should look at the importance of identification
algorithms and databases on mSourceTracker results. Finally, in order for mSourceTracker
to be broadly applicable, it will be critical to have many more metagenome datasets
collected from specific environments. Large environmental collections such as the Earth
Microbiome Project make it easy to find 16S ribosomal RNA libraries for any given
environment, and it is relatively cheap to create many libraries in any given study and the
analysis is easy to perform on a laptop. As the costs of sequencing continues to decline and
the computational power and number of available datasets increases, the mSourceTracker
approach will become increasingly tractable and commonplace.
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CONCLUSIONS
In this study, we demonstrated three findings: (1) mSourceTracker is a straightforward and
effective application of SourceTracker for determining source proportions using shotgun
metagenomic datasets; (2) our chain convergence tests and visualizations allow researcher
to identify when estimates do not converge, which mainly occurred when source datasets
had poor taxonomic coverage; and (3) the purposeful domain-specific subdivision of
metagenomic datasets has the potential to lend powerful new biological insights into
the source and movement of microorganisms among environments. While our analyses
demonstrated SourceTracker’s utility and potential with metagenomic data, the results are
only as good as the input data allow (the ‘‘garbage in, garbage out’’ rule). All inferences
based on metagenomics data are dependent on the extent and quality of existing databases
and the effectiveness on taxonomic identification approaches. Methods other than Kaiju
and more extensive databases could certainly produce different results and hopefully
reduce the proportion of unknowns in the estimates. We also note that some of our source
sample sets of metagenomes were small; increasing the sample size, purity and number of
source datasets could also have a significant impact on interpretations. Investigation of all
these parameters is beyond the scope of this study, which is focused on mSourceTracker
development and proof of principle. However, such factors should be taken into account
in future studies.
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