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ABSTRACT
Heavy metal contamination of soils has become a serious global issue, and bioreme-
diation has been proposed as a potential solution. Kenaf (Hibiscus cannabinus L.) is
a fast growing, non-woody multipurpose annual plant that is suitable for removing
excess heavy metals from soils. However, there has been relatively little research on
the kenaf molecular mechanisms induced in response to an exposure to heavy metal
stress. Thus, whole kenaf seedlings grown under control (normal) and stress (plumbic
treatment) conditions were sampled for transcriptome sequencing. Unigenes generated
through the de novo assembly of clean reads were functionally annotated based on seven
databases. Transcription factor (TF)-coding genes were predicted and the physiological
traits of the seedlings were analyzed. A total of 44.57 Gb high-quality sequencing
data were obtained, which were assembled into 136,854 unigenes. These unigenes
included 1,697 that were regarded as differentially expressed genes (DEGs). A GO
enrichment analysis of the DEGs indicated that many of them are related to catalytic
activities. Moreover, the DEGs appeared to suggest that numerous KEGG pathways
are suppressed (e.g., the photosynthesis-involving pathways) or enhanced (like the
flavonoid metabolism pathways) in response to Pb stress. Of the 2,066 predicted TF-
coding genes, only 55 were differentially expressed between the control and stressed
samples. Further analyses suggested that the plumbic stress treatment induced reactive
oxygen species-dependent programmed cell death in the kenaf plants via a process that
may be regulated by the differentially expressed NAC TF genes.

Subjects Cell Biology, Molecular Biology, Plant Science
Keywords Kenaf, Fiber crop, Plumbic stress, NAC, Transcription factors

INTRODUCTION
Heavy metal contamination has emerged as a common problem worldwide. In China,
approximately 20% of the available cultivated land has been contaminated by heavy metals
from industrial urban emissions and agricultural practices (Deng et al., 2017), which has
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decreased the usable land area and restricted the distribution of vegetation. Additionally,
the bioaccumulation of heavy metals in plants and animals seriously harms the food
chain and human health. Bioremediation, which may be useful for minimizing heavy
metal contamination, involves the growth of high biomass plants that can accumulate
high concentrations of heavy metals on contaminated land. Thus, selecting and breeding
cultivars suitable for bioremediation and characterizing the mechanisms underlying the
responses of such plants to contaminated conditions are necessary (Xu et al., 2019).

Kenaf (Hibiscus cannabinus L.) is a fast-growing, non-woody multipurpose annual plant
species in the family Malvaceae. Kenaf fiber has multiple applications in diverse fields,
and is included in textile and packing materials, pulp and paper, composite media, animal
feed, as well as in potting, building, and filtration materials, while also being useful for
board making and as a source of biomass energy (Ayadi et al., 2011). Several factors have
made kenaf the third largest fiber crop, behind only cotton and jute. For example, it is
an excellent source of cellulosic fiber, it can be used in numerous fiber-based products, it
has ideal physical strength properties for pulp and paper, and the energy consumed and
chemical input required for pulping and paper-making processes are lower for kenaf than
for other comparable wood fibers (Ayadi et al., 2011). In addition to the importance of
kenaf as a valuable fiber crop, it has been proposed as a suitable plant for bioremediation
because of its rapid growth, large biomass, stress resistance, and adaptability (Deng et al.,
2017). However, little is known regarding how kenaf plants respond to various heavy metal
stresses.

Previous studies have investigated the physiological mechanisms mediating kenaf
responses to cadmium (Cd) stress (Deng et al., 2017). Among the numerous analyzed
physiological indices, the malondialdehyde (MDA) content was positively correlated with
the Cd concentration and duration of the stress exposure. In another study, researchers
proposed various physiological indices for monitoring the responses of two kenaf cultivars
to Cd stress (Li et al., 2013). Similarly, the physiological responses of another two kenaf
cultivars to chromium (Cr) stress were determined (Ding et al., 2016). These earlier
investigations of the molecular mechanisms of kenaf plants induced by heavy metal stresses
were conducted in a relatively low-throughput manner (Li et al., 2013; Niu et al., 2018).
Additionally, omics approaches (e.g., transcriptomic or proteomic analyses) were mostly
applied to investigate the molecular mechanisms of kenaf plants subjected to drought stress
(Niu et al., 2016; An et al., 2018).

In this study, we examined kenaf responses to plumbic stress at the transcriptional
level. A total of 44.57 Gb high-quality sequencing data were generated for the control and
stressed kenaf seedlings and then de novo assembled into 193,978 transcripts from 136,854
unigenes. These unigenes encode 2,066 transcription factors (TFs) belonging to 53 TF
families. Moreover, 55 TF genes from 20 TF families were differentially expressed. Further
examination of kenaf seedlings revealed that reactive oxygen species (ROS)-dependent
programmed cell death (PCD) was induced in response to plumbic stress, in a process
that may be regulated by the differentially expressed NAC (NAM, no apical meristem;
ATAF, Arabidopsis transcription activation factor; and CUC, cup-shaped cotyledon) TF
genes. Therefore, identifying the differentially expressed NAC TF genes based on the
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high-throughput data produced in this study may help clarify the molecular mechanisms
involved in kenaf responses to plumbic stress.

MATERIALS AND METHODS
Plant materials
Kenaf cultivar H368 was obtained from Professor Defang Li (Institute of Bast Fiber Crops,
Chinese Academy of Agricultural Sciences). Plants were grown under a 16-h light (28 ◦

C)/8-h dark (25 ◦C) cycle, with a relative humidity close to 60% and a light intensity of
700 µmol m−2 s−1. A pot culture experiment was completed, with each pot ( eight cm
height, seven cm diameter) filled with an equal weight of a soil mixture comprising red
soil: humus: vermiculite (2:1:1, v/v/v). When the plants grew to a height of nine cm, they
were treated with a lead concentration of 4,000 mg/kg (Pb(NO3)2 treatment solution).
We re-applied 4,000 mg/kg of Pb(NO3)2 in each pot at one time according to the matrix.
The application method was to dissolve Pb(NO3)2 in 1,000 ml ddH2O and then pour into
the potted soil. Control plants were treated with the same solution without Pb(NO3)2.
Each treatment was completed with two replicates. Three kenaf seedlings per replicate
were collected 24 h later. They were immediately frozen with liquid nitrogen and stored at
−80 ◦C until analyzed.

RNA extraction, library preparation, and sequencing
Total RNAwas extracted from the frozen kenaf sampleswith the TRIzol reagent (Invitrogen,
CA, USA). The RNA quality was checked by gel electrophoresis and with the 2100
Bioanalyzer (Agilent, CA,USA) for subsequent analyses. For each biological replicate, cDNA
libraries were constructed (i.e., CK1, CK2, Pb1, and Pb2) and sequenced. Briefly, poly-A
mRNA was isolated from the total RNA with Magnetic Oligo (dT) Beads and fragmented.
Double-stranded cDNA was synthesized with the SuperScript Double-Stranded cDNA
Synthesis kit (Invitrogen) and a random hexamer primer (Illumina). After an end-repair
and phosphorylation step with T4 DNA polymerase, Klenow DNA polymerase, and T4
polynucleotide kinase, the ends of the cDNA fragments were ligated to Illumina paired-end
adapters with T4 DNA ligase. The libraries comprising 200 ± 25 bp cDNA fragments were
sequenced with the HiSeq X Ten sequencing platform to produce PE150 reads.

Data assembly and annotation
Raw sequencing data were processed by removing low-quality reads and reads containing
adapter or poly-N sequences. The remaining clean reads were used for all downstream
analyses. Transcripts were de novo assembled with the default parameters of the Trinity
software (Grabherr et al., 2011) and then further clustered into unigenes with the Corset
software (Davidson & Oshlack, 2014). The unigenes were functionally annotated based on
seven databases. Details regarding these databases, software, and parameters are listed in
Table S1.
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Quantification of gene expression levels and analysis of differential
expression
The gene expression levels of each sample were estimated by mapping the clean reads
to the assembled transcriptome with the default parameters of the RSEM (RNA-Seq by
Expectation Maximization) software (Li & Dewey, 2011). The mapped read counts were
then transformed to FPKM (fragments per kilobase of transcript sequence per million
base pairs sequenced) values to evaluate the relative unigene expression levels (Trapnell
et al., 2010). The differential expression induced by the control and Pb stress conditions
was analyzed with the DESeq R package (version 1.10.1) (Anders & Huber, 2010), with
adjusted p< 0.05. Enriched gene ontology (GO) terms among the differentially expressed
genes (DEGs) were identified with the GOseq R package based on the Wallenius non-
central hyper-geometric distribution (Young et al., 2010). Moreover, the enriched Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways were identified with the KOBAS
software (Mao et al., 2005). The predicted TF genes based on the Plant Transcription Factor
Database (version 5.0) (http://planttfdb.cbi.pku.edu.cn/) were compared with the DEGs
to detect the differentially expressed TF genes.

Quantitative real-time PCR (qRT-PCR)
Total RNA was extracted from whole kenaf seedlings subjected to normal (CK) or Plumbic
(Pb) stress conditions with the RNAqueous Total RNA Isolation Kit (Ambion, USA). The
RNA was used as the template to synthesize cDNA with the HiScript II Q RT SuperMix
for qPCR (Vazyme, China). The cDNA was diluted 10-fold with sterile water and used for
a qRT-PCR assay. The GAPDH gene identified in the current transcriptome sequencing
analysis (Cluster-5711.64302) served as an internal reference control. The qRT-PCR assay
was performed with the LightCycler 480II Real-Time PCR Detection System (Roche Ltd,
USA). The 20- µL reaction mixture contained 10 µL ChamQ SYBR qPCR Master Mix
(Vazyme), 2 µL cDNA template (from approximately 100 ng total RNA), and 0.5 µM
forward and reverse primers (Table S2). The amplification parameters were as follows:
95 ◦C for 30 s; 40 cycles of 95 ◦C for 10 s and 60 ◦C for 30 s. Three independent experiments
were completed to ensure the qRT-PCR data were reproducible. Relative gene expression
levels were calculated according to the 2−11CT method (Livak & Schmittgen, 2001).

Examination of physiological traits
Physiological traits of the CK and stressed samples were examined by Comin Biotechnology
Co. Ltd. (http://www.cominbio.com). Regarding MDA content measurements, the frozen
samples were ground in liquid nitrogen and then homogenized in 10 volumes (v/w) of
pre-cooled potassium phosphate buffer (containing Na2HPO4 and NaH2PO4; pH 7.0) on
ice. Samples were centrifuged at 8,000× g for 10 min at 4 ◦C. A 0.1-mL aliquot of the
supernatant was mixed with 0.3 mL 0.5% (w/v) thiobarbituric acid, which was dissolved in
5% (w/v) trichloroacetic acid, and the extract was boiled for 40 min and then immediately
cooled in ice. After centrifuging at 12,000× g for 10 min, the absorbance of the supernatant
was measured at 532 nm. The effect of non-specific turbidity was eliminated by subtracting
the absorbance of the supernatant at 600 nm. The MDA content [nmol/g fresh weight

An et al. (2020), PeerJ, DOI 10.7717/peerj.8733 4/16

https://peerj.com
http://planttfdb.cbi.pku.edu.cn/
http://dx.doi.org/10.7717/peerj.8733#supp-7
http://www.cominbio.com
http://dx.doi.org/10.7717/peerj.8733


(FW)] was calculated with the following formula: 25. 8× (A532 − A600)/weight, in which
A532 and A600 are the absorbances at 532 and 600 nm, respectively.

To measure the peroxidase (POD) and catalase (CAT) contents (i.e., antioxidant
enzymes), 10 µL supernatant (generated from the pre-cooled potassium phosphate buffer)
was mixed with 190 µL working solution, after which the absorbance was measured
twice at 470 nm (for POD) or 240 nm (for CAT). The second measurement (A2) was
taken 1 min after the first (A1). The working solution for measuring the POD content
comprised guaiacol, sodium acetate, and hydrogen peroxide, whereas the working solution
for determining the CAT content was the potassium phosphate buffer supplemented
with hydrogen peroxide. The POD and CAT contents (U/g FW) were calculated with the
following formulae: 40× (A2 − A1)/weight and 918× (A1 –A2)/weight, respectively.

To determine the proline (PRO) content, samples were homogenized in a pre-cooled
salicyl-sulfonic acid solution, boiled for 10 min, and centrifuged at 10, 000× g for 10 min
at 25 ◦C. The supernatant was collected and mixed with the working solution comprising
ninhydrin, acetic acid, and phosphoric acid. The resulting solution was boiled for 30 min
and then cooled. Methylbenzene was added and the solution was vortexed for 30 s. The
absorbance of the upper layer of the solution was measured at 520 nm. The PRO content
was calculated with the following formula: 38. 4× (A520 + 0.0021)/weight.

Statistical analyses
Data were analyzed with SPSS software (version 22.0) (SPSS, Chicago, IL, USA). Error
bars represent the standard deviation. The significance of the differences in the data for
the control and stressed samples was assessed with Student’s t -test (with *, **, and ***
corresponding to p< 0.05, p< 0.01, and p< 0.001, respectively).

RESULTS
Illumina sequencing and assembly
Young kenaf seedlings under CK or Pb stress conditions were separately collected in
duplicate for the construction of four cDNA libraries. A correlation analysis on the
transcriptomic output revealed the consistency in the data generated by the replicates of
the control (CK1 and CK2) and stressed (Pb1 and Pb2) samples (Fig. S1). The overall
sequencing results are presented in Table S3. A total of 297,123,462 clean reads (44.57
Gb) were obtained from our data. The error rates for all four samples were less than 0.1%
and the Q30 values exceeded 94.66. These high-quality clean reads were assembled into
transcripts with the Trinity software (Grabherr et al., 2011) and were further clustered into
unigenes with the Corset software (Davidson & Oshlack, 2014). Consequently, 193,978
transcripts were generated, from which 136,854 unigenes were obtained. The unigenes
comprised fewer total nucleotides, but were longer than the transcripts (Table S4 and
Fig. 1).

Gene annotation and function classification
The assembled unigenes were functionally annotated based on the NCBI non-redundant
protein sequence (Nr) database, the NCBI nucleotide sequence (Nt) database, the Protein

An et al. (2020), PeerJ, DOI 10.7717/peerj.8733 5/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.8733#supp-1
http://dx.doi.org/10.7717/peerj.8733#supp-7
http://dx.doi.org/10.7717/peerj.8733#supp-7
http://dx.doi.org/10.7717/peerj.8733


0 4000 8000 12000 16000
0

2

4

6

8

10

0 4000 8000 12000 16000
0

1

2

3

4

Length intervals 

N
um

be
rs

 (×
10

3 )

Unigene
Transcript

0

13

26

39

52

65

<301 301-500 501-1000 1001-2000 >2000

N
um

be
rs

 (×
10

3 )

N
um

be
rs

 (×
10

2 )
Transcript lengthsUnigene lengths

A B C

Figure 1 Analysis of transcript and unigene lengths. Length distribution of the assembled transcripts
(A) and unigenes (B) are respectively presented, as well as the statistics regarding the number of sequences
distributed on different lengths (C).

Full-size DOI: 10.7717/peerj.8733/fig-1

18%~40%
40%~60%
60%~80%
80%~95%
95%~100%

5682
9580

2572
0

6

13108
146

0

19
0

6072

440781897

319825

0

4347

15

0

0

113

0

0

0

106

555

0

3275

0 7 0

Nr

Nt

SP

Pfam

GO

A B

0
0~1e−100
1e−100~1e−60
1e−60~1e−45
1e−45~1e−30
1e−30~1e−15
1e−15~1e−5

35.2%

16.0%8.4%

11.5%

13.1%

8.7%

7.0% 6.7%

33.5%

55.0%

4.7%

55.0%

18.8%

15.9%
1.1%

0.7%

8.5%

Gossypium raimondii
Theobroma cacao
Gossypium arboreum
Vitis vinifera
Gossypium hirsutum
other

C D

Figure 2 Statistics of unigene annotations.Venn diagram of the unigenes annotated based on five
databases (A). Percentage distribution of E-values (B), sequence similarities (C), and top species
annotated (D) following a BLAST search of the Nr database with the unigenes as queries. Nr, NCBI
non-redundant protein sequence database; Nt, NCBI nucleotide sequence database; Pfam, Protein family
database; KOG, euKaryotic Orthologous Groups database; SP, Swiss-Prot database.

Full-size DOI: 10.7717/peerj.8733/fig-2

family (Pfam) database, the euKaryotic Orthologous Groups (KOG) database, the Swiss-
Prot (SP) database, the KEGG database, and the GO database. The number of unigenes
annotated with each database is indicated in Table S5. Specifically, 32.21% of the unigenes
were commonly annotated with the Nr, Nt, SP, Pfam, and GO databases (Fig. 2A). The
E-value distribution for the unigenes annotated with the Nr database (i.e., the database with
the most annotated unigenes; Table S5) indicated that 78.2% of the annotated unigenes
(67,503 of 86,376) had E-values less than 1e−30 (Fig. 2B). Moreover, 93.2% of the unigenes
annotated with the Nr database (80,485 of 86,376) matched genes in the database with ≥

60% sequence similarities (Fig. 2C). Additionally, the unigenes were most similar to genes
from ancestral cotton species (Gossypium raimondii, 55.0% and Gossypium arboreum,
15.9%) (Fig. 2D).

Among the seven databases, functional annotations with the GO, KOG, and KEGG
databases enabled the classification of the unigenes in specific categories, thereby providing
a more systemic analysis of the transcriptome output. A total of 59,384 unigenes were
classified into GO categories, with ‘‘cellular process’’ from the biological process (BP)
category, ‘‘binding’’ from the molecular function (MF) category, and ‘‘cell’’ from the
cellular component (CC) category identified as the most enriched GO terms in the three
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main categories (Fig. S2). A smaller proportion of unigenes (32,173, 23.51%) were assigned
to KEGG pathways (Fig. S3), with ‘‘carbohydrate metabolism’’ from the metabolism
category and ‘‘translation’’ and ‘‘folding, sorting and degradation’’ from the genetic
information processing category the top three KEGG pathways. Fewer unigenes (20,553
of 136,854 unigenes) were classified based on the KOG categories. Although all 25 KOG
categories were represented, ‘‘R: general function prediction only’’, ‘‘O: posttranslational
modification, protein turnover, chaperons’’, and ‘‘J: translation, ribosomal structure and
biogenesis’’ were the most common (Fig. S4).

For a more specific examination of coding sequences, the transcriptomic data were used
as queries for BLAST searches of the Nr and SP databases to predict amino acid sequences.
Regarding the unigenes lacking matches with sequences in the Nr or SP databases, their
open reading frames were predicted with the ESTScan software (Iseli, Jongeneel & Bucher,
1999). The number of unigenes annotated by a BLAST search (58,846 unigenes) was
similar to the number of unigenes whose open reading frame was predicted with ESTScan
(56,037 unigenes). However, the peptides encoded by the BLAST-annotated unigenes
were longer than the ESTScan-predicted peptides (Fig. S5A). Additionally, most of the
BLAST-annotated unigenes harbored only the termination codon. In contrast, there was
a more even split between the number of ESTScan-predicted sequences with and without
the initiation codon and/or the termination codon (Fig. S5B).

Differential expression analyses
To preliminarily reveal the molecular mechanisms underlying kenaf seedling responses
to Pb stress, the expressed unigenes were compared between the CK and Pb-stressed
samples. A total of 102,475 and 98,637 unigenes were respectively expressed in the CK and
Pb-stressed samples, with FPKM values exceeding 0.3. Additionally, 83,003 unigenes were
expressed in both samples (Fig. 3A). Overall, 1,697 unigenes were identified as differentially
expressed between the CK and Pb-stressed samples (Fig. 3B). A GO enrichment analysis
of these 1,697 DEGs indicated the three most enriched GO terms were ‘‘catalytic activity’’
and ‘‘oxidoreductase activity’’ from the MF category and ‘‘oxidation–reduction process’’
from the BP category (Fig. 3C). Moreover, the enriched KEGG pathways among the
DEGs that were down-regulated in the Pb-stressed samples were ‘‘glycosphingolipid
biosynthesis’’, ‘‘photosynthesis’’, ‘‘fatty acid elongation’’, and ‘‘nitrogen metabolism’’
(Fig. 4A). In contrast, ‘‘flavone and flavonol biosynthesis’’, ‘‘vitamin B6 metabolism’’,
and ‘‘phenylpropanoid biosynthesis’’ were the main enriched KEGG pathways among the
unigenes with up-regulated expression levels in the Pb-stressed samples (Fig. 4B). The
enriched KEGG pathways implied that numerous biological processes that maintain plant
growth and development were repressed in kenaf seedlings exposed to Pb stress. The KEGG
pathways assigned to the DEGs with up-regulated expression in the Pb-stressed samples
may contribute to heavy metal stress responses in kenaf.

To probe the possiblemaster regulators of kenaf seedling responses to Pb stress, theDEGs
encoding TFswere investigated. The identified unigenes were predicted to include 2,066 TF-
coding genes belonging to 53 TF families (Fig. 5A). Among these TF genes, only 55 from 20
TF families had expression levels thatwere up- or down-regulated in the Pb-stressed samples
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Figure 4 Top 20 enriched KEGG pathways among DEGs. Enriched KEGG pathways among the uni-
genes with down-regulated expression (A) and up-regulated expression (B) in response to Pb stress.
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(relative to the corresponding level in the CK samples) (Fig. 5B). A closer examination of
these differentially expressed TF (DE-TF) genes revealed that the down- and up-regulated
genes weremainly represented by bHLH (basic helix-loop-helix) andNAC familymembers,
respectively. All five NAC DE-TF genes were up-regulated, whereas 11 of the 12 bHLH
DE-TF genes were down-regulated. To verify the reliability of the RNA-seq data, eight
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randomly selectedDE TF genes in Fig. 5B, including all NACTF genes (Cluster-5711.10506,
Cluster-5711.10507, Cluster-5711.10680, Cluster-5711.108716, and Cluster-5711.35745),
two ethylene-responsive element-binding factor (ERF) genes (Cluster-5711.107017 and
Cluster-5711.107018), and one teosinte branched1/cincinnata/proliferating cell factor
(TCP) gene (Cluster-5711.101858), were analyzed by qRT-PCR. The expression levels of
all of these TF genes were higher in the Pb-stressed samples than in the CK samples (Fig.
S6), which was consistent with the transcriptome sequencing data.

The NAC TFs in responding the Pb stress
Only 5 of the 110 NAC TF genes predicted based on our transcriptome data (Fig. 5A)
were differentially expressed, with Pb stress up-regulating their expression levels (Fig. 5B),
implying they have a regulatory role in the kenaf response to Pb stress. The functional
annotation of these five kenaf genes (i.e., Cluster-5711.10506, Cluster-5711.10507, Cluster-
5711.10680, Cluster-5711.108716, and Cluster-5711.35745) based on the known functions
of the corresponding Arabidopsis orthologs (Table S6) suggested the NAC-involved kenaf
response to Pb stress is probably dependent on PCD processes. Meanwhile, the MDA
content representing the extent of ROS-induced lipid peroxidation (Ayala, Munoz &
Argüelles, 2014) was significantly higher in the Pb-stressed samples than in the CK samples
(Fig. 6A; Table S7). Consistent with this finding, the abundance of PRO, which can increase
ROS formation (Donald et al., 2001), was also higher under Pb stress conditions than
under CK conditions (Fig. 6B; Table S8). Additionally, the activities of the ROS-scavenging
enzymes (Paradiso et al., 2016), including POD and CAT, decreased following the Pb
treatment (Figs. 6C,6D; Tables S9, S10). These results indicated Pb stress increases ROS
levels and the expression of PCD-related NAC TF genes in kenaf.

DISCUSSION
Kenaf is a broadly used multi-purpose fiber crop (Ayadi et al., 2011). However, there
has been minimal fundamental research on this particular species. To date, only a
few studies applying RNA-seq approaches have been conducted on kenaf (Chen et al.,
2014; Zhang et al., 2015; Li et al., 2016; Li et al., 2017), and only one of them focused on
transcriptomic responses under adverse conditions (Li et al., 2017). Thus, relatively little is

An et al. (2020), PeerJ, DOI 10.7717/peerj.8733 9/16

https://peerj.com
https://doi.org/10.7717/peerj.8733/fig-5
http://dx.doi.org/10.7717/peerj.8733#supp-6
http://dx.doi.org/10.7717/peerj.8733#supp-6
http://dx.doi.org/10.7717/peerj.8733#supp-7
http://dx.doi.org/10.7717/peerj.8733#supp-7
http://dx.doi.org/10.7717/peerj.8733#supp-7
http://dx.doi.org/10.7717/peerj.8733#supp-7
http://dx.doi.org/10.7717/peerj.8733#supp-7
http://dx.doi.org/10.7717/peerj.8733


CK Pb
0

4

8

12

16

0

20

40

60

0

20

40

0

20

40

60

CK Pb CK Pb CK Pb

C
on

te
nt

s (
nm

ol
/g

 F
W

)

C
on

te
nt

s (
μg

/g
 F

W
)

A
ct

iv
iti

es
 (U

/g
 F

W
)

A
ct

iv
iti

es
 (U

/g
 F

W
)

** ***
*

**

A B C D

Treatments Treatments Treatments Treatments

Figure 6 Physiological traits under CK and Pb stress conditions. The MDA (A) and PRO (B) contents
as well as the CAT (C) and POD (D) activities are presented on the basis of fresh weight (FW). Error bars
represent the standard deviation. Significant differences between the CK and Pb-stressed samples (as de-
termined with Student’s t -test) are indicated as follows: ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001.

Full-size DOI: 10.7717/peerj.8733/fig-6

known about the effects of diverse environmental conditions on themolecular mechanisms
in kenaf. The current study involved a transcriptome analysis of whole kenaf seedlings
subjected to normal and plumbic stress conditions, with the resulting data potentially
useful for elucidating the stress-induced molecular mechanisms at the transcript level. The
1,697 DEGs between the CK and Pb-stressed samples (Fig. 3B) were grouped at various
levels (Figs. 3C, 4). The down-regulated pathways (Fig. 4A), including glycosphingolipid
biosynthesis and photosynthesis, are required for plant growth. The glycosphingolipids
are pivotal molecules for maintaining cellular communication in multicellular organisms
(D’Angelo et al., 2013) and photosynthesis is an indispensable source of energy for plants.
Thus, plumbic stress appears to suppress critical plant growth processes. In contrast, the
up-regulated pathways (Fig. 4B) are likely involved in kenaf responses to adverse conditions.
For example, earlier studies proved that diverse flavonoids influence the UV tolerance of
rice cultivars and Arabidopsis ecotypes at various latitudes (Tohge & Fernie, 2016; Peng et
al., 2017). Additionally, vitamin B6 contents have been linked to plant responses to adverse
conditions (Bagri et al., 2018; Chandrasekaran & Chun, 2018; Nan et al., 2019). Future
studies should focus on the up-regulated pathways as well as the associated unigenes.

Considering the relatively limited molecular research on kenaf, the up-stream regulators
of gene expression (i.e., TFs) should be investigated in detail. Accordingly, to identify
possible master transcriptional regulators, unigenes encoding TFs were predicted and
analyzed (Fig. 5). Many members of various TF families, including MYB (Li, Ng & Fan,
2015), bZIP (Liu & Chu, 2015), bHLH (Yadav & Mani, 2019), TCP (Ding et al., 2019),
and NAC (Yuce et al., 2019) TFs are reportedly involved in plant defenses against abiotic
stresses. However, these TFs are also important for plant growth (Cheng et al., 2019; Liu
et al., 2019; Van Es et al., 2019), which makes identifying the TFs responsive to Pb stress
based solely on our transcriptomic data unlikely. Interestingly, the expression levels of
all five detected differentially expressed NAC TF genes were up-regulated following the
Pb treatment (Fig. 5B), implying these genes may have regulatory roles affecting kenaf
responses to Pb stress. Further analyses suggested these NAC TF genes may be involved
in PCD (Table S6), which is a highly regulated and organized cell suicide process crucial
for removing damaged or infected cells (Petrov et al., 2015). This process is linked to ROS
production and accumulation (Nath & Lu, 2015). In plants, ROS are always formed from
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O2 because of the inevitable leakage of electrons during the electron transport activities
of chloroplasts, mitochondria, and plasma membranes or as a byproduct of various
metabolic pathways localized in different cellular compartments (Rio et al., 2006; Blokhina
& Fagerstedt, 2010; Heyno et al., 2011). Adverse environmental conditions (e.g., biotic or
abiotic stresses) enhance ROS production in plants because of a disruption in cellular
homeostasis (Mittler, 2002; Sharma & Dubey, 2005; Sharma & Dubey, 2007;Maheshwari &
Dubey, 2009; Srivastava & Dubey, 2011). In the current study, analyses of MDA and PRO
contents and POD and CAT activities (Fig. 6) suggested Pb stress increases ROS levels
in kenaf plants. This finding and the observed up-regulated expression of all identified
NAC TF genes are possibly associated with PCD (Table S6) and are consistent with the
previously established relationship between PCD and ROS (Nath & Lu, 2015). Therefore,
we speculate that kenaf plants undergo ROS-dependent PCD in response to plumbic stress,
with the up-regulated NAC TF genes tuning PCD.

In previous studies, kenaf plants were subjected to Cd (Li et al., 2013; Deng et al.,
2017) and Cr (Niu et al., 2018) stresses. However, these investigations focused on plant
physiological traits, but not the underlying molecular mechanisms. Consistent with
the findings of these earlier studies, we also observed elevated MDA contents (lipid
peroxidation) and suppressed POD activities following an exposure to heavy metal stress,
which are phenomena thatmay be associatedwithROS-dependent PCDregulated by several
NAC TFs. Future detailed examinations of these NAC TFs may help clarify the molecular
mechanisms of kenaf plants subjected to various heavy metal stresses. We may also focus
on the three KEGG pathways (flavone and flavonol biosynthesis, vitamin B6 metabolism,
and phenylpropanoid biosynthesis) that were significantly enriched in the kenaf seedlings
under plumbic stress conditions. The observation that these pathways are affected by Pb
stress suggests specific metabolites and/or regulatory genes may influence kenaf tolerance
to heavy metals. Indeed, vitamin B6 metabolites are reportedly responsive to adverse
conditions (Bagri et al., 2018; Nan et al., 2019) and the flavonoid-regulating MYB TFs are
known to enhance heavy metal stress resistance (Ai et al., 2018; Raldugina et al., 2018).
Furthermore, the phenylpropanoid pathway is activated to provide protection against
heavy metals via the thickening of physical barriers (Chen et al., 2019). A comprehensive
analysis of the up-regulated NAC TF genes and the unigenes involved in the enriched
pathways may provide additional insights into the molecular basis of kenaf responses to
excessive amounts of heavy metals.

CONCLUSIONS
Our transcriptome sequencing data generated 44.57 Gb clean reads potentially related
to kenaf responses to plumbic stress. To probe the possible master regulators of the
underlying molecular mechanism, TF genes were predicted and analyzed. On the basis
of our transcriptome data combined with analyses of physiological traits, we propose
that kenaf seedlings experience ROS-dependent PCD, which may be regulated by the
differentially expressed NAC TF genes. Future studies should characterize the roles of these
NAC TFs to provide more detailed insights into the molecular mechanisms mediating
kenaf plant responses to plumbic stress.
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