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ABSTRACT
Background: The humid tropical forests of Central Africa influence weather
worldwide and play a major role in the global carbon cycle. However, they are also an
ecological anomaly, with evergreen forests dominating the western equatorial region
despite less than 2,000 mm total annual rainfall. Meteorological data for Central
Africa are notoriously sparse and incomplete and there are substantial issues with
satellite-derived data because of persistent cloudiness and inability to ground-truth
estimates. Long-term climate observations are urgently needed to verify regional
climate and vegetation models, shed light on the mechanisms that drive climatic
variability and assess the viability of evergreen forests under future climate scenarios.
Methods: We have the rare opportunity to analyse a 34 year dataset of rainfall
and temperature (and shorter periods of absolute humidity, wind speed, solar
radiation and aerosol optical depth) from Lopé National Park, a long-term ecological
research site in Gabon, western equatorial Africa. We used (generalized) linear
mixed models and spectral analyses to assess seasonal and inter-annual variation,
long-term trends and oceanic influences on local weather patterns.
Results: Lopé’s weather is characterised by a cool, light-deficient, long dry season.
Long-term climatic means have changed significantly over the last 34 years, with
warming occurring at a rate of +0.25 �C per decade (minimum daily temperature)
and drying at a rate of −75 mm per decade (total annual rainfall). Inter-annual
climatic variability at Lopé is highly influenced by global weather patterns.
Sea surface temperatures of the Pacific and Atlantic oceans have strong coherence
with Lopé temperature and rainfall on multi-annual scales.
Conclusions: The Lopé long-term weather record has not previously been made
public and is of high value in such a data poor region. Our results support regional
analyses of climatic seasonality, long-term warming and the influences of the oceans
on temperature and rainfall variability. However, warming has occurred more

How to cite this article Bush ER, Jeffery K, Bunnefeld N, Tutin C, Musgrave R, Moussavou G, Mihindou V, Malhi Y, Lehmann D, Edzang
Ndong J, Makaga L, Abernethy K. 2020. Rare ground data confirm significant warming and drying in western equatorial Africa. PeerJ 8:e8732
DOI 10.7717/peerj.8732

Submitted 8 July 2019
Accepted 11 February 2020
Published 14 April 2020

Corresponding author
Emma R. Bush, e.r.bush@stir.ac.uk

Academic editor
Cho-ying Huang

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj.8732

Copyright
2020 Bush et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.8732
mailto:e.�r.�bush@�stir.�ac.�uk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.8732
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


rapidly than the regional products suggest and while there remains much uncertainty
in the wider region, rainfall has declined over the last three decades at Lopé.
The association between rainfall and the Atlantic cold tongue at Lopé lends some
support for the ‘dry’ models of climate change for the region. In the context of a
rapidly warming and drying climate, urgent research is needed into the sensitivity of
dry season clouds to ocean temperatures and the viability of humid evergreen forests
in this dry region should the clouds disappear.

Subjects Coupled Natural and Human Systems, Biosphere Interactions, Climate Change Biology
Keywords Climate change, Tropical forests, Central Africa, Gabon, Lopé, Warming, Drying,
Seasonality, Meteorology, Western equatorial Africa

INTRODUCTION
The humid forests of Central Africa make up 30% of the world’s tropical forests
(Malhi et al., 2013), are a major carbon store (Lewis et al., 2013) and influence weather
globally (Bonan, 2008; Washington et al., 2013). Most African evergreen tropical forests
are found in the western equatorial region where total annual rainfall is less than
2,000 mm (Philippon et al., 2019). Evergreen forests can be maintained in this relatively
dry region due to reduced water demand during seasonal drought associated with extreme
cloudiness (Philippon et al., 2019). Long-term changes to climate and climatic variability in
the region (James, Washington & Rowell, 2013) are likely to have far-reaching impacts
on the functioning of these evergreen tropical forests (Asefi-najafabady & Saatchi, 2013;
Zhou et al., 2014) with knock-on effects for the global carbon cycle (Mitchard, 2018) and
local human livelihoods (Niang et al., 2014).

However, evidence for changes in forest function linked to weather conditions in
equatorial Africa is extremely rare, mainly due to missing long-term meteorological data.
The number of rain gauge stations reporting data across Central Africa fell from a
peak of more than 50 between 1950 and 1980 to fewer than 10 in 2010 (Washington et al.,
2013). This low density of observations and poor understanding of local landscape and
climatic processes (Nicholson & Grist, 2003) limits the accuracy of gridded observational
data products (Asefi-najafabady & Saatchi, 2013; Suggitt et al., 2017). Uncertainty is
particularly high for rainfall patterns, which unlike temperature, are poorly conserved over
space (Habib, Krajewski & Ciach, 2001; Kidd et al., 2017). Because of missing ground
data, climate and ecological models rely heavily on satellites despite major issues with this
data source that include extreme cloudiness in the region and little opportunity for
ground-truthing (Washington et al., 2013; Maidment et al., 2014; Wilson & Jetz, 2016;
Dommo et al., 2018). Empirical meteorological data are urgently needed to verify regional
climate and vegetation models and shed light on the mechanisms that drive seasonal
and long-term climatic variability in tropical Africa (Guan et al., 2013; Abernethy,
Maisels & White, 2016).

We have the rare opportunity to analyse a 34 year record of rainfall and temperature
(and shorter periods of humidity, wind speed, solar radiation and aerosol optical
depth) from a long-term ecological research site in western equatorial Africa. These local
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weather data have not contributed to the available climate products (such as the
high-resolution gridded dataset from the Climate Research Unit) and are able to act as an
independent control. In this article we briefly review the published literature on drivers
of weather variability and long-term climate trends in western equatorial Africa
(~6�S–5�N, 8�–18�E, covering Cameroon, Republic of Congo, Central African Republic,
Democratic Republic of Congo, Equatorial Guinea and Gabon). We then use our ground
data to analyse seasonal, inter-annual and long-term weather patterns in this data-poor
region with particular focus on rainfall for which uncertainty in regional products is high.

Seasonality
The climate of equatorial Africa is characterised by a bimodal rainfall pattern. Two rainy
seasons occur each year coinciding with the boreal spring and autumn when the sun passes
directly over the equator (March–May and October–November). Just 3% total annual
rainfall falls during the major dry season, which extends from June to August/September
(Balas, Nicholson & Klotter, 2007). The primary influence on equatorial rainfall has
historically been understood to be the Inter Tropical Convergence Zone (ITCZ), a band of
clouds and high precipitation that migrates northwards and southwards over the equator
following the sun (Nicholson, 2018; Fig. 1). However recent developments show the
ITCZ to be a poor explanation of seasonal rainfall in Africa, with ITCZ-associated low-
level convergence often decoupled from the rain belt in western and central equatorial
regions (Nicholson, 2018). Improved mechanistic models of the seasonal evolution of
atmospheric conditions in the region are urgently needed.

In western equatorial Africa the rainy seasons coincide with bright conditions.
Convection clouds develop into storms late in the day or night leaving clear skies during
the daytime (Gond et al., 2013). By contrast, light is least available during the long dry
season due to persistent low-lying cloud cover throughout the day (Philippon et al., 2019).
The seasonal synchrony between light and precipitation in western equatorial Africa is
in contrast to the central Congo Basin and the neotropics where dry seasons tend to
coincide with peak irradiance (Wright & Calderón, 2018; Philippon et al., 2019). In western
equatorial Africa the long dry season is also the coolest time of year (Munzimi et al., 2015;
Tutin & Fernandez, 1993).

Oceanic influences
Large-scale patterns in sea surface temperatures (SSTs) are known to influence weather
conditions across the tropics (Camberlin, Janicot & Poccard, 2001; Fig. 1). The El Niño
Southern Oscillation (ENSO) refers to the state of the atmosphere and surface
temperatures of the tropical Pacific Ocean. ENSO has a relatively straightforward,
instantaneous effect on temperature throughout the African continent, with greater
warming in El Niño years (Collins, 2011). Central African rainfall is also strongly
connected to SSTs (Otto et al., 2013), although interactions are complex and seasonally
specific. In Table 1 we summarise six major studies of ocean influences on rainfall in
western equatorial Africa (Todd & Washington, 2004; Balas, Nicholson & Klotter, 2007;
Otto et al., 2013; Preethi et al., 2015; Nicholson & Dezfuli, 2013; Dezfuli & Nicholson, 2013).
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The main agreements between these studies are that (1) rainfall is below average from
February to August in El Niño years (Camberlin, Janicot & Poccard, 2001; Todd &
Washington, 2004; Balas, Nicholson & Klotter, 2007; Preethi et al., 2015; Nicholson &
Dezfuli, 2013), (2) rainfall positively correlates with the temperature of the Indian Ocean
in January and February (Balas, Nicholson & Klotter, 2007; Preethi et al., 2015) and
(3) warm SSTs in the tropical south Atlantic enhance rainfall from April to September
(Camberlin, Janicot & Poccard, 2001; Balas, Nicholson & Klotter, 2007; Otto et al., 2013;

Figure 1 Global climatic influences on western equatorial Africa. (A) The forested region of central
Africa is indicated by a layer of green pixels (>25% tree cover in 2000 fromHansen et al. (2013)—available
from http://earthenginepartners.appspot.com/science-2013-global-forest). The Northern (July) and
Southern limits (January) of the Inter Tropical Convergence Zone (ITCZ) are drawn from Barlow et al.
(2018). The blue zones indicate patterns in oceanic sea surface temperatures (SSTs) known to influence
weather in western Central Africa: the Pacific Ocean El Niño Southern Oscillation (ENSO); North and
South Tropical Atlantic SSTs (NATL and SATL) and the Indian Ocean Dipole (IOD). In conventional El
Niño years the tropical Eastern Pacific is abnormally warm, in El Niño Modoki the warming occurs in the
central Pacific. The IOD is the difference between SSTs of the western and eastern tropical Indian Ocean.
(B) Lopé National Park (our study site) is indicated by a black dot and the limits of western equatorial
Africa as defined in this article are indicated by the grey rectangle (including the humid forests of Gabon,
Equatorial Guinea, Cameroon and the Republic of Congo). Also shown is the location of the seasonal
Atlantic cold tongue, a pool of cool surface water that develops in the eastern tropical Atlantic during the
boreal summer (drawn from Tokinaga & Xie (2011)). The grey world map was created by Layerace at
Freepik.com. Full-size DOI: 10.7717/peerj.8732/fig-1
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Nicholson & Dezfuli, 2013). We found no evidence in the literature for the influence of
large-scale climate oscillations on other weather variables such as light availability, wind
speeds or aerosols in the region.

Long-term trends
There is high confidence in the evidence for warming over African land regions (Niang et al.,
2014). Satellite estimates for tropical Africa show an annual mean temperature increase
of 0.15 �C per decade from 1979 to 2010 (Collins, 2011). A recent multi-model
ensemble shows that mean temperature for the whole continent is likely to continue to
increase more than the global average especially in the long dry season (James &
Washington, 2013).

Table 1 Major oceanic influences on rainfall in western equatorial Africa.

Study Description Ocean influences

Preethi et al. (2015) Africa-wide; Satellite and gridded obs.;
1979–2010

Pacific: Canonical El Niño reduces rainfall
January–September El Niño Modoki
increases rainfall March–May

Indian: Positive relationship between SSTs and
rainfall January–February No relationship
between IOD and rainfall

Camberlin, Janicot & Poccard (2001) Sub-Sahara; Gridded obs.; 1951–1997 Pacific: El Niño negatively influences rainfall
April–June

Atlantic: South Atlantic SSTs positively influence
rainfall April–September

Balas, Nicholson & Klotter (2007) WEA; Precipitation gauge dataset;
1950–1998

Pacific: El Niño negatively influences rainfall

Indian: Weak positive relationship between SSTs and
rainfall in all seasons except March–May
when it is reversed

Atlantic: Positive correlation between south Atlantic
SSTs and rainfall Jun-Nov, negative
influence December–February Benguela
coast influences rain March–May

Todd & Washington (2004) CEA and WEA; Gridded obs. and
discharge data February–April;
1901–1998

Pacific: El Niño has weak negative influence on
rainfall February–April

Atlantic: North Atlantic Oscillation negatively
influences rainfall February–April

Otto et al. (2013) CEA and WEA; Simulated data.
Dry seasons only

Pacific: ENSO influences rainfall in dry seasons

Indian: IOD negatively influences rainfall in dry
seasons

Atlantic: Warm tropical Atlantic SSTs enhance rain in
dry seasons

Nicholson & Dezfuli (2013) and
Dezfuli & Nicholson (2013)

WEA. Regionalised obs. rainy seasons
only

Pacific: El Niño reduces rainfall in rainy seasons

Indian: Positive IOD modes associated with reduced
rainfall in rainy seasons

Atlantic: Warm tropical Atlantic SSTs enhance rainfall
in rainy seasons. Strong correlation with
Benguela coast from October–December

Note:
CEA, central equatorial Africa; WEA, western equatorial Africa; SST, sea surface temperatures; ENSO, El Niño Southern Oscillation; IOD, Indian Ocean Dipole.
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Tropical land areas globally have seen no overall change in precipitation over the last
century, with a recent increase in precipitation (2003–2013) reversing a drying trend from
the 1970s to the 1990s (Hartmann et al., 2013). Rainfall patterns are poorly conserved
spatially and conflicting trends are detected within the western equatorial region of Africa.
A regionalised long-term dataset for Africa constructed from historical records and rain
gauge observations shows a sharp reduction in rainfall in the Cameroon region from
the late 1960s until the present and a contrasting wetting trend in the Congo/Gabon region
from 1980s until the present (Nicholson, Funk & Fink, 2018). However a higher resolution
analysis of the same dataset shows that within central Gabon there has been a drying
trend from the 1970s until 2000 and that there is no data originating from this area for the
last two decades (Nicholson, Funk & Fink, 2018). Flow data for the river Ogooué—the
largest river in western equatorial Africa—indicates that runoff in the region declined from
the 1960s until 2010 and that the flood peak has moved from May to April (Mahe et al.,
2013). Land-cover change has been minimal in the watershed during this period
(Abernethy, Maisels & White, 2016) and so it is likely that reduced rainfall has been the
biggest influence on flow reduction.

Predictions of future rainfall vary widely across the African continent with high
uncertainty in the direction of change centrally due to the sparse network of observations
and poor understanding of local climate forcing (James & Washington, 2013). Model
projections mostly show no change or a weak wet signal in the central Congo Basin and a
dry signal in the western region in scenarios where warming is greater than 2 �C
(James, Washington & Rowell, 2013). Models that support a drying trend in western
equatorial Africa show strong associations with Atlantic and Indian (but not Pacific) SSTs.
The construction of these dry models suggests that reductions in rainfall in Gabon and
surrounding countries are likely to be caused by a northward displacement of the
equatorial rain belt associated with the Atlantic cold tongue (Fig. 1B) and an eastward
shift in convection caused by contrasts between Indian and Atlantic SSTs (James,
Washington & Rowell, 2013).

As for surface solar radiation, once again the picture varies spatially within central
Africa. In the central Congo Basin (14E–30E) there has been a recent widespread decline in
cloud optical thickness and no change in aerosol optical thickness (MODIS, 2000–2012)
leading to an increase in downward photosynthetically available radiation (CERES,
2003–2012; Zhou et al., 2014). For sunshine duration, there has been no change in the
central region but a weak decline (2–4 h per decade) in western equatorial Africa from
1983 to 2015 (SARAH-2, Kothe et al., 2017). There is no published data on long-term
changes in relative humidity or wind speed in the region.

Implications for the eco-region
Humid evergreen forests currently dominate western equatorial Africa despite relatively
low precipitation compared to other closed canopy tropical forests (Reich, 1995).
As summarised by James, Washington & Rowell (2013), intense rainfall seasonality
alongside a drying and warming climate is likely to lead to water stress and could push
these ecosystems towards more open, fire prone, dry forest systems (as evidenced in this
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region over the last 3,000 years; Brncic et al., 2006 and in West Africa in recent decades:
Fauset et al., 2012) or even savanna (Willis et al., 2013). While elevated atmospheric carbon
dioxide improves water use efficiency, the balance of gains for tropical forests related to
carbon fertilisation vs. losses related to further warming and drying are poorly
characterised in climate and vegetation models (Huntingford et al., 2013). Tropical forest
species turnover or loss related to climate change will have serious consequences for people
and animals dependent on forest resources in the region (Abernethy, Maisels & White,
2016) while loss of tree cover will impact carbon storage and even feedback onto climate
(Mitchard, 2018). Despite the risks associated with these scenarios few meteorological
data are available, especially in recent decades, to understand if the climatic trends
described above are witnessed on the ground and how quickly they are progressing. Using
ground data from Lopé National Park (NP), Gabon, collected over a 34-year period we ask:
how fast is the region warming? Is the region drying and how quickly? And how do
the oceans influence rainfall and temperature variability? Answers to these questions will
be important to predict the viability of evergreen forest ecosystems under future climates.

MATERIALS AND METHODS
Description of the study area and weather data recorded since 1984
The Station d’Études des Gorilles et Chimpanzées (SEGC) research station is located at the
northern end of Lopé National Park, Gabon (−0.2N, 11.6E). The station sits in a
tropical forest-savanna matrix, at an elevation of 280 m and within 10.5 km of the river
Ogooué (the largest river in Gabon and the country’s main watershed). Ecological
research activities including weather, plant and animal observations have taken place
continuously at SEGC from 1984 until the present (>300 publications; 1984–2018).

Weather data have been recorded at Lopé using various types of equipment at two
locations: a savanna site (the research station; 11.605E, −0.201N) and a forest site (800 m
from the research station and approximately 10 m from the savanna/forest edge; 11.605E,
−0.206N; Table 2). From 1984 to the present, a manual rain gauge was placed at the
savanna site (50 cm above ground and >5 m from any tree or building) and used to record
total daily rainfall at 8 AM each morning. There was a gap in data recording in 2013
and occasional missing days due to logistical constraints (e.g. availability of personnel).
Since 1984 daily maximum and minimum temperatures and relative humidity were
recorded using a manual thermometer and wet/dry bulb located at the forest site (1.5 m
aboveground under closed canopy), which were checked whenever field teams passed it
or daily when logistics permitted. In 2002 all temperature recording at the forest site
was transferred to continuous automatic units (ONSET HOBO� Data Loggers ref
https://www.onsetcomp.com/, these units also recorded relative humidity). At the same
time temperature recording using the HOBO units also began in the savanna. Due to
technical failures these units were replaced in 2006 with the original manual max/min
thermometer in the forest and a digital max/min thermometer (Taylor, 1441) in the
savanna. These were in turn replaced by another type of automated unit (TinyTag Plus 2,
Gemini Data Loggers https://www.geminidataloggers.com/data-loggers/tinytag-plus-2,
some of which record both temperature and relative humidity). TinyTags were deployed in

Bush et al. (2020), PeerJ, DOI 10.7717/peerj.8732 7/29

https://www.onsetcomp.com/
https://www.geminidataloggers.com/data-loggers/tinytag-plus-2
http://dx.doi.org/10.7717/peerj.8732
https://peerj.com/


the forest from 2007 and in the savanna from 2008 and used until the present (with a gap at
the forest site from mid-2015 to mid-2016 and intermittent recording throughout
2017 partly due to equipment malfunctions caused by termite infestation). Two weather
stations were installed in the savanna (sited near the research station, on a rock 4 m
from the ground) and collected data between 2012 and 2016. A Davis VantagePro2
(https://www.davisinstruments.com/solution/vantage-pro2/) was installed in January 2012
and recorded rainfall, temperature, relative humidity, pressure, wind speed and
direction, UV index and solar radiation every 30 min for 2 years until the equipment
was struck by lightning in January 2014. A SKYE MINIMET weather station
(https://www.skyeinstruments.com/minimet-automatic-weather-station/) was installed at
the same location in 2013 and collected temperature, relative humidity, wind speed
and direction and solar radiation (but not rainfall as the gauge was defective). The SKYE
unit ran intermittently until 2016 when the equipment was also damaged by lightning: data
records between January 2014 and November 2014 were also lost. Finally, a sun
photometer was installed at the research station in April 2014 and used to record aerosol
optical depth up to the present as part of the NASA Aerosol Robotic Network (Aeronet;
https://aeronet.gsfc.nasa.gov/; Holben et al., 1998).

Despite sustained effort, the remote and challenging environment at Lopé has led to a
patchy weather data record. This situation has been exacerbated since the introduction of
automated loggers, due to unreliable performance combined with difficulties and time
delays in replacing or repairing malfunctioning equipment and respecting annual

Table 2 Weather station instrument record at Lopé NP, Gabon, 1984–2018.

Instrument Time period Location Data Missing periods

Manual rain gauge 1984–present Savanna Total daily rainfall September-2010 to December
2010; 2013; Odd days

Manual max/min thermometer 1984–2002;
2006–2007

Forest Max./min. temp. since last reset July-1998 to January-1999;
March-2001 to August-2001;
Intermittent throughout

Wet/dry bulb 1984–2002 Forest Relative humidity Intermittent throughout

HOBO Data Logger (ONSET) 2002–2006 Forest + Savanna Temperature
relative humidity

June-2003

Digital max/min thermometer
(Taylor 1441)

2006–2008 Savanna Max./min. daily temp Odd days

TinyTag Plus 2 Data Logger
(Gemini)

2007–present Forest + Savanna Temperature; relative humidity Jun-2015 to Jun-2016 (Forest);
Intermittent through 2017

Vantage Pro2 Weather Station
(Davis)

2012–2014 Savanna Rainfall; temperature;
relative humidity; pressure;
wind speed; wind direction; UV
index; solar radiation

November-2013; February-
2014 to July-2014

Minimet Weather Station
(SKYE)

2013–2016 Savanna Temperature; relative humidity;
wind speed; wind direction;
solar radiation

January-2014 to November-
2014; Intermittent
throughout

Sun Photometer
(NASA Aeronet)

2014–present Savanna Aerosol optical depth Intermittent throughout
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calibration schedules with manufacturers based in Europe or the USA. New equipment
was often introduced out of necessity when previous equipment failed, precluding the
opportunity of collecting simultaneous data for standardisation. Such problems have been
experienced at many other field stations across Africa (Maidment et al., 2017) and
homogenisation is necessary in most long-term instrumental climatic data sets (Peterson
et al., 1998). It was therefore necessary to select and standardise the Lopé data to
reduce systematic biases between recording equipment. We summarise the data selection
steps we undertook below and provide further detail in the accompanying Supplemental
Information (Article S1 and Code S1). All Lopé data can be downloaded from the
University of Stirling’s DataSTORRE (http://hdl.handle.net/11667/133).

Data cleaning and preparation
We constructed a long-term record of daily rainfall totals (1984–2018) by calibrating the
two sources of data (manual rain gauge and Vantage Pro weather station) using a simple
linear model on simultaneous records and taking the mean value for days with
multiple observations (resulting in a dataset of 12,050 complete daily observations out of a
possible 12,419 over 34 years). Where possible we interpolated missing daily values
using the 10-day running mean for the time series (resulting in a dataset of 12111
interpolated daily observations), however 11 months spread over three calendar years
remained incomplete. We used these interpolated daily data to calculate total monthly and
annual rainfall for the months and years with complete data (397 complete monthly
observations out of a possible 408 and 31 complete years out of a possible 34).

Temperature data were recorded using six different types of equipment across two sites
(recorded in the forest from 1984 to 2018 and in the savanna from 2002 to 2018). Where
there were multiple observations from overlapping data records we calculated mean
daily maximum and minimum values for each site and day in the time series and used this
dataset to demonstrate temperature seasonality at each site (resulting in a dataset of 7,058
daily observations out of a possible 12,419 over 34 years at the forest and 4,878 daily
observations out of a possible 5,844 over 16 years at the savanna). To create continuous
time series for periodicity analyses we calculated mean monthly maximum and minimum
daily temperatures for each month in the time series with more than five observations
(resulting in a dataset of 327 monthly observations out of a possible 408 from the forest site
and 166 monthly observations out of a possible 192 at the savanna site). Minimum
daily temperatures are recorded during the night and thus avoid errors associated with
direct solar radiation (which we found to vary between our equipment, Article S1). Because
of this we chose to use minimum daily temperatures to assess long-term trends and
inter-annual variation. We constructed a long-term daily record by calculating mean daily
minimum temperature using data from both sites combined (8,217 daily observations
out of a possible 12,419 over 34 years). We summarised these data to a monthly mean time
series for months with more than five observations (372 monthly observations out of a
possible 408 over 34 years).

Finally, we used the shorter (and/or patchier) periods of data available for relative
humidity (2002–2018), solar radiation (2012–2016), wind speed (2012–2016) and aerosol
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optical depth (2014–2017) to assess seasonality and periodicity for these climate
variables. We used night-time relative humidity records (6 PM–6 AM) to avoid errors
associated with direct solar radiation and converted to absolute humidity (g/m3) using
simultaneous temperature records within the R package humidity (Cai, 2018).
We extracted aerosol optical depth data at wavelengths relevant for photosynthetic activity
(440, 500 and 675 nm).

Gridded regional temperature datasets
Because of missing data and lack of simultaneous recording between temperature
equipment at Lopé we also downloaded two widely used gridded regional data products
with which to compare the Lopé data: daily minimum air temperature from the Gridded
Berkeley Earth Surface Temperature Anomaly Field (1� resolution; Rohde et al., 2013)
and monthly mean daily minimum temperature from the Climate Research Unit’s
Time-Series v4.01 of high-resolution gridded data (CRU TS4.01; 0.5� resolution;University
of East Anglia Climatic Research Unit, Harris & Jones, 2017; Harris et al., 2014). Both were
downloaded from http://climexp.knmi.nl/start.cgi for the grid-cell overlapping the SEGC
location (0.2N, 11.6E).

Ocean sea surface temperatures
We downloaded data for four oceanic SST indices from commonly used data sources: the
Multivariate ENSO Index (MEI; Wolter & Timlin, 1993, 1998) sourced from the NOAA
website (https://www.esrl.noaa.gov/psd/enso/mei/index.html), the Indian Ocean Dipole
(IOD) Dipole Mode Index (Saji & Yamagata, 2003) sourced from the NOAA website
(https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/DMI/) and deseasonalised SSTs for
the tropical north Atlantic (NATL, 5�–20�N, 60�–30�W) and the south equatorial Atlantic
(SATL, 0�–20�S, 30�W–10�E) sourced from the NOAA National Weather Service
Climate Prediction Center (http://www.cpc.ncep.noaa.gov/data/indices/). We rescaled all
four SST indices by subtracting the mean and dividing by one standard deviation to
allow direct comparison of their effects. Positive values for MEI indicate El Niño
conditions; positive values for NATL and SATL indicate warm SSTs in those regions while
positive values for IOD indicate cool SSTs in South Eastern equatorial Indian Ocean and
warm SSTs in the Western equatorial Indian Ocean.

Analyses
Seasonality
To characterise the seasonality of each weather variable we calculated mean values from
empirical daily data at three different scales: the mean value for each day of the calendar
year (DOY, fine-scale), the 10-day running mean of DOY (medium-scale) and the
mean value for each calendar month (coarse-scale). To formally assess the periodicity of
each variable we used Fourier analysis. The Fourier transform is a form of spectral
analysis used to calculate the relative strength of all possible regular cycles in time series
data (Bush et al., 2017). We created standardised, complete time series by filling
missing values in monthly time series using the mean value for the corresponding calendar
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month and standardising the data by subtracting the mean and dividing by its standard
deviation. We then computed the Fourier transform for each time series using the
spectrum function from the R Stats package (R Core Team, 2019) and inspected the spectra
plots for peaks that represent strong regular cycles in the data (Bush et al., 2017).

Long-term trends

We used a linear regression framework to test whether rainfall and minimum temperature
had changed over the observation period (1984–2018) using non-interpolated daily data.
We fitted compound Poisson generalised linear mixed models (CPGLMM) for daily
rainfall and linear mixed models (LMM) for minimum daily temperature to account for
their respective data distributions. CPGLMMs are exponential dispersion models based on
the Tweedie distribution and are recommended for daily or monthly rainfall data which
is positive and continuous with many exact zeros (Hasan & Dunn, 2010). We fitted
CPGLMMs using the cplm R package (Zhang, 2013) and LMMs using the lme4 R package
(Bates et al., 2015). DOY was included as a random intercept in all models to account
for seasonality and the hierarchical structure of the data. We fitted initial models with Year
(continuous, rescaled) as the predictor (representing long-term change) and compared
these to intercept-only models (representing no long-term change) preferring simple
models (few parameters) with lowest AIC (significantly different if delta AIC >2).
See R-style model notation below with ε representing residual error not accounted for by
the predictors of the model.

1. Daily Rainfall ~ Year + (1|DOY) + ε

2. Daily Rainfall ~ 1 + (1|DOY) + ε

3. Minimum Daily Temperature ~ Year + (1|DOY) + ε

4. Minimum Daily Temperature ~ 1 + (1|DOY) + ε

We repeated the same procedure for gridded temperature data for Lopé from the daily
Berkeley and monthly CRU datasets. DOY was included as a random intercept within
the models with daily response data and Month was included as a random intercept within
the models with monthly response data.

5. Minimum Daily Temperature (Berkeley) ~ Year + (1|DOY) + ε

6. Minimum Daily Temperature (Berkeley) ~ 1 + (1|DOY) + ε

7. Mean Monthly Minimum Daily Temperature (CRU) ~ Year + (1|Month) + ε

8. Mean Monthly Minimum Daily Temperature (CRU) ~ 1 + (1|Month) + ε

Next we investigated whether trends in rainfall and minimum temperature at Lopé
differed by season. Various seasonal definitions are used throughout the tropics, usually
related to the annual rainfall cycle. We defined our seasons according to Lopé rainfall
climatology where the long dry season extends into September, that is October–November
(ON, the short rainy season), December–February (DJF, the short dry season),
March–May (MAM, the long rainy season) and June–September (JJAS, the long dry
season; Fig. 2A). We included Year (continuous, rescaled), Season (factor with four levels
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Figure 2 Seasonal weather variability at Lopé NP, Gabon. Mean seasonality for (1) daily rainfall
(1984–2018), (B) wind speed (2012–2016), (C and D) minimum and maximum temperatures in the
savanna (2002–2018) and forest (1984–2018), (E and F) absolute humidity in the savanna and forest
(2007–2015), (G) surface solar radiation (2012–2016) and (H) aerosol optical depth at 500 nm (2014–
2017). The thin grey lines indicate the mean values for each day of the calendar year (DOY). The thin
black lines indicate the 7-day running means of DOY and the thick black lines indicate the monthly
means. Vertical dotted lines indicate the alternating rainy and dry seasons.

Full-size DOI: 10.7717/peerj.8732/fig-2

Bush et al. (2020), PeerJ, DOI 10.7717/peerj.8732 12/29

http://dx.doi.org/10.7717/peerj.8732/fig-2
http://dx.doi.org/10.7717/peerj.8732
https://peerj.com/


as above) and their interaction as predictors in initial models to represent long-term
change varying by season. We fitted subsequent models without the interaction term to
represent long-term change not varying by season and compared the models using AIC
values. DOY was included as a random intercept in all models, as before.

9. Daily Rainfall ~ Season + Year + Season: Year + (1|DOY) + ε

10. Daily Rainfall ~ Season + Year) + (1|DOY) + ε

11. Minimum Daily Temperature ~ Season + Year + Season: Year + (1|DOY) + ε

12. Minimum Daily Temperature ~ Season + Year + (1|DOY) + ε

To estimate the magnitude of the trend in each season, rather than comparing to the
global intercept, we modified the best models by temporarily removing the global
intercept. For all models described above we inspected the residuals to check for temporal
autocorrelation using the R package itsadug (Van Rij et al., 2017). None of the median
autocorrelation functions (autocorrelation calculated for each DOY or Month
respectively) showed significant temporal autocorrelation.

Periodicity over time
We used Wavelet analyses to assess if and how the periodicities of the rainfall and
temperature time series have changed over time. The Wavelet transform extends the
Fourier transform into the time-frequency domain and allows identification of cyclic
behaviour that may be transient or change over time (Torrence & Compo, 1998). We used
the complete, standardised monthly time series for rainfall and minimum temperature
(with missing values interpolated from the long-term calendar month mean) and
computed the Wavelet transform using the function wt from the R package biwavelet
(Gouhier, Grinsted & Simko, 2018). From the wavelet transform we plotted the power
(higher power denotes greater fidelity to a certain cycle), significance (a cycle is significant
if >0.95, X2 test) and cone of influence (denoting the unreliable region at the beginning
and end of the time series due to edge effects). We extracted the power of the biannual,
annual and multiannual (mean of the 2–4 year periods) components from the wavelet
spectra to further assess how these dominant cycles have varied over time and contributed
to the trend (Adamowski, Prokoph & Adamowski, 2009). We constrained the upper limit of
the multiannual component to 4 years because longer cycles were heavily influenced by
edge effects.

Oceanic influences
We used wavelet coherence to assess if and how the local weather system at Lopé is
associated with SSTs of the major oceans at interannual scales (Pacific: MEI, Indian Ocean:
IOD and Atlantic Ocean: NATL and SATL). Wavelet coherence is an approach derived
from bivariate wavelet analysis and calculates a measure of the correlation (from 0 to 1)
between two time series (x and y) at all periodicities through time. Wavelet coherence
can be used to identify common oscillatory behaviour, even if that behaviour is
inconsistent (i.e. the time series are ‘non-stationary;’ Grinsted, Moore & Jevrejeva, 2004).
According to Grinsted, Moore & Jevrejeva (2004), strong coherence and consistent phase
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relationships between two carefully selected time series indicate that there may be a
causative relationship. In this study we computed wavelet coherence for all eight
combinations of x (rainfall or minimum temperature monthly time series) against y
(MEI, IOD, NATL or SATL monthly time series) using the function wtc from the
R package biwavelet (Tarik, Aslak & Viliam, 2019) with 1000Monte Carlo randomisations.
To summarise and compare the wavelet coherence between each time series pair we
calculated the ‘global’ time-averaged coherence for each period (Chang et al., 2019).

R code to accompany all analyses described above is made available in Supplemental
Information (Code S1). Permission to conduct this research in Gabon was granted by the
Centre International de Recherches Medicales de Franceville (CIRMF) Scientific Council
and the Ministry of Water and Forests (1986–2010), and by Gabonese National Parks
Agency (ANPN) and the National Centre for Research in Science and Technology
(CENAREST; 2010-present).

RESULTS
Seasonality
Mean total annual rainfall at Lopé from 1984 to 2018 was 1,466 mm ± 201 SD. Rainfall in
this period followed a biannual cycle (Fig. S1) with broad peaks in the rainy seasons (MAM
and ON) when mean daily rainfall was always greater than 5 mm (Fig. 2A). The long
dry season (JJAS) was very consistent, with a 90-day period (mid-June to mid-September)
in which the 10-day running mean was never greater than 1 mm (Fig. 2A). The short dry
season (DJF) by contrast was much less dry (10-day running mean greater than 1 mm)
and more variable between years (Fig. 2A).

Mean daily maximum and minimum temperatures at Lopé were 28.1 �C ± 2.2 SD and
21.9 �C ± 1.1 SD respectively at the forest site (1984–2018) and 31.6 �C ± 2.9 SD and
22.0 �C ± 1.2 SD at the savanna site (2002–2018). Daily temperature range was greater in
the savanna than under the forest canopy (Figs. 2C and 2D). Maximum daily temperature
in the forest showed strong annual and bi-annual cycles while in the savanna only the
annual cycle appeared dominant (Fig. S1). The difference between the two sites occurred
during the short dry season when temperatures were maintained in the savanna at similar
levels to the rainy seasons (10-day running mean always greater than 31.7 �C from
October to May in the savanna; Fig. 2C). In the forest, the highest peaks in maximum daily
temperature occurred in April and September (mean monthly maximum daily
temperatures were 29.5 �C and 28.6 �C respectively; Fig. 2D). Annual cycles dominated the
minimum daily temperature record for both the forest and the savanna (Fig. S1).
Minimum daily temperatures were relatively constant from September to June (~22.5 �C)
followed by a cool period during the long dry season reaching an annual trough in July
(mean monthly minimum daily temperature is 20.6 �C in both the savanna and forest;
Figs. 2C and 2D).

The forest was more humid than the savanna throughout the year (mean absolute
humidity is 21.40 g/m3 and 20.35 g/m3 respectively; Figs. 2E and 2F). Humidity follows the
same annual cycle in both locations (Fig. S1), dropping during the long dry season to reach
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a minima in August and increasing throughout the short rains (ON) to reach a plateau
from January to May (Figs. 2E and 2F).

Both surface solar radiation and wind speed were dominated by annual cycles at Lopé
(Fig. S1), with the long dry season coinciding with low irradiance (mean monthly solar
radiation for July = 129.3 W/m2; Fig. 2G) and elevated wind speeds (mean monthly wind
speeds for August and September are 1.3 m/s and 1.4 m/s respectively; Fig. 2B). Aerosol
optical depth cycled twice yearly (Fig. S1), being elevated during the dry seasons and
suppressed during the rainy seasons (Fig. 2H). In contrast to the solar radiation cycle,
which reached its minima during the long dry season (JJAS), the strongest peak in aerosol
optical depth occurred in the short dry season (mean monthly aerosol optical depth at
500 nm for February = 0.97). Aerosol optical depth at 440 and 675 nm wavelengths is
similar to that at 500 nm (Fig. S2).

Long-term trends
Total annual rainfall decreased by −75 mm per decade, a change of −5.5% relative to
mean annual rainfall for the time period (CPGLMM, Estimated index parameter = 1.6,
Estimated dispersion parameter = 9.7, Estimate = -0.05, SE = 0.02, Z = −2.22,
96% Confidence Interval = −0.10: −0.01; Table 3 and Fig. 3A). However, the slope of the
decline was seasonally dependent (Tables 4 and 5) with no change in daily rainfall in
DJF and ON and significant decline in JJAS (−0.07 mm per day per decade, equating to
−6.35% of mean JJAS daily rainfall).

Minimum daily temperature at Lopé increased at a rate of +0.25 �C per decade,
equivalent to +1.1% relative to mean minimum temperature for the time period (LMM,
Estimate = 0.24; SE = 0.01; T = 24.84; 95% Confidence Interval = 0.22: 0.26; Table 3;
Fig. 3B). The rate of warming also varied by season (Tables 4 and 5) with minimum
temperature increasing most quickly in ON and DJF (+0.31 �C and +0.30 �C per decade
respectively) and most slowly in JJAS (+0.18 �C per decade).

Berkeley minimum daily temperature for the interpolated Lopé grid square (1� resolution)
increased at a rate of +0.16 �C per decade (LMM, Estimate = 0.34, SE = 0.01, T = 23.4, 95%
Confidence Interval = 0.31: 0.37) while the CRU interpolated record (0.5� resolution)
increased by +0.19 �C per decade (LMM, Estimate = 0.63 SE = 0.06, T = 11.2, 95%
Confidence Interval = 0.52: 0.74).

Table 3 Model comparisons to test for long-term trends in rainfall and minimum temperature at
Lopé NP, Gabon (1984–2018). We used a compound poisson generalised linear mixed model for
daily rainfall and a linear mixed model for minimum daily temperature. Day of Year was included as a
random intercept in both models.

Response Model Predictors DF AIC Delta AIC

Rainfall Long-term change Year 4 40,839.6 0.0

No long-term change Intercept only 3 40,842.3 2.7

Temperature Long-term change Year 4 22,909.5 0.0

No long-term change Intercept only 3 23,494.0 584.5

Note:
AIC, Akaike Information Criterion; DF, Degrees of Freedom.
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Periodicity over time
Wavelet analyses gave further indication of the nature of these changes. The dominant
six-month cycle for rainfall was, on average, four times as powerful as the annual
component and 66 times as powerful as the multi-annual component and remained

Figure 3 Inter-annual variation, long-term trends and periodicity for rainfall and temperature at
Lopé NP, Gabon. (A) The grey lines indicate inter-annual variation and the black line indicates the
long-term trend for total annual rainfall (1984–2018) derived from a compound poisson generalised
linear mixed model. (B) The grey dots indicate raw daily data summarised to monthly means and the
black line indicates the long-term trend for minimum daily temperature (1984–2018) derived from a
linear mixed model. (C and D) Wavelet transforms of the standardised monthly time-series for total
monthly rainfall and mean minimum daily temperature. The faded region indicates the “cone of
influence” where end effects make the data unreliable. The colour indicates the power of the cycle at each
time period, red, high power and blue, low power. Bold black lines indicate cycles with significant power
(Chi-sq test). (E and F) Extracted wavelet components for the biannual, annual and multi-annual (mean
of 2–4 years) periods from the wavelet transforms, adjusted for edge effects. Both (E) and (F) share the
same legend. Full-size DOI: 10.7717/peerj.8732/fig-3
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significant for most of the time period (Fig. 3C). However, the signal of the biannual cycle
weakened on three occasions (1996–97, 2004 and 2006; Fig. 3C). Over time, the signal of
the biannual rainfall cycle appeared to decrease while the annual cycle strengthened
(Fig. 3E). The annual cycle for minimum temperature was, on average, three times as
powerful as the biannual component and 23 times as powerful as the multi-annual
component (Fig. 3F). The signal of the annual cycle remained dominant throughout most
of the time period with patches of low power at the end of the 1980s and between 2007 and
2010 (Fig. 3D). There were patches of high power in the multiannual component around
2000. The signal of both the annual and semi-annual components appear to have been
increasing in strength over time (Fig. 3F).

Table 4 Model comparisons to test for long-term trends in rainfall and minimum temperature
varying by season at Lopé NP, Gabon (1984–2018). We used a compound poisson generalised linear
mixed model for daily rainfall and a linear mixed model for minimum daily temperature. Day of Year
and was included as a random intercept in both models.

Response Model Predictors DF AIC Delta AIC

Rainfall Long-term change by season Year × Season 10 40,506.2 0.0

Long-term change not by season Year + Season 7 40,519.5 13.3

Temperature Long-term change by season Year × Season 10 22,572.8 0.0

Long-term change not by season Year + Season 7 22,582.4 9.6

Note:
AIC, Akaike Information Criterion; DF, Degrees of Freedom.

Table 5 Outputs from the best models for long-term trends in rainfall and minimum daily
temperature varying by season at Lopé NP, Gabon (1984–2018). The estimates derive from a com-
pound poisson generalised linear mixed model for daily rainfall and a linear mixed model for minimum
daily temperature. Day of Year was included as a random intercept in both models.

Response Predictor Estimate SE T Lower 95% CI Upper 95% CI

Rainfall DJF 0.99 0.09 10.45 0.81 1.17

JJAS −0.82 0.09 −8.97 −1.00 −0.64

MAM 1.67 0.09 18.32 1.49 1.85

ON 1.93 0.11 17.42 1.71 2.15

Year: DJF 0.03 0.05 0.62 −0.07 0.13

Year: JJAS −0.28 0.06 −5.08 −0.40 −0.16

Year: MAM −0.06 0.04 −1.38 −0.14 0.02

Year: ON 0.00 0.05 −0.06 −0.10 0.10

Temperature DJF 22.30 0.04 534.23 22.22 22.38

JJAS 21.22 0.04 595.76 21.14 21.30

MAM 22.33 0.04 542.42 22.25 22.41

ON 21.97 0.05 433.78 21.87 22.07

Year: DJF 0.30 0.02 15.13 0.26 0.34

Year: JJAS 0.17 0.02 10.42 0.13 0.21

Year: MAM 0.25 0.02 12.92 0.21 0.29

Year: ON 0.30 0.02 12.33 0.26 0.34

Note:
SE, Standard Error; T, T value; CI, Confidence Interval.
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Oceanic influences
Wavelet coherence analyses showed that the ENSO index (MEI) had the strongest
coherence with both rainfall and temperature at Lopé over the last three decades at
multi-annual scales (2–4 years; Figs. 4; Fig. S3). However, the influence of ENSO has been
patchy through time; Coherence between ENSO and rainfall was particularly strong
pre-1990 and between 2007 and 2012 (Fig. 4A) while coherence between ENSO and
minimum temperature was fairly consistent pre-2000 and has become weaker since
(Fig. 4B). SSTs of the southern tropical Atlantic showed strong coherence with Lopé
rainfall pre-2000 while SSTs of the northern tropical Atlantic showed strong coherence
with Lopé rainfall post-2000 at multi-annual scales (4–8 years; Figs. 4C and 4E; Fig. S3).
SATL cycled in phase with Lopé rainfall (arrows point to the right) while NATL cycled in
anti-phase during the 2005–2010 period (arrows point to the left; Figs. 4C and 4E). Within
the reliable region of the wavelet coherence plots (away from edge effects) the IOD does
not appear to have had a particularly strong or consistent relationship with either
rainfall or temperature at Lopé (Figs. 4G and 4H; Fig. S3).

DISCUSSION
Our results
Lopé weather has changed significantly over the last three decades, warming at a rate of
+0.25 �C per decade (minimum daily temperature) and drying at a rate of −75 mm per
decade (total annual rainfall; Figs. 3A and 3B). Both trends are seasonally dependent
(Table 4); with significant warming occurring in all seasons, being most pronounced from
October to February (see model estimates in Table 5). The rainfall decline occurred
predominately between March and September, incorporating both the long rainy season
and the long dry season (see model estimates in Table 5). The drying trend at Lopé
supports observations of reduced Ogooué river flow from March to September
(Mahe et al., 2013) and precipitation declines evident from gridded gauge-data for the
Gabon/Cameroon region (−1% total annual rainfall, 1968–1998; Malhi & Wright, 2004).
However, the Lopé total annual rainfall decline of −5.5% per decade exceeds the trend
estimated from the regional gauge-data. While the strength of the biannual cycle in rainfall
appears to be declining at Lopé along with the overall long-term trend, the annual
component is getting more powerful. Declines in rainfall in the long dry season
(June–September) but not the short dry season (December–February) are likely to be
contributing to an increased contrast between the two dry seasons and enhancing the
overall annual rainfall cycle (Table 5).

The warming trend recorded at Lopé is greater than that estimated for the location over
the same time period using the Berkeley and CRU gridded datasets (+0.16 �C and +0.19 �C
respectively) and that identified using satellite data for mean annual temperature for
all tropical Africa (+0.15 �C, 1979–2010; Collins, 2011). However, it is lower than the
change estimated from gridded observational data (CRU) for mean annual temperature
specifically for African tropical forests (+0.29 �C per decade, 1976–1998; Malhi &
Wright, 2004). While there remain issues with the Lopé temperature data record
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Figure 4 The influence of oceanic sea surface temperatures on weather at Lopé NP, Gabon. Wavelet
coherence plots for all eight combination of x against y: (A) Rainfall against the Multivariate ENSO Index
(MEI), (B) minimum temperature against MEI, (C) rainfall against northern tropical Atlantic sea surface
temperatures (NATL), (D) minimum temperature against NATL, (E) rainfall against southern equatorial
Atlantic sea surface temperatures (SATL), (F) minimum temperature against SATL, (G) rainfall against
the Indian Ocean Dipole (IOD) and (H) minimum temperature against IOD. The coloured region
indicates the reliable data within the “cone of influence” away from edge effects. The colour indicates the
strength of coherency between the time series at each period through time, red, high coherency and blue,
low coherency. Bold black lines indicate areas with significant coherency (derived from Monte Carlo
randomizations). Arrows indicate the phase relationship between the time series within areas of strong
coherency. Arrows pointing to the right mean that x and y are in phase. Arrows pointing to the left mean
that x and y are in anti-phase. Arrows pointing up mean that y leads x by π/2. Arrows pointing down
mean that x leads y by π/2. Full-size DOI: 10.7717/peerj.8732/fig-4
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(lack of simultaneous recording to calibrate data recorded using different equipment),
there is good evidence from supporting datasets and the literature that the warming trend
observed at the site since 1984 is real. The slower warming trend in the already cool, long
dry season is likely to account for the apparent increase in the power of the annual cycle for
Lopé minimum temperature.

Our analysis of seasonality at Lopé further serves to emphasise the ecological
importance of the long dry season in western equatorial Africa; 3–4 months of dry (almost
no rainfall for 90 consecutive days), cool (mean maximum daily temperature is 2.5 �C
lower in July compared to April) and windy conditions with low humidity and limited light
availability (Fig. 2). Such a defined dry season poses specific constraints to the biota and is
likely to act as a temporal marker for ecological events, similar to a winter event in
temperate regions. The response of the plant community to recurrent and predictable
drought during the long dry season could be used to estimate the long-term response to
drying over multi-annual time scales (Detto et al., 2018).

Reduced light availability during the long dry season in the Gabon region is most
strongly associated with seasonal low-level cloud cover (Philippon et al., 2019). Aerosol
load may also have a seasonal influence on light availability as aerosol optical depth and
solar radiation appear to cycle in anti-phase although we are not able to tease apart their
relative importance in this analysis (Fig. 2). Low direct solar radiation and cool
temperatures will reduce water demand during these months (e.g. potential
evapotranspiration is less than 2.3 mm per day during the long dry season in SW Gabon;
Philippon et al., 2019) and are likely contributors to the forest’s ability to maintain an
evergreen canopy despite seasonal drought. Unsurprisingly, the savanna and forest
experience different microclimates because the forest canopy creates a more humid, cooler
climate throughout the year with a reduced range between daytime and night-time
temperatures (Fig. 2). It is possible that the forest may also directly enhance water supply
for plants during periods of low precipitation/high cloud cover due to foliar interception
of low-lying clouds. At subtropical forest site (~1,000 m above sea level), foliar
interception has shown to contribute an additional 40% of moisture compared to rainfall
(Hutley et al., 1997) meaning that rain gauge data does not always accurately represent the
water balance of the forest ecosystem (Philippon et al., 2019). While we do not have
information on foliar interception of clouds at our study site (~280 m above sea level), the
hydroclimatic conditions of the region do not predict occurrence of cloud-affected forest
here (Oliveira et al., 2014). We can assume that the impact of cloud interception on
water supply is negligible, although it may occur on forested hills above 600 m (e.g. the hill
local to the study station known as The Camel which reaches 678 m). A dedicated research
agenda would be needed to assess the any direct contribution of clouds to moisture
availability, especially during the cloudy dry seasons.

We have also shown that variability in temperature and rainfall at our site is strongly
influenced by global weather patterns. The most important influence on Lopé temperature
is the Pacific ENSO index, with our analysis showing strong coherence between these
two datasets on multi-annual scales, especially pre-2000 (Fig. 4). This result is supported
by a continent-wide study showing warming throughout Africa in El Nino years
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(Collins, 2011). None of the other oceanic indices appeared to influence Lopé temperature
in a consistent way (Fig. 4). As for Lopé rainfall, the most important influence appears
to be the tropical Atlantic. Rainfall cycled in phase with southern tropical Atlantic
SSTs pre-2000 and in anti-phase with northern tropical Atlantic SSTs post-2000 on
multi-annual scales (Fig. 4). The phase relationships between these data series indicate that
higher than average rainfall at Lopé coincides with warm conditions in the south tropical
Atlantic and cool conditions in the north tropical Atlantic. This result is supported by
a number of other studies; Camberlin, Janicot & Poccard (2001) show the Atlantic dipole
(cool temperatures in the north Atlantic and warm temperatures in the south tropical
Atlantic) to be associated with higher than average rainfall in the region during
March–May. Similarly, Balas, Nicholson & Klotter (2007) and Otto et al. (2013)
demonstrate how warm conditions in the southern equatorial Atlantic (especially the
Benguela coast) coincide with enhanced rainfall in the region during the dry seasons.
ENSO also appears to have some influence on Lopé rainfall although the relationship is
patchy (Fig. 4). The anti-phase relationship during periods of strong coherence in our
analysis indicates that rainfall decreases at Lopé during El Nino events. A similar result was
found among the major studies summarised in Table 1. Finally, we found little evidence of
the influence of the Indian Ocean on Lopé rainfall despite published data showing reduced
rainfall in western equatorial Africa coinciding with positive IOD modes (Dezfuli &
Nicholson, 2013; Nicholson & Dezfuli, 2013; Otto et al., 2013).

Model projections of future rainfall in western equatorial Africa cover a broad spectrum
and as a result, averaged model trends are close to zero. However, those models that
predict drying in the region incorporate a northward shift of the rainbelt, related to cool
conditions in the Gulf of Guinea (the Atlantic Cold Tongue; James, Washington & Rowell,
2013; Fig. 1). The strong coherence between Lopé rainfall and SSTs of the southern
equatorial Atlantic (0�–20�S) at multi-annual scales in our study provides some support
for the mechanisms behind these ‘dry’ models. Indeed, Atlantic SSTs and circulation
patterns have been an important influence on Congo Basin precipitation for the past
20,000 years (Schefuss, Schouten & Schneider, 2005). Overall, our work supports the idea
that the drivers of rainfall variability in western equatorial Africa are highly complex,
with strong local and seasonal forcing from the major oceans. Land topography (e.g. the
highlands of Gabon, Cameroon and eastern Africa) is also likely to be a major
influence on highly localised expressions of rainfall and rainfall variability in the region
(Balas, Nicholson & Klotter, 2007; Dezfuli, Zaitchik & Gnanadesikan, 2015).

Data quality and availability
One of the major issues with climate analyses in Central Africa is the already limited and
declining amount of publicly available data from weather stations in the region: The
nearest weather stations to Lopé listed on the Global Historical Climatology Network
(GCHN) Daily Database (Menne et al., 2012) are between 136 and 185 km away and there
are no public data available since 1980. The World Meteorological Organisation has a
minimum recommended density of weather stations eight times higher than the modern
density of weather stations in Africa (Collins, 2011). This lack of data has a direct impact
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on the quality of gridded climate data products (Suggitt et al., 2017) and leads to an
inability to calculate daily climatic indices for the extremes (Niang et al., 2014). Gabon is
also one of the cloudiest places on earth (http://www.acgeospatial.co.uk/the-cloudiest-
place/) which leads to large uncertainties in satellite estimates, with some satellite
algorithms overestimating rainfall in the region by at least a factor of two (Balas,
Nicholson & Klotter, 2007). Finally, poor correlation between Central African rainfall and
neighbouring regions, as well as variability between individual stations, suggests much
local influence and further confounds the challenges of sparse data (Balas, Nicholson &
Klotter, 2007).

The importance of maintaining long-term study sites and improving the quality and
type of weather measurements in the region has been known for some time (Clark, 2007).
However, the region is remote and there are many financial, logistical and political
challenges to face when servicing field stations. One such issue is that western equatorial
Africa has the highest frequency of lightning strike in the world (Balas, Nicholson &
Klotter, 2007) leading to difficulties and great expense maintaining equipment. Lightning
damage is an issue regularly confronted at Lopé and has led to major gaps in our data
record. While automatic continuous measurements can provide vast amounts of detailed
data relevant for ecological studies, they are also inherently more susceptible to
technical failures that need expert fixes. In our experience, data gaps are more likely to go
unnoticed with automatic data collection and so while we welcome new automatic
methods, we recommend maintaining long-term manual records alongside for
consistency.

CONCLUSIONS
The long-term Lopé weather record has not previously been made public and is of high
value in such a data poor region. Our results support regional analyses of climatic
seasonality, long-term warming and the influences of the oceans on temperature and
rainfall variability. However, there are some surprises; warming has occurred more rapidly
than the regional products suggest and while there remains much uncertainty in the
wider region, reduced rainfall over the last three decades at Lopé is in agreement with
drying trends evident from less recent observational data for western equatorial Africa.
The influence of the southern equatorial Atlantic (Atlantic cold tongue) on rainfall at Lopé
lends support to the mechanism behind ‘dry’ models of future rainfall in the region.

With a climatic regime delivering on average less than 1,500 mm per year, Lopé is a
globally anomalous region for evergreen tropical forest (Reich, 1995). Reduced water
demand during the cloudy, light-deficient long dry season is likely to be the major factor
facilitating persistence of evergreen forests despite seasonal drought (Philippon et al.,
2019). It is essential that we understand the sensitivity of this seasonal cloudiness to ocean
temperatures, and the viability of forest in this dry region should the clouds disappear and
thus water demand increase during the seasonal drought.

We know from historic analyses that, while forests in this region have been resilient to
certain levels of climatic change, they have also been susceptible to shifts back and forth
between evergreen humid forests and open, fire-prone, dry forest systems and even

Bush et al. (2020), PeerJ, DOI 10.7717/peerj.8732 22/29

http://www.acgeospatial.co.uk/the-cloudiest-place/
http://www.acgeospatial.co.uk/the-cloudiest-place/
http://dx.doi.org/10.7717/peerj.8732
https://peerj.com/


savannas when changes tip over certain thresholds (Brncic et al., 2006; Willis et al., 2013).
The community shifts associated with drier and warmer climates have often been
non-linear and dependent on ecosystem-specific resilience at local and regional scales
(Willis et al., 2013). Carbon fertilisation and dry season cloudiness may be shielding
African humid forests from the impacts of drying and warming at present. However, we
urgently need reliable information on current climate and forest function and reduced
uncertainties in future projections of change to inform climate change risk assessments for
the western equatorial region of Central Africa.
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