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ABSTRACT
Aims. To identify the common and specific molecular mechanisms of three well-
defined subtypes of endometriosis (EMs): ovarian endometriosis (OE), peritoneal
endometriosis (PE), and deep infiltrating endometriosis (DIE).
Methods. Four microarray datasets: GSE7305 and GSE7307 for OE, E-MTAB-694 for
PE, and GSE25628 for DIE were downloaded from public databases and conducted
to compare ectopic lesions (EC) with eutopic endometrium (EU) from EMs patients.
Differentially expressed genes (DEGs) identified by limma package were divided into
two parts: common DEGs among three subtypes and specific DEGs in each subtype,
both of which were subsequently performed with the Kyoto Encyclopedia of Genes
(KEGG) pathway enrichment analysis. The protein-protein interaction (PPI) network
was constructed by common DEGs and five hub genes were screened out from the
PPI network. Besides, these five hub genes together with selected interested pathway-
related genes were further validated in an independent OE RNA-sequencing dataset
GSE105764.
Results. A total of 54 EC samples from three EMs subtypes (OE, PE, DIE) and 58
EU samples were analyzed, from which we obtained 148 common DEGs among three
subtypes, and 729 specific DEGs in OE, 777 specific DEGs in PE and 36 specific DEGs
in DIE. The most enriched pathway of 148 shared DEGs was arachidonic acid (AA)
metabolism, in which most genes were up-regulated in EC, indicating inflammation
was the most common pathogenesis of three subtypes. Besides, five hub genes AURKB,
RRM2, DTL, CCNB1, CCNB2 identified from the PPI network constructed by 148
shared DEGs were all associated with cell cycle and mitosis, and down-regulated
in EC, suggesting a slow and controlled proliferation in ectopic lesions. The KEGG
pathway analysis of specific DEGs in each subtype revealed that abnormal ovarian
steroidogenesis was a prominent feature in OE; OE and DIE seems to be at more risk of
malignant development since both of their specific DEGs were enriched in the pathways
in cancer, though enriched genes were different, while PE tended to be more associated
with dysregulated peritoneal immune and inflammatory microenvironment.
Conclusion. By integrated bioinformatic analysis, we explored common and specific
molecular signatures among different subtypes of endometriosis: activated arachidonic
acid (AA) metabolism-related inflammatory process and a slow and controlled
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proliferation in ectopic lesions were common features in OE, PE and DIE; OE and
DIE seemed to be at more risk of malignant development while PE tended to be more
associated with dysregulated peritoneal immune and inflammatorymicroenvironment,
all of which could deepen our perception of endometriosis.

Subjects Bioinformatics, Gynecology and Obstetrics, Women’s Health
Keywords Bioinformatic analysis, Differentially expressed genes, Microarray, Endometriosis,
Subtype

INTRODUCTION
Endometriosis (EMs), characterized by the growth of endometrium-type tissue outside
the uterine cavity, is a common and usually chronic (long-term) inflammatory disorder,
affecting 5–10% of women in their reproductive years (Zondervan et al., 2018). EMs is also
considered as a phenotypically heterogeneous condition not only due to diverse symptoms,
such as infertility, pelvic pain or dysmenorrhea but also different lesion locations,
predominantly but not exclusively, in the pelvic compartment (Vercellini et al., 2014). Since
the classic retrograde menstruation hypothesis (Sampson, 1927) that during menstrual
uterine contractions, endometrial fragments via trans-tubal reflux flowed to implant
onto the peritoneum and abdominal organs could not explain the fact that 76–90% of
women experienced retrogrademenstruation but not all of these women suffered from EMs
(Blumenkrantz et al., 1981), theremust exist othermechanisms facilitating the development
of EMs. On the other hand, as early as 1997, Nisolle and Donnez provided morphological
and histochemical evidence indicating that three main subtypes of endometriosis: ovarian
endometriosis (OE), peritoneal endometriosis (PE), and deep infiltrating endometriosis
(DIE), should be considered different entities, though they shared the histologic features of
endometrial glands and stroma (Nisolle & Donnez, 1997). Thus, investigating the common
and specific mechanisms among different EMs subtypes may provide new insight into the
pathogenesis of endometriosis. However, due to the limited information as well as samples
available from single cohorts, few integrative analyses of EMs subtypes were conducted.

Therefore, in this article, we analyzed the microarray datasets GSE7305 and GSE7307 of
OE, E-MTAB-694 of PE, and GSE25628 of DIE to obtain common differentially expressed
genes (DEGs) among three EMs subtypes along with specific DEGs in each subtype by
comparing ectopic lesions (EC) with eutopic endometrium (EU) from EMs patients. Then,
the Kyoto Encyclopedia of Genes (KEGG), protein-protein interaction (PPI) network and
validation analysis were performed to analyze these common and specific DEGs (Fig. 1).
Overall, all results were combined to promote further understanding of different EMs
subtypes and reveal a more thorough landscape of EMs.

MATERIALS & METHODS
Data resources
The search for endometriosis-related microarray datasets was conducted in two
public databases: Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) and
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Figure 1 The flowchart of integrative analysis of microarray datasets from three different endometrio-
sis subtypes. Abbreviations: OE, ovarian endometriosis; PE, peritoneal endometriosis; DIE, deep infil-
tering endometriosis; DEGs, differentially expressed genes; KEGG, KyotoEncyclopedia of Genes; PPI,
protein-protein interaction.

Full-size DOI: 10.7717/peerj.8730/fig-1

Array-Express (https://www.ebi.ac.uk/ar-rayexpress/). The keywords: ‘endometriosis’,
‘endometrium’, ‘tissue’, ‘homo sapiens’ or ‘human’ respectively with ‘ovarian’, ‘peritoneal’,
‘DIE’, ‘deep’ or ‘infiltrating’ were employed to mine the datasets for three EMs subtypes.
Additionally, all selected datasets were based on Affymetrix platforms to reduce the
‘platform effect’ due to different probe designs among different companies. Finally, four
datasets were included: GSE7305 andGSE7307 forOE, E-MTAB-694 for PE, andGSE25628
for DIE (Table 1), all of which contained at least 8 samples for both ectopic lesions (EC)
and eutopic endometrium (EU) from the EMs patients. A total of 54 EC samples from
these datasets of different EMs subtypes and 58 EU samples were included.
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Table 1 Basic information of the microarray datasets of three different EMs subtypes.

Subtype Accession Platform No. of
probes

No. of samples
(EU/EC, whether
paired)

Tissue stage References

OE GSE7305 GPL570 [HG-
U133_Plus_2]

54,675 20 (10/10, paired) 2 Follicular phases
and 8 Luteal phases

Hever et al. (2007)

GSE7307 GPL570 [HG-
U133_Plus_2]

54,675 41 (23/18, unknown) Unpublished Unpublished

PE E-MTAB-694 GPL570: [HG-
U133_Plus_2]

54,675 35 (17/18, most were
paired)

8 Proliferative phases
and 9 Secretory
phases

Sohler et al. (2013)

DIE GSE25268 GPL571: [HG-
U133A_2]

22,277 16 (08/08, paired) 16 Proliferative
phases

Crispi et al. (2013)

Notes.
EMs, endometriosis; OE, ovarian endometriosis; PE, peritoneal endometriosis; DIE, deep infiltrating endometriosis; EU, eutopic endometrium; EC, ectopic lesions.

Besides, all EC and EU samples in GSE7305 and GSE25628, as well as most in
E-MTAB-694, were paired, meaning they were obtained from the same patients. The
information on patients’ clinical characteristics in E-MTAB-694 for PE and GSE25628 for
DIE were provided in the Tables S1 and S2 according to the original articles (Crispi et al.,
2013; Sohler et al., 2013). However, the clinical information of patients was unavailable in
the two datasets for OE: GSE7305 (not provided by the original article (Hever et al., 2007))
and GSE7307 (not originally published). Since our analysis did not involve any experiment
on humans or animals directly, ethical approval was not necessary.

Data preprocessing
The raw data CEL files and group information of four datasets were downloaded from
the GEO and Array-Express database. Firstly, the CEL files of GSE7305 and GSE7307 of
subtype OE were combined into an integrated dataset, which was subsequently named the
‘merged OE dataset’. Then, CEL files of this ‘merged OE dataset’ as well as the individual
PE dataset E-MTAB-694 and DIE dataset GSE25628 were read by ‘Affy’ R package (Gautier
et al., 2004), and further processed by the robust multi-array average (RMA) method for
background correction, normalization, and expression calculation (Irizarry et al., 2003).
Moreover, the ‘ComBat’ function in the SVA R package (Leek et al., 2012) was utilized
to adjust the batch effects in the merged OE dataset, and then the principal component
analysis (PCA) was applied to assess the performance of the batch effect adjustment.
Also, the individual PE and DIE datasets were performed with PCA analysis to visualize
sample distributions. Furthermore, probes were annotated according to the annotation
files provided by Affymetrix official website (http://www.affymetrix.com/), and unmatched
probes were abandoned.

Identification of DEGs
After pretreatment, R package limma (Ritchie et al., 2015) was applied to filtrate DEGs
of these three datasets: the merged OE dataset of GSE7305 and GSE7307, the individual
PE dataset E-MTAB-694 and DIE dataset GSE25628, respectively, with the cutoff criteria:
|log2 fold change (FC)|>1 and p-value < 0.05. Additionally, the intersection analysis was
conducted among three sets of DEGs.
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KEGG pathway enrichment analysis
To explain common pathogenesis among three EMs subtypes (OE, PE, and DIE), KEGG
pathway enrichment analysis of shared DEGs among the merged OE dataset of GSE7305
and GSE7307, the individual PE dataset E-MTAB-694 and DIE dataset GSE25628 was
performed by DAVID (http://david.abcc.ncifcrf.gov/), an online tool for comprehensive
functional annotation of genes and proteins. Furthermore, to explore specific pathogenesis
of these three subtypes, specific DEGs in each dataset were also conducted with KEGG
pathway enrichment analyses by DAVID. A threshold of p-value < 0.05 was utilized to
filter all KEGG pathways, which were also ranked by the p-value.

Validation of interested pathway-related genes in GSE105764
Considering all training datasets were comprised of microarray data, we intended to
validate interested pathways related genes, for example, the most enriched pathway of
common DEGs or representative pathways in the certain subtype, in RNA-sequencing
datasets. However, due to the lack of PE and DIE RNA-sequencing datasets in searching
results, we only performed the validation analysis in an OE RNA-sequencing dataset
GSE105764 from the GEO database, which contained 8 paired EC and EU tissue samples
based on GPL20301 (Illumina HiSeq 4000) (Zhao et al., 2018). The raw read counts were
calculated by the DEseq2 R package (Love, Huber & Anders, 2014) to obtain the DEGs.
Additionally, we also listed the expression of selected genes in the previously analyzed
results of microarray datasets as a comparison.

PPI networks construction and identification of hub DEGs
The identified common DEGs among three EMs subtypes were uploaded to the online
database STRING (http://string-db.org/; version 11.0) to explore their interactions at the
protein level, with an interaction score> 0.4 as the cutoff value. Afterward, the PPI network
was visualized in software Cytoscape (version 3.6.1) and analyzed by the ‘Degree method’
in plugin Cytohubba to identify the top 5 hub nodes in the network.

Validation analysis of hub DEGs in GSE105764
We also performed the validation analysis of the top 5 hub DEGs identified from the
PPI network constructed of 148 common DEGs among three EMs subtypes in the OE
RNA-sequencing dataset GSE105764. Additionally, we also listed the expression of these
hub genes in the previously analyzed results of microarray datasets as a comparison.

RESULTS
Data preprocessing and Identification of DEGs
After combing the expression data, the merged OE dataset of GSE7305 and GSE7307
included 33 EU and 28 ovarian EC samples. Besides, the individual PE dataset E-MTAB-694
contained 17 EU and 18 peritoneal EC samples, and the individual DIE dataset GSE25628
comprised 8 EU and 8 deep infiltrating EC samples. After normalization of raw data in
these datasets, boxplots were depicted, showing even mean values of gene expression in
each sample. (Fig. S1). Moreover, the principal component analysis (PCA) was performed
to examine the differences between EC and EU groups (Figs. 2A, 2B and 2C).
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Figure 2 Principal component analysis (PCA) and identification of differentially expressed genes
(DEGs) in each EMs subtype dataset. (A), (B), (C) After normalization of raw data in the merged OE
dataset of GSE7305 and GSE7307, the individual PE dataset E-MTAB-694 and the DIE dataset GSE25628,
the principal component analysis (PCA) was performed to examine the differences between EC and EU
groups; (D), (E), (F) Volcano plots of the distributions of DEGs between EC and EU in the merged OE
dataset of GSE7305 and GSE7307, the individual PE dataset E-MTAB-694 and the DIE dataset GSE25628.
DEGs with log2FC > 1 were shown in red dots; DEGs with log2FC < −1 were in green dots (P < 0.05).
No significantly changed genes are marked as black dots. EMs, endometriosis; OE, ovarian endometriosis;
PE, peritoneal endometriosis; DIE, deep infiltrating endometriosis; EC, ectopic lesions; EU, eutopic en-
dometrium; log2FC, log2 Fold Change.

Full-size DOI: 10.7717/peerj.8730/fig-2
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Full-size DOI: 10.7717/peerj.8730/fig-3

Subsequently, analyzed by the R package limma (Ritchie et al., 2015) with the threshold
of |log2 FC| >1 and p-value < 0.05, a total of 744 upregulated as well as 626 downregulated
DEGs were obtained from the merged OE dataset of GSE7305 and GSE7307, along
with 731 upregulated and 772 downregulated DEGs from the individual PE dataset
E-MTAB-694, and 268 upregulated and 77 downregulated DEGs from the individual
DIE dataset GSE25628. Volcano plots were depicted for the visualization of DEGs in each
dataset (Figs. 2D, 2E and 2F). The intersection analysis indicated that 148 genes were
common to three datasets, 729 DEGs specific to the merged OE dataset, 777 DEGs specific
to the individual PE dataset and only 36 DEGs specific to the individual DIE dataset owing
to relatively fewer probes in this dataset, as shown in the Venn diagram (Fig. 3A).

KEGG enrichment analysis of common and specific DEGs
Based on the KEGG analysis from the online tool DAVID, 148 common DEGs were mainly
enriched in the pathways of arachidonic acid (AA) metabolism, vascular smooth muscle
contraction, drug metabolism-cytochrome P450, complement and coagulation cascades,
tyrosine metabolism, according to the p-value ranking (Fig. 3B).

Likewise analyzed by DAVID, KEGG analysis showed that the top5 significantly
enriched pathways of 729 specific DEGs in the merged OE dataset of GSE7305 and
GSE7307 were staphylococcus aureus infection, PI3K-Akt signaling pathway, ovarian
steroidogenesis, Rap1 signaling pathway, and cell adhesion molecules (CAMs) (Fig. 3C);
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Table 2 The top five enriched KEGG pathways of commonDEGs among three EMs subtypes datasets and specific DEGs in each EMs subtype
dataset.

Category of DEGs KEGG ID Pathway description Count P-value Enriched Genes

hsa00590 Arachidonic acid
metabolism

4 0.023854965 GGT5, CYP2J2, PTGIS,
PLA2G2A

hsa04270 Vascular smooth muscle
contraction

5 0.030857192 ACTG2, AGTR1,
ACTA2, PLA2G2A,
MYL9

hsa00982 Drug metabolism - cy-
tochrome P450

4 0.031595883 FMO1, FMO2, AOX1,
ADH1B

hsa04610 Complement and coagu-
lation cascades

4 0.032797081 C7, THBD, C3, CFH

148 commonDEGs among the
merged OE dataset of GSE7305
and GSE7307, the individual PE
dataset E-MTAB-694 and DIE
dataset GSE25628

hsa00350 Tyrosine metabolism 3 0.048956335 AOX1, ADH1B, AOC3
hsa05150 Staphylococcus aureus

infection
14 2.19096E-07 HLA-DQB1, ICAM1,

C3AR1, C5AR1,
MASP1, CFB, C1R,
ITGB2, C1S, C1QC,
HLA-DQA1, FCGR2C,
FCGR2A, C2

hsa04151 PI3K-Akt signaling
pathway

32 4.06007E-05 FGFR2, FGFR3, OSMR,
FGF9, TNC, ITGA11,
FGF13, KIT, LPAR1,
ITGB8, IL4R, COL27A1,
PIK3AP1, ANGPT1,
GNG2, GNG4, THBS1,
COL11A1, INSR,
PPP2R2C, PIK3R1, FN1,
MET, NR4A1, IGF1,
CCND1, CDKN1A,
ITGA6, PRLR, VEGFA,
PDGFRA, JAK3

hsa04913 Ovarian steroidogenesis 10 0.00016359 CYP17A1, PLA2G4A,
PTGS2, CYP11A1,
STAR, IGF1, SCARB1,
ALOX5, INSR, BMP6

hsa04015 Rap1 signaling pathway 22 0.000172943 FGFR2, FGFR3, FGF9,
MET, SIPA1L2, IGF1,
ITGB2, FGF13, LPAR1,
KIT, DOCK4, RASSF5,
PLCB4, ID1, VEGFA,
PDGFRA, RAPGEF5,
ANGPT1, THBS1,
PLCB1, INSR, PIK3R1

729 specific DEGs in the merged
OE dataset of GSE7305 and
GSE7307

hsa04514 Cell adhesion molecules
(CAMs)

17 0.00026996 HLA-DQB1, ICAM1,
PTPRC, MAG, CLDN4,
CADM1, ITGB2,
CLDN11, CDH3,
HLA-DQA1, CD86,
ITGA6, ITGB8, CNTN1,
CNTNAP2, VCAN,
JAM3
(continued on next page)
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Table 2 (continued)

Category of DEGs KEGG ID Pathway description Count P-value Enriched Genes

hsa04060 Cytokine-cytokine re-
ceptor interaction

21 0.002513955 CXCL1, TNFRSF21,
IL2RB, CSF1, CXCL3,
IL19, LIFR, CD40,
CCL4, LEP, LIF, CCL13,
TNFRSF10B, PPBP,
CCL20, CXCR4, CCR2,
TNFRSF18, CSF2RB,
BMPR1B, CSF1R

hsa04514 Cell adhesion molecules
(CAMs)

14 0.005814763 F11R, NRXN3, SELL,
ICAM2, L1CAM,
CD40, ITGA4, HLA-E,
CDH5, SIGLEC1, SDC1,
CLDN1, ESAM, CD28

hsa04670 Leukocyte transendothe-
lial migration

12 0.00786069 F11R, EZR, VAV3,
CXCR4, MAPK13,
CLDN1, ESAM, TXK,
ITGA4, CDH5, PRKCB,
VCL

hsa04923 Regulation of lipolysis in
adipocytes

8 0.007916063 ADCY4, ADRB2,
PLIN1, ADCY5, NPY1R,
PRKG1, TSHR, LIPE

777 specific DEGs in the indi-
vidual PE dataset E-MTAB-694

hsa04650 Natural killer cell-
mediated cytotoxicity

11 0.029482747 CD48, PRF1, VAV3,
TNFRSF10B, ICAM2,
KIR2DS2, GZMB,
KIR2DL3, KIR2DL2,
KIR2DL4, PRKCB

hsa05200 Pathways in cancer 5 0.013783298 COL4A3, PTGER3,
COL4A6, RAD51, F2R36 specific DEGs in the individ-

ual DIE dataset GSE25628 hsa05146 Amoebiasis 3 0.027515834 COL4A3, ARG2,
COL4A6

Notes.
KEGG, Kyoto Encyclopedia of Genes; DEGs, differentially expressed genes; EMs, endometriosis; OE, ovarian endometriosis; PE, peritoneal endometriosis; DIE, deep infil-
trating endometriosis.

the top5 significantly enriched pathways of 777 specific DEGs in the individual PE
dataset E-MTAB-694 were cytokine-cytokine receptor interaction, cell adhesion molecules
(CAMs), leukocyte trans-endothelial migration, regulation of lipolysis in adipocytes, and
natural killer cell-mediated cytotoxicity (Fig. 3D); 36 specific DEGs in the individual DIE
dataset GSE25628 were only enriched in two pathways: pathways in cancer and amoebiasis
(Fig. 3E). Furthermore, the above-mentioned significant enriched pathways related genes
were detailed in Table 2.

Validation of interested pathway-related genes in GSE105764
Since endometriosis was defined as an inflammatory disorder (Bulun et al., 2019) and the
top 1 enriched pathway of 148 common DEGs was the arachidonic acid (AA) metabolism
pathway, a key pro-inflammatory pathway (Kuehl & Egan, 1980), we validated this
pathway-related genes: GGT5, CYP2J2, PTGIS and PLA2G2A in the OE RNA-sequencing
dataset GSE105764. The consistency results between microarray training datasets and the
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RNA-sequencing validation dataset showed that most of these genes were found to be
significantly higher in EC tissue than EU endometrium, except for CYP2J2 (Table 3).

Moreover, besides the common pathogenetic pathways, each different subtype of EMs
might possess its peculiar molecular signature. Since the validation dataset GSE105764 was
an OE dataset and the inflammation in EMs were driven by estradiol (Bulun et al., 2019),
we chose ovarian steroidogenesis—one representative pathway in subtype OE related
genes to validate. The validation results showed that most genes in this pathway were
significantly overexpressed in EC in subtype OE, almost consistent with that in the OE
microarray training dataset, whereas with no significant difference between EU and EC in
the individual PIE and DIE dataset (Table 4), which suggested ectopic tissue specificity and
focal prominent aberrant hormonal environment in OE.

We also noticed that both specific DEGs in OE and DIE were enriched in the pathways
in cancer, though enriched genes were different. The enriched genes in the ‘pathways in
cancer’ in DIE were COL4A3, COL4A6, PTGER3, RAD51, F2R, while OE seems to be
associated with ‘pathways in cancer’ mainly by PI3K-Akt signaling pathway-related genes,
such as FN1, GNG2, KIT, PTGS2, PDGFRA, LPAR1, CCND1, ITGA6, FGFR3, VEGFA,
PIK3R1, FGFR2,MET, indicated by bothmicroarray training datasets andRNA-sequencing
validation dataset (Tables S3 and S4).

PPI network construction and hub DEGs identification
By analyzing 148 common DEGs in database STRING, a PPI network with 99 nodes and
178 edges was constructed and then visualized in Cytoscape (Fig. 4A). Furthermore, the
top 5 hub nodes: CCNB1, CCNB2, RRM2, DTL, AURKB were identified from this PPI
network by using the Degree method in plugin Cytohubba (Fig. 4B).

Validation analysis of hub DEGs in GSE105764
As shown in Table 5, the expression trend of top 5 hub DEGs (CCNB1, CCNB2, RRM2,
DTL, AURKB) was consistent in three subtypes—all under-expressed in ectopic lesions
compared to eutopic endometrium, which was also further validated in the OE RNA-
sequencing dataset GSE105764.

DISCUSSION
Endometriosis (EMs) was considered as a heterogeneous disease and its subtypes: ovarian
endometriosis (OE), peritoneal endometriosis (PE), and deep infiltrating endometriosis
(DIE) were likely to possess different aetiologies, which might require different diagnostic
markers as well as treatments (Nisolle & Donnez, 1997; Gordts, Koninckx & Brosens, 2017).
However, it is rare to see that all these three EMs subtypes were simultaneously included and
analyzed in one study. To our best of knowledge, our article represents the first endeavor
to analyze the common and specific molecular signatures among OE, PE, and DIE in a
bioinformatic way based on effective microarray or RNA-sequencing datasets.

In this article, we conducted an integrative analysis of EMs mRNA microarray datasets
belonging to three different subtypes: GSE7305 and GSE7307 of OE, E-MTAB-694 of PE,
and GSE25628 of DIE. By analyzing DEGs between EU and EC samples, we found that
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Table 3 The expression of the arachidonic acid metabolism pathway-related genes in microarray training datasets and the OE RNA-sequencing validation dataset
GSE105764.

Gene
Symbol

Gene Description OE RNA-sequencing dataset
GSE105764

The merged OE dataset of
GSE7305 and GSE7307

The individual PE dataset
E-MTAB-694

The individual DIE dataset
GSE25628

Log2FC P-Value Log2FC P-Value Log2FC P-Value Log2FC P-Value

PTGIS Prostaglandin I2 Syn-
thase

6.289598638 2.43946E-44 4.631282825 2.91622E-16 4.971203942 1.20213E-16 3.508766958 0.002253242

PLA2G2A Phospholipase A2
Group IIA

2.822326237 0.001074114 4.849610555 2.38055E-25 3.551202751 3.01372E-06 3.152761244 0.010549907

GGT5 Gamma-
Glutamyltransferase
5

2.682418539 1.54252E-12 1.03319199 1.421E-13 1.031785388 5.90453E-07 1.32309443 0.006376396

CYP2J2 Cytochrome P450 Fam-
ily 2 Subfamily J Mem-
ber 2

−6.239846138 1.75094E-27 −1.142837781 1.79003E-09 −1.850912918 9.66805E-09 −1.160485084 0.02902089

Notes.
Log2 FC, Log2 fold change; OE, ovarian endometriosis; PE, peritoneal endometriosis; DIE, deep infiltrating endometriosis.
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Table 4 The expression of one representative pathway in subtype OE–ovarian steroidogenesis related genes in microarray training datasets and the OE RNA-
sequencing validation dataset GSE105764.

Gene Symbol Gene Description OE RNA-sequencing dataset
GSE105764

The merged OE dataset of
GSE7305 and GSE7307

The individual PE dataset
E-MTAB-694

The individual DIE dataset
GSE25628

Log2FC P-Value Log2FC P-Value Log2FC P-Value Log2FC P-Value

STAR Steroidogenic Acute
Regulatory Protein

3.844497923 3.67398E-10 5.549409967 5.35385E-30 −0.691371832 0.030315396 0.2446853 0.854991

BMP6 Bone Morphogenetic
Protein 6

2.585401261 9.63142E-08 2.13686869 3.12026E-22 0.16812685 0.530786767 0.3323532 0.5156626

CYP11A1 Cytochrome P450 Fam-
ily 11 Subfamily A
Member 1

2.571939702 3.06172E-11 1.977665697 1.63051E-09 −0.074703419 0.584259769 −0.3281747 0.7447965

SCARB1 Scavenger Receptor
Class B Member 1

2.264263509 2.98276E-21 1.74100742 1.5326E-11 0.163414061 0.342902499 0.06680135 0.9171244

ALOX5 Arachidonate 5-
Lipoxygenase

1.932324569 2.01964E-06 1.113589966 2.23627E-05 −0.030632071 0.87312448 0.2211488 0.7237545

PTGS2 Prostaglandin-
Endoperoxide Synthase
2

1.499535863 0.021110249 1.188644849 0.000423004 −1.324453675 0.132193434 −0.1371545 0.8414268

CYP17A1 Cytochrome P450 Fam-
ily 17 Subfamily A
Member 1

1.418715737 0.004554443 1.049381469 0.001851908 0.005875675 0.890819272 −0.03743256 0.9750525

INSR Insulin Receptor 0.381745388 0.192710241 1.285645953 7.63097E-12 0.02287573 0.938544186 0.387068073 0.208446551

IGF1 Insulin Like Growth
Factor 1

−0.673337332 0.124361875 −1.659370252 5.34224E-09 −0.646869143 0.0069179 −0.2747584 0.5370414

PLA2G4A Phospholipase A2
Group IVA

−1.315828744 0.005668833 −1.883142744 5.15085E-14 −0.051607453 0.816803637 0.1022455 0.8456387

Notes.
OE, ovarian endometriosis; PE, peritoneal endometriosis; DIE, deep infiltrating endometriosis; Log2 FC, Log2 fold change.
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Table 5 The expression of the top 5 hub genes identified from the PPI network in microarray training datasets and the OE RNA-sequencing validation dataset
GSE105764.

Gene symbol Gene description OE RNA-sequencing dataset
GSE105764

The merged OE dataset of
GSE7305 and GSE7307

The individual PE dataset
E-MTAB-694

The individual DIE dataset
GSE25628

Log2FC P-Value Log2FC P-Value Log2FC P-Value Log2FC P-Value

RRM2 Ribonucleotide Reduc-
tase Regulatory Subunit
M2

−2.545059091 5.65568E-06 −2.902398466 6.14787E-10 −3.521816066 1.01611E-08 −1.908309782 0.01636418

AURKB Aurora Kinase B −2.311429822 3.34652E-05 −1.42932862 3.39568E-09 −1.911232107 3.34734E-06 −1.0990377 0.039806461

CCNB1 Cyclin B1 −1.856061436 5.54985E-05 −2.207580173 3.967E-09 −2.161536326 3.96789E-06 −1.264483101 0.047858003

CCNB2 Cyclin B2 −1.825733268 0.000537883 −1.938433806 3.70498E-09 −2.689873382 7.46834E-07 −1.446885624 0.044121405

DTL Denticleless E3 Ubiqui-
tin Protein Ligase Ho-
molog

−1.228039999 0.003406252 −1.757599775 1.88499E-08 −1.998898813 5.57114E-07 −1.372163345 0.032638654

Notes.
Log2 FC, Log2 fold change; OE, ovarian endometriosis; PE, peritoneal endometriosis; DIE, deep infiltrating endometriosis.
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Figure 4 Protein-protein interaction (PPI) network construction and identification of hub nodes. (A)
PPI network constructed by 148 shared DEGs among the merged OE dataset of GSE7305 and GSE7307,
the individual PE dataset E-MTAB-694 and DIE dataset GSE25628. The red nodes represent upregulated
genes and the green nodes represent downregulated genes. (B) Top 5 hub nodes (CCNB1, RRM2, DTL,
CCNB2, AURKB) identified from the PPI network by using the Degree method in plugin Cytohubba. The
nodes color changes gradually from yellow to red in ascending order according to the Degree ranking.

Full-size DOI: 10.7717/peerj.8730/fig-4

148 shared DEGs were common to three EMs subtypes, which were mainly involved in the
pathways of arachidonic acid (AA) metabolism, vascular smooth muscle contraction, drug
metabolism-cytochrome P450, complement and coagulation cascades, tyrosinemetabolism
revealed by KEGG enrichment analysis. Moreover, both the microarray training datasets
and validation OE RNA-sequencing dataset showed that most of the genes in the top 1
enriched pathway—arachidonic acid (AA) metabolism pathway were activated in the EC
tissues, except for CYP2J2.

In the arachidonic acid (AA)metabolismpathway, under the action of bioactive enzymes,
substrate AA was catalyzed to generate endogenous eicosanoids such as prostaglandins
(PGs), leukotrienes (LTs) and epoxyeicosatrienoic acids (EETs), which acted asmediators of
various inflammatory disorders (Kuehl & Egan, 1980), including endometriosis (Benedetto,
1989; Monsivais et al., 2012; Sacco et al., 2012). PLA2G2A, a member of the phospholipase
A2 family (PLA2) to catalyze the release of AA from membrane phospholipids, had been
reported over-expressed in OE (Kocbek et al., 2015), DIE (Carrarelli et al., 2016) and PE
(Lousse et al., 2010) ectopic lesions compared to normal or eutopic endometrium. The
increased levels of PLA2G2A in endometriotic tissue would be responsible for providing
AA for further PGs biosynthesis, such as PGE2, thus potentiating survival, migration,
and invasion of endometriotic cells (Banu et al., 2008). The overexpression of PTGIS,
functioning to convert prostaglandin H2 (PGH2) to prostaglandin I2 (PGI2), whose
higher expression in the peritoneal fluid was observed in patients with endometriosis
(Ylikorkala et al., 1984), had also been found a previous study (Monsivais et al., 2012).
Under hypoxic conditions, PTGIS was reported to promote VEGF expression in human
lung fibroblasts by producing PGI2 (Wang et al., 2013), whose enhanced production in
ovarian endometrial cyst seemed to be associated with dysmenorrhea in endometriosis
patients (Koike et al., 1992). GGT5 was responsible for converting leukotriene C4 (LTC4)
to leukotriene D4 (LTD4), both of which were found with an increment of concentration
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in menstrual blood from patients with primary dysmenorrhea (Rees et al., 1987) and
the highly selective LTD4 receptor antagonist had an inhibiting effect on endometriotic
implant growth in rat endometriosis model (Kiykac Altinbas et al., 2015). However, our
analysis also revealed that in the ectopic lesions, CYP2J2 was under-expressed, an enzyme
of cytochrome P450 (CYP) superfamily to metabolize AA into EETs, which exerted an
anti-inflammatory effect by various mechanisms (Shahabi et al., 2014). Taken together,
the activated arachidonic acid (AA) metabolism and its corresponding products seemed to
promote inflammation in ectopic lesions, thus facilitating the development of EMs.

Interestingly, the 5 hub nodes RRM2, AURKB, DTL, CCNB1, CCNB2 identified from
the PPI network constructed by148 shared DEGs were all associated with cell cycle and
mitosis, and down-regulated in the ectopic lesions in our analysis while always up-regulated
in cancer tissues (Wang et al., 1997; Kolesar et al., 2009; Takashima et al., 2014; Kobayashi
et al., 2015; Chieffi, 2018), thus promoting excessive proliferation, which suggested limited
and controlled proliferative activity in EMs endometriotic lesions, distinct from cancerous
proliferation feature. For example, RRM2, one of the subunits of ribonucleotide reductase
complex providing precursors indispensable for DNA synthesis (Engström et al., 1985),
was reported lowly expressed in EC compared to the EU in another genome-wide
microarray study (Zafrakas et al., 2008), while its overexpression would enhance tumor
angiogenesis and growth in multiple cancers (Zhang et al., 2009; Rahman et al., 2013).
AURKB, a chromosomal passenger protein ensuring correct chromosome alignment and
segregation in themitosis (Kelly et al., 2010), was found low-expressed in OE ectopic tissues
(Calcagno et al., 2011) whereas high-expressed in many tumors causing cell aneuploidy
division (Giet, Petretti & Prigent, 2005). DTL, known as denticleless E3 ubiquitin-protein
ligase homolog, was responsible for mediating the polyubiquitination and subsequent
degradation of multiple regulators to ensure proper cell cycle progression (Higa et al.,
2006), though seldom studied in EMs. However, the cyclin CCNB1, key regulator as well
as CCNB2 in cell cycle controlling G2/M transition (Gong & Ferrell, 2010), were found
up-regulated in ectopic tissue compared to eutopic endometrium in Tang et al. study
(Tang et al., 2009), which was inconsistent with our analysis. This inconsistency might be
explained by different detectionmethods and the intrinsic heterogeneity of EMs.Moreover,
the phenomenon that most ectopic lesions contained sparse epithelial cells, which were
abundant in eutopic endometrium and available to proliferate at a rapid speed, and mainly
of stromal cells, whose multiplication rate was relatively mild, might result in the slow
growth in ectopic tissue (Bulun et al., 2019).

Moreover, besides the common pathogenesis, we also explored the peculiar molecular
signature in each subtype of EMs by the KEGG analysis of specific DEGs in different
subtypes. For instance, most genes in the pathway of ovarian steroidogenesis were
significantly up-regulated in EC in subtype OE while with no significant difference between
EU andEC in the PE andDIE, which suggested ectopic tissue specificity and focal prominent
aberrant hormonal environment in OE. Furthermore, the most up-regulated gene STAR in
the pathway was proved to be correlated with the severity of OE and PE (Tian et al., 2009).
That OE was regarded as an indicator of more severe pelvic and intestinal disease (Redwine,
1999) might be explained by this overactive ovarian steroidogenesis in OE since the steroid
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hormone was primarily produced in the ovarian and then reached endometriotic lesions
via blood circulation and follicular fluid at the time of ovulation.

We also noticed that both specific DEGs in OE and DIE enriched in ‘pathways in cancer’,
though enriched genes were different: DIE was associated with the risk of malignant
transformation by enriched genes COL4A3, COL4A6, RAD51, F2R, PTGER3, while OE
mainly by those PI3K pathway-related genes, such as FN1, GNG2, KIT, PTGS2, PDGFRA,
LPAR1, CCND1, ITGA6, FGFR3, VEGFA, PIK3R1, FGFR2, MET. However, PE was more
likely related to dysregulated peritoneal immune and inflammatory microenvironment,
indicated by its specific DEGs enriched pathways, such as maladjusted cytokine-cytokine
receptor interaction, leukocyte trans-endothelialmigration, and natural killer cell-mediated
cytotoxicity.Whether PE could be regarded asmore ‘superficial’ or ‘slight’ disease primarily
affected by peritoneal fluid factors, than OE and DIEmainly influenced by blood or ovarian
factors (Koninckx, Kennedy & Barlow, 1998), still needs further investigation. Hence, the
landscape of specific signatures in each subtype were not clear enough in our analysis due
to a relatively small number of available microarray datasets as well as limited information
provided by these datasets, especially the DIE dataset based on a platform with fewer
probes, which would be modified by obtaining more RNA-sequencing datasets including
all three subtypes and considerable samples in future analysis.

However, our analysis still has some limitations. Firstly, due to the lack of RNA-
sequencing datasets for PE and DIE, validation analysis was only performed in subtype
OE. Secondly, since the uterine endometrium undergoes molecular signature changes
throughout the menstrual cycle (Talbi et al., 2006), different cycle phases might be one
of the confounding factors: DIE samples were all collected during the proliferative phase,
all PE samples and OE samples in GSE7305 were collected during either proliferative or
secretory phase, while cycle phases of OE samples in GSE7307 were unknown. Comparing
the gene expression in each subdivided cycle phase respectively would provide an improved
perspective. Additionally, the contamination of normal tissue sometimes was unavoidable
during the sampling process, which in a way would lead to potentially controversial results.
For example, in our results, the significant overexpression of ovarian steroidogenesis related
genes in OE while not in PE and DIE ectopic tissues may be explained by the intrinsic
differences among subtypes and/or the mixture of normal ovarian tissues. This needs
further laboratory investigation in the future.

CONCLUSION
Through integrated bioinformatics analysis, we found that inflammation, especially
arachidonic acid (AA) metabolism-related inflammatory process was the most common
pathogenesis of OE, PE, and DIE. Besides, a slow and controlled proliferation in ectopic
lesions was commonplace in these three EMs subtypes. Meanwhile, abnormal ovarian
steroidogenesis was a prominent feature in OE; OE and DIE seemed to be at more risk
of malignant development while PE tended to be more associated with dysregulated
peritoneal immune and inflammatory microenvironment. All these findings could deepen
our understanding of the common and specific molecular events in different subtypes in
endometriosis.
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