Citrus flavonoids, b-Glucan and organic acid feed additives decrease relative risk during *Yersinia ruckeri* O1 biotype 2 infection of rainbow trout (*Oncorhynchus mykiss*) (#42444)

First submission

Guidance from your Editor

Please submit by 9 Nov 2019 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 3 Figure file(s)
- 4 Table file(s)
- 1 Raw data file(s)

Vertebrate animal usage checks

- Have you checked the authors <u>ethical approval statement?</u>
- Were the experiments necessary and ethical?
- Have you checked our <u>animal research policies</u>?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Citrus flavonoids, b-Glucan and organic acid feed additives decrease relative risk during *Yersinia ruckeri* O1 biotype 2 infection of rainbow trout (*Oncorhynchus mykiss*)

Kasper Rømer Villumsen Corresp., Equal first author, 1, Maki Ohtani Equal first author, 1, Torunn Forberg 2, John Tinsley 3, Mette Boye 4, Anders M Bojesen Corresp. 1

Corresponding Authors: Kasper Rømer Villumsen, Anders M Bojesen Email address: krv@sund.ku.dk, miki@sund.ku.dk

Whether through direct supplementation of bacteria or by prebiotic supplementation thought to favour subsets of bacteria, modulation of gut microbiota constitutes an important and promising alternative to the use of prophylactic and growth promoting antibiotics in worldwide aquaculture. We fed a commercial base feed, alone or supplemented with either proprietary b-glucan, b-glucan and organic acids, citrus flavonoid or yeast cell wall supplements, to rainbow trout over a period of four weeks. Fish from each feed group were then subjected to experimental, waterborne infection with *Yersinia ruckeri* O1 biotype 2. Following experimental feeding, the b-glucan and organic acids supplemented group showed significantly improved feed conversion and lipid efficiency ratios. Furthermore, the b-glucan, b-glucan and organic acids and citrus flavonoid supplements proved to significantly reduce the risk of mortality in rainbow trout during experimental infection as shown by hazard ratio analysis. Resulting in 33.23%, 30.63% and 30.54% reduction in risk relative to the non-supplemented base feed, respectively, these three supplements show a promising potential either as stand-alone feed supplements, or as components in complex feed formulations.

 $^{^{}f 1}$ Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark

² BioMar Group, Trondheim, Norway

BioMar Group, Guayaquil, Ecuador

⁴ Norwegian Veterinary Institute, Oslo, Norway

- 1 Citrus Flavonoids, β-Glucan and Organic Acid Feed
- 2 Additives Decrease Relative Risk During Yersinia ruckeri
- 3 O1 Biotype 2 Infection of Rainbow Trout (Oncorhynchus
- 4 mykiss)

- 6 Kasper Rømer Villumsen^{1,§}, Maki Ohtani^{1,§,§}, Torunn Forberg², John Tinsley², Mette Boye^{1,#} &
- 7 Anders Miki Bojesen¹,*
- 8 ¹ Preventive Veterinary Microbiology, Department of Veterinary and Animal Sciences,
- 9 University of Copenhagen, Denmark
- 10 ² BioMar Group

- 12 §These authors have contributed equally to the study.
- 13 *Corresponding author
- 14
- 15 Present addresses:
- 16 § Division of Development of Functional Brain Activities, Research Centre for Child Mental
- 17 Development, University of Fukui, Japan.
- 18 **Norwegian Veterinary Institute, Ullevålsveien 68, 0106 Oslo, Norway

Abstract

- 21 Whether through direct supplementation of bacteria or by prebiotic supplementation thought to
- 22 favour subsets of bacteria, modulation of gut microbiota constitutes an important and promising
- 23 alternative to the use of prophylactic and growth promoting antibiotics in worldwide aquaculture.
- We fed a commercial base feed, alone or supplemented with either proprietary β -glucan, β -
- 25 glucan and organic acids, citrus flavonoid or yeast cell wall supplements, to rainbow trout over a
- 26 period of four weeks. Fish from each feed group were then subjected to experimental,
- 27 waterborne infection with Yersinia ruckeri O1 biotype 2. Following experimental feeding, the β-
- 28 glucan and organic acids supplemented group showed significantly improved feed conversion
- 29 and lipid efficiency ratios. Furthermore, the β -glucan, β -glucan and organic acids and citrus
- 30 flavonoid supplements proved to significantly reduce the risk of mortality in rainbow trout
- during experimental infection as shown by hazard ratio analysis. Resulting in 33.23%, 30.63%
- 32 and 30.54% reduction in risk relative to the non-supplemented base feed, respectively, these
- three supplements show a promising potential either as stand-alone feed supplements, or as
- 34 components in complex feed formulations.

3536

37

Introduction

- 38 Intensive rearing practices and continual growth in modern aquaculture places increasing
- demands on fish feed sourcing, management practices and disease prevention. Along with
- 40 prophylactic measures such as vaccines, fish feed remains an important field of continual
- 41 development. As the marine content has been drastically reduced to accommodate the increased
- 42 demand (Ytrestøvl et al. 2015) and legislative action has been taken against antimicrobial growth
- promoters, attention has been focused at pre-, pro- and synbiotic feed additives for further
- optimization (Hoseinifar et al. 2017; Lauzon et al. 2014; Merrifield et al. 2010). While
- 45 prebiotics are compounds, often oligosaccharides, that are administered in order to promote a
- beneficial microbial composition (Lauzon et al. 2014), probiotics are beneficial bacteria that are
- 47 directly administered. Finally, synbiotic feed supplements incorporate both pre- and probiotics.
- 48 By modulating the composition of the gut microbiota, the aims are to improve feed performance
- and feed component utilization, but also to improve disease resistance. The latter is thought to
- occur through direct antagonism (Wanka et al. 2018) or competition (Balcázar et al. 2008).
- Numerous types of substances have been tested in various aquaculture relevant species, for
- 52 prebiotic as well as potentially immunomodulating properties. These include yeast cell wall
- 53 components, typically in the form of various preparations of β-glucans and mannan
- oligosaccharides (MOS) (Skov et al. 2012; Staykov et al. 2007; Torrecillas et al. 2014), organic
- acids and their salts (Gao et al. 2011; Hernández et al. 2012) and citrus flavonoids. Comprising
- 56 more than one hundred compounds with antioxidant properties citrus flavonoids are found in
- 57 Citrus fruits, particular in the peel (Tripoli et al. 2007; Wang et al. 2017). While rarely used in
- 58 experimental fish feed, studies using citrus flavonoid supplementation have been performed in
- 59 cattle (Balcells et al. 2012).

- Previous studies using these feed supplements in various fish species have focused on mitigating
- adverse effects from antinutritional factors present in certain plant raw materials, growth
- 62 performance and feed utilization, which in a few cases was followed by experimental or natural
- 63 infection with either bacterial or parasitic pathogens (Gao et al. 2011; Hernández et al. 2012;
- 64 Pandey & Satoh 2008; Refstie et al. 2010; Staykov et al. 2007; Yu et al. 2014).
- 65 The present study addressed the effect of four prebiotic feed supplement on fish growth
- 66 performance and feed utilization, with an additional emphasis on their respective potentials for
- 67 increasing resistance towards a waterborne experimental infection with *Yersinia ruckeri* serotype
- O1 biotype 2. A base feed either un-supplemented or supplemented with β -glucan, β -glucan
- 69 combined with organic acids, citrus flavonoids or yeast cell wall extracts, either alone or in
- 70 combination was fed to rainbow trout fingerlings (*Oncorhynchus mykiss*). The effect of each
- 71 experimental feed on disease resistance was then assessed using a waterborne, experimental
- 72 infection model based on Yersinia ruckeri serotype O1 biotype 2 (Ohtani et al. 2019). Isolated
- 73 from an outbreak in a Danish freshwater trout farm, this infection model represents a highly
- 74 relevant pathogenic threat to commercial rainbow trout farming.

Materials & Methods

77 78 79

75

- **Ethics statement.** The Danish Animal Experiments Inspectorate, under license no.
- 80 2017-15-0201-01245 approved the protocols regarding experimental animals described for this
- 81 study. The study is thus approved under the Danish law regarding experimental animals.

82

- 83 Rainbow trout. Rainbow trout eggs were acquired from AquaSearch Ova (AquaSearch FRESH,
- 84 Billund, Denmark, 100% females). Following disinfection with Desamar K30 (Foodtech AG,
- 85 Uster, Schweiz) according to the manufacturer's instructions, the eggs were hatched and reared
- under pathogen-free conditions at the Bornholm Salmon Hatchery (Nexø, Denmark). During the
- 87 rearing period, the fish were fed commercial pelleted feed.

- 89 **Experimental feeding.** Prior to experimental feeding, the fish were transported to the BioMar
- 90 Research facility (Hirtshals, Denmark), divided into a total of 30 tanks with a volume of 150 l,
- 91 each holding 29-32 individuals and allowed to acclimatize for 14 days. Once acclimated, each
- 92 tank was assigned to one of five experimental feed groups resulting in 6 tanks/dietary group.
- 93 Prior to the initiation of the experimental work, each feed group was anonymized, and the
- 94 experiment was performed as a single-blinded setup. This facility has previously been described
- 95 in detail (Ohtani et al. 2019). In brief, all tanks were supplied through a closed recirculating
- 96 water system. Filtering was performed through physical filtering, as well as a biofilter. The water
- 97 was oxygenated and passed through an UV-filter (595 μJ/cm². At the start of the experimental
- 98 feeding period, the fish had an average weight of 24.4 g (bulk weights divided by number of
- 99 individuals for all tanks).

Each experimental feed type was based on the same proprietary base feed (included as control), and supplemented as described in Table 1 to produce group specific 2 mm pellets. As all supplemented feeds are proprietary, only general descriptions are given. All pellets were produced by BioMar A/S, and the feeding period was 37 days (1.5% bodyweight/day).

As a technical error affected waterflow and oxygen supply to one tank in the control feed group, this tank was eliminated from the experiment and downstream analysis.

Experimental feed performance. The performance of each feed group was evaluated based on percentage growth, feed conversion ratio (FCR), specific growth rate (SGR), lipid efficiency ratio (LER and protein efficiency ratio (PER). The equations used are given below:

112 1)

113
$$Growth(\%) = \frac{(Final\ biomass\ (g) - Initial\ biomass\ (g))}{Initial\ biomass\ (g)} \times 100\%$$
114
115

116 2)

117
$$FCR = \frac{Total\ consumed\ feed\ (g)}{(Final\ biomass\ (g)-Initial\ biomass\ (g)+Dead\ biomass\ (g)}$$

120 3)
$$SGR = \frac{(Ln(Final\ biomass\ (g)) - Ln(Initial\ biomass\ (g))}{Growth\ period\ (days)} \times 100\%$$

124 4)

125
$$LER = \frac{Gained\ biomass\ (g)}{Ingested\ fat\ (g)}$$

129
$$PER = \frac{Gained\ biomass\ (g)}{Ingested\ protein\ (g)}$$

All calculations are made based on tank-wise bulk weighing of total biomass prior to and following the experimental feeding period. Administered feed was recorded for each tank throughout the experimental period and ingested fat/protein is calculated based on total ingested feed and the content of each component in each feed type.

- Experimental infection. Following the initial feeding period, all individuals from four of the six
- tanks in each experimental feed group were subjected to waterborne experimental bath infection
- with *Y. ruckeri*. The individuals from the remaining two tanks were subjected to mock-infection.
- Experimental feeding continued throughout the infection period.
- 140 The bath infection was performed as previously described (Ohtani et al. 2019). Briefly,
- 141 cryopreserved *Y. ruckeri* serotype O1 biotype 2 (strain 07111224) was cultured on blood agar
- plates for 48h. Single colonies were then used to inoculate Luria-Bertani broth, which was
- subsequently incubated at room temperature for 36h. Prior to infection, the bacteria were
- harvested by centrifugation and resuspended in clean tank water. Finally, fish from a given tank
- destined for infection were transferred to a designated infection tank with clean tank water. The
- infection was then started by the addition of bacterial suspension to a final concentration of
- 7.5x108 CFU/ml. The fish were kept in their respective infection tanks for 3h, after which they
- were returned to their holding tanks and monitored closely for 22 days. Mock-infections were
- performed by transferring fish to separate mock-infection tanks holding clean tank water for 3h,
- before returning them to their respective holding tanks, thus mimicking the handling of the
- infected fish. Experimental feeding continued throughout the infection period, however reduced
- to 1.1% biomass/day. During the experimental infection period, all fish that met specified
- humane endpoints (distinct signs of established disease such as loss of equilibrium, protrusion of
- either or both eyes, haemorrhages along fin bases) were considered moribund, netted and
- euthanized with an overdose of benzocaine in accordance with the experimental animal license.
- 156 The terms "survival", and consequently "mortality", in the following text reflect the binary
- 157 nature of survival analyses and should therefore be considered technical, rather than purely
- descriptive terms. Following euthanasia, a swab was made from the anterior kidney onto 5%
- blood agar plates to re-isolate the bacterial pathogen in order to satisfy Koch's postulates.

- 161 **Statistical analysis.** Throughout the analyses in the present study, a 95% confidence level was
- applied using a threshold α -level of 0.05 for rejection of the null-hypothesis that there is no
- difference between the groups in question. All statistical analyses were performed using
- 164 GraphPad Prism® for Mac (GraphPad, San Diego, USA).
- 165 Performance data were tested for underlying Gaussian distribution using the Kolmogorov-
- 166 Smirnov test with Dallal-Wilkinson-Lilliefor correction. Having confirmed this, the means of
- each experimental group were compared to that of the control feed group using a one-way
- ANOVA followed by Dunnett's post hoc test multiple comparisons test.
- Data from the experimental infection were analysed using the Kaplan-Meier survival analysis
- tool. Moribund fish from which the bacterial pathogen could be re-isolated were computed as
- mortalities. In case the pathogen could not be re-isolated, the individual was computed as a
- censored individual. Based on the course of the survival curves, the log-rank (Mantel-Cox)
- method was chosen for the analysis. Hazard ratios (log-rank method) were calculated pairwise
- between all experimental groups, as well.

175	The Bonferroni correction for multiple comparisons was used when comparing individual
176	survival curves, adjusting the α -level by dividing it with the number of comparisons made within
177	the framework of the dataset.
178	
179	
180	Results
181	
182	Experimental feed performance. Feed performance was determined following the experimental
183	feeding period, and the results are shown in table 2.
184	No differences were observed between the control group and any of the experimental groups
185	regarding percentage growth, SGR or PER. The group receiving the β-glucan + OA supplement
186	was found to have a statistically significantly lower FCR, as well as a higher LER relative to the
187	control group (P < 0.05).
188	3 · · · · · · · · · · · · · · · · · · ·
189	Experimental infection. Mortalities were observed in all infected tanks between 5- and 21-days
190	post infection (Fig. 1). Log-rank survival curve analysis did not identify any statistically
191	significant differences between replicate tanks in any of the groups (P>0.05, data not shown).
192	Consequently, data from replicate tanks were pooled for each group for all downstream analyses.
193	The results from these analyses are summarized in Fig. 1 and Tables 2 and 3. Group-specific
194	survival curves with 95% confidence intervals are shown in Supplementary Figure S1.
195	A single mortality occurred from one of the mock-infected tanks during the course of the
196	experimental infection. However, given that only one occurred in a total of six tanks, this is
197	considered negligible.
198	An initial, overall Log-rank survival curve analysis comparing all five survival curves at once
199	did not identify any statistically significant differences between feed groups (P=0.13). Pairwise
200	comparisons between individual survival curves reached the same overall result, although
201	offering a more nuanced view, as shown in Table 3. While the β -glucan, β -glucan + OA and CF
202	supplemented groups all post P-values < 0.05 when compared to the control feed group,
203	correction for multiple comparisons reduces the α -level to 0.005. Their respective survival
204	curves are therefore not significantly different from the control feed group. Comparisons among
205	the supplemented groups resulted in high P-values (>0.5) indicating similar survival curves in
206	these groups.
207	When subsequently comparing the relative risk of mortality following infection using the hazard
208	ratios comparing the control group and each of the experimental feed groups in turn, all but the
209	yeast cell wall supplemented feed group displayed hazard ratios with 95% confidence intervals <

1 (see Fig. 2 and Table 4) These indicate statistically significant reductions in risk following

211212213

210

Discussion

infection relative to the control group (Motulsky 2014).

214 Following the experimental feeding period, the β -glucan + OA supplemented feed group showed signs of improved feed utilization when compared to the control feed group. The lowered FCR 215 indicates a significantly increased capacity for converting ingested feed into biomass, while the 216 217 increased LER suggests that fish in this group utilize the lipid content of the feed in a 218 significantly more efficient manner. A significantly improved utilization of lipid content is 219 noteworthy due to the current issues regarding sourcing of marine content for fish feed (Ytrestøyl 220 et al. 2015). Previous studies have demonstrated a positive effect of either citric or amino acid 221 supplements on retention of phosphorous, SGR and feed utilization in rainbow trout feed 222 (Hernández et al. 2012). While Pandey & Satoh found that methionine hydroxy analogue 223 supplementation of rainbow trout feed improved the FCR (Pandey & Satoh 2008), a blend of 224 sodium formate and butyrate was found to improve FCR from fishmeal-based rainbow trout feed 225 (Gao et al. 2011). The same blend, however, was found to decrease the uptake of crude fat from 226 plant-based feed and both effects were found to depend on the extrusion method used. This suggests a certain level of complexity regarding the use of organic acid supplements, and the 227 228 formulation of the feed. 229 The results from the experimental Y. ruckeri infection indicated a substantial impact on the 230 experimental groups, leading to a control group endpoint survival of 37.36%. The level of 231 infection obtained is therefore considered sufficient, although rather severe, in terms of providing 232 a realistic platform for evaluating the effects of the experimental prebiotic diets included in the 233 study. While the initial, overall log-rank survival curve analysis did not identify statistically 234 significant differences between the different feed groups, individual pairwise comparisons showed that the B-glucan. B-glucan + OA and CF group survival curves differed noticeably. 235 236 however not statistically significantly, from that of the control group. When finally estimating 237 the experiment-wide risks calculated for each experimental group relative to that of the control 238 group, the resulting hazard ratios demonstrate statistically significantly reduced risk in the \(\beta\)-239 glucan, β-glucan + OA and CF fed groups, relative to that of the control group. The diet 240 including β-glucan alone reduced the relative risk during infection by 33.23%, with a 95% CI 241 that lies well below 1, and the combination of β-glucan and organic acids proved to reduce the 242 risk of mortality by 30.63% relative to that of the control group, also with a 95% CI placed 243 below 1. Previous study results on β-glucan supplemented feed in rainbow trout have diverged. 244 Skov et al. found no effect of paramylon (1% w/w), a purified β-glucan product from Euglena 245 gracilis, on rainbow trout resistance towards a waterborne experimental infection with Y. ruckeri 246 (Skov et al. 2012). Meanwhile, Ji et al. reported significantly increased endpoint survival following a short intraperitoneal infection with Aeromonas salmonicida in rainbow trout fed 247 0.05-0.2% β-glucan from Saccharomyces cerevisiae. Besides a nearly 30-fold difference in fish 248 249 size, these studies vary with respect to pathogen, infection model, statistical analysis and source 250 of β-glucan, making them hard to compare directly. Our current study design does, however, lie closer to the former. As the potential impact of feed supplements is expected to be less than that 251 252 of a traditional prophylactic measure, e.g. vaccination, the outcome of the experimental infection 253 can prove highly important when assessing their effects. The relatively high level of infection

- obtained in the current study may have allowed detection of slighter differences between groups.
- Along with the use of hazard ratio analyses, this could, at least in part, account for the fact that
- 256 the current study is able to demonstrate an effect of β-glucan on the risk of mortality during
- 257 experimental infection.
- 258 The reduction in relative risk during infection observed in this study could arguably be a
- 259 consequence of the improved performance reported in the present study, as well as in the
- 260 previously mentioned studies on organic acid supplementation. However, the fact that β-glucans
- alone, as well as citrus flavonoid supplementation also resulted in significantly reduced relative
- 262 risk during infection, without the increased feed performance data point indicates a more
- 263 complex background for the observed reductions. While increased fish size has been shown to
- result in reduced mortalities following bath infection (Ohtani et al. 2019), supplement specific
- 265 characteristics will also play important roles. For organic acid supplements, an antimicrobial
- 266 effect has been suggested through lowering of the pH of either the host intestinal environment or
- 267 the cytoplasm of bacteria (Ng & Koh 2017). This has recently been demonstrated for red hybrid
- 268 tilapia (*Oreochromis* sp.) fed feed supplemented with a proprietary organic acid blend, where
- 269 inclusion of this blend resulted in significant reduction in gut pH, fecal CFU counts, and
- 270 significantly reduced mortalities following waterborne infection with *Streptococcus agalactiae*
- 271 (Koh et al. 2016). Given the importance of the rainbow trout intestine during *Y. ruckeri* infection,
- 272 this scenario is highly interesting (Khimmakthong et al. 2013; Ohtani et al. 2014). However, as
- 273 these aspects have not been addressed in the current study, any mechanistic insight into the direct
- 274 effects of the organic acids on the results remains speculative.
- 275 The citrus flavonoid supplemented feed group showed a 30.54% reduction in relative risk with a
- 276 95% CI below 1. Bacteriostatic and antimicrobial effects of citrus flavonoids have been
- demonstrated from bergamot (*Citrus bergamia* Risso) peel extractions (Mandalari et al. 2007).
- Peel extractions, either native or pectinase treated, as well as purified flavonoids proved mainly
- effective against Gram-negative bacteria. Furthermore, a study by Vikram et al. indicates that
- 280 purified citrus flavonoids can act as quorum sensing inhibitors, modulators of bacterial growth
- and inhibitors of type three secretion system component expression in *Vibrio harveyi* (Vikram et
- al. 2010). The presence of a type three secretion system in *Y. ruckeri* has recently been suggested
- by Kumar et al. (Kumar et al. 2017), and a combination of general antimicrobial activities and
- 284 inhibition of pathogenicity could thus be a plausible explanation for the observed reduction in
- annotion of pathogenicity could thus be a plausible explanation for the observed reduction in
- pathogenicity. Thus would, however, require further studies into the exact molecular effects of
- the flavonoid supplement in question, and is therefore merely speculative for now.
- 287 The yeast cell wall supplement did not confer a significant reduction in relative risk in the
- present study. Yu et al. (Yu et al. 2014) have previously shown that yeast cell wall extract,
- 289 including 28% glucans and 24% mannan, improved resistance towards intramuscular infection
- 290 with Aeromonas veronii in Japanese seabass (Lateolabrax japonicus). While mannan
- 291 oligosaccharides supplementation has been associated with increased innate immune
- responsiveness (Staykov et al. 2007) and proposed to limit pathogen establishment through
- 293 increased mucus production (Torrecillas et al. 2014), and as β-glucan supplementation has

294	proven successful in this study, as well as in previous studies, crude yeast cell wall extract fails
295	to confer the same reduction in relative risk during infection in the present study.
296	
297	Conclusions
298	β-glucan + OA supplementation resulted in improved feed utilization relative to the base control.
299	Furthermore, β -glucan, β -glucan and organic acids, as well as citrus flavonoid supplementation
300	proved to significantly reduce the relative risk of mortality in rainbow trout during experimental
301	infection with Y. ruckeri O1 biotype 2. Supported by survival curve analysis results that,
302	although not meeting the corrected α -level threshold, still indicate an effect of each supplement,
303	these proprietary, experimental feeds show potential, either on their own, or as bases for further
304	development of complex, supplemented rainbow trout feeds.
305	
306	Author contributions
307	Identification of aims and study design: JT, TF, MB & AMB
308	Execution of experimental work: MO, TF.
309	Data analysis: MO, KRV, TF & AMB
310	Preparation of manuscript: KRV & AMB
311	Critical revision and accept of final manuscript: All authors.
312	
313	Acknowledgements
314	Anni Nielsen, Miguel Martin and the staff at BioMar Research Facility, Hirtshals, Denmark are
315	acknowledged for their help and expertise throughout the experimental period.

316	References
317	Balcázar JL, Vendrell D, de Blas I, Ruiz-Zarzuela I, Muzquiz JL, and Girones O. 2008.
318	Characterization of probiotic properties of lactic acid bacteria isolated from intestinal
319	microbiota of fish. Aquaculture 278:188-191. 10.1016/j.aquaculture.2008.03.014
320	Balcells J, Aris A, Serrano A, Seradj AR, Crespo J, and Devant M. 2012. Effects of an extract of
321	plant flavonoids (Bioflavex) on rumen fermentation and performance in heifers fed high-
322	concentrate diets. Journal of Animal Science 90:4975-4984. 10.2527/jas.2011-4955
323	Gao YL, Storebakken T, Shearer KD, Penn M, and Øverland M. 2011. Supplementation of
324	fishmeal and plant protein-based diets for rainbow trout with a mixture of sodium
325	formate and butyrate. Aquaculture 311:233-240. 10.1016/j.aquaculture.2010.11.048
326	Hernández AJ, Satoh S, and Kiron V. 2012. Supplementation of Citric Acid and Amino Acid
327	Chelated Trace Elements in Low-Fish Meal Diet for Rainbow Trout Affect Growth and
328	Phosphorus Utilization. Journal of the World Aquaculture Society 43:688-696.
329	doi:10.1111/j.1749-7345.2012.00589.x
330	Hoseinifar SH, Mirvaghefi A, Amoozegar MA, Merrifield DL, and Ringo E. 2017. In vitro
331	selection of a synbiotic and in vivo evaluation on intestinal microbiota, performance and
332	physiological response of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquaculture
333	Nutrition 23:111-118. 10.1111/anu.12373
334	Khimmakthong U, Deshmukh S, Chettri JK, Bojesen AM, Kania PW, Dalsgaard I, and
335	Buchmann K. 2013. Tissue specific uptake of inactivated and live Yersinia ruckeri in
336	rainbow trout (Oncorhynchus mykiss): Visualization by immunohistochemistry and in
337	situ hybridization. Microbial Pathogenesis 59-60:33-41. DOI
338	10.1016/j.micpath.2013.03.001
339	Koh C-B, Romano N, Zahrah AS, and Ng W-K. 2016. Effects of a dietary organic acids blend
340	and oxytetracycline on the growth, nutrient utilization and total cultivable gut microbiota
341	of the red hybrid tilapia, <i>Oreochromis</i> sp., and resistance to <i>Streptococcus agalactiae</i> .
342	Aquaculture Research 47:357-369. doi:10.1111/are.12492
343	Kumar G, Hummel K, Welch TJ, Razzazi-Fazeli E, and El-Matbouli M. 2017. Global proteomic
344	profiling of Yersinia ruckeri strains. Vet Res 48:55. 10.1186/s13567-017-0460-3
345	Lauzon HL, Dimitroglou A, Merrifield DL, Ringo E, and Davies SJ. 2014. Probiotics and
346	Prebiotics: Concepts, Definitions and History. Aquaculture Nutrition: Gut Health,
347	Probiotics and Prebiotics, 169-184.
348	Mandalari G, Bennett RN, Bisignano G, Trombetta D, Saija A, Faulds CB, Gasson MJ, and
349	Narbad A. 2007. Antimicrobial activity of flavonoids extracted from bergamot (<i>Citrus</i>
350	bergamia Risso) peel, a byproduct of the essential oil industry. J Appl Microbiol
351	103:2056-2064. 10.1111/j.1365-2672.2007.03456.x Marrifold DL. Harror CM. Dimitroglay A. Binga E. and Davies St. 2010. Bassible influence of
352	Merrifield DL, Harper GM, Dimitroglou A, Ringo E, and Davies SJ. 2010. Possible influence of
353	probiotic adhesion to intestinal mucosa on the activity and morphology of rainbow trout
354	(Oncorhynchus mykiss) enterocytes. Aquaculture Research 41:1268-1272.
355	10.1111/j.1365-2109.2009.02397.x

- Motulsky H. 2014. *Intuitive Biostatistics A Nonmathematical Guide to Statistical Thinking*:
 Oxford University Press.
- Ng WK, and Koh CB. 2017. The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. *Reviews in Aquaculture* 9:342-368. 10.1111/raq.12141
- Ohtani M, Villumsen KR, Strøm HK, Lauritsen AH, Aalbæk B, Dalsgaard I, Nowak B, Raida MK, and Bojesen AM. 2019. Effects of fish size and route of infection on virulence of a Danish *Yersinia ruckeri* O1 biotype 2 strain in rainbow trout (*Oncorhynchus mykiss*).

 Aquaculture 503:519-526. 10.1016/j.aquaculture.2019.01.041
- Ohtani M, Villumsen KR, Strøm HK, and Raida MK. 2014. 3D Visualization of the Initial *Yersinia ruckeri* Infection Route in Rainbow Trout (*Oncorhynchus mykiss*) by Optical

 Projection Tomography. *PLoS One* 9. ARTN e89672
- 367 10.1371/journal.pone.0089672
- Pandey A, and Satoh S. 2008. Effects of organic acids on growth and phosphorus utilization in rainbow trout *Oncorhynchus mykiss*. *Fisheries Science* 74:867-874. 10.1111/j.1444-2906.2008.01601.x
- Refstie S, Baeverfjord G, Seim RR, and Elvebø O. 2010. Effects of dietary yeast cell wall betaglucans and MOS on performance, gut health, and salmon lice resistance in Atlantic salmon (*Salmo salar*) fed sunflower and soybean meal. *Aquaculture* 305:109-116. 10.1016/j.aquaculture.2010.04.005
- Skov J, Kania PW, Holten-Andersen L, Fouz B, and Buchmann K. 2012. Immunomodulatory
 effects of dietary beta-1,3-glucan from *Euglena gracilis* in rainbow trout (*Oncorhynchus mykiss*) immersion vaccinated against *Yersinia ruckeri*. *Fish & Shellfish Immunology* 33:111-120. 10.1016/j.fsi.2012.04.009
- Staykov Y, Spring P, Denev S, and Sweetman J. 2007. Effect of a mannan oligosaccharide on
 the growth performance and immune status of rainbow trout (*Oncorhynchus mykiss*).
 Aquaculture International 15:153-161. 10.1007/s10499-007-9096-z
- Torrecillas S, Montero D, and Izquierdo M. 2014. Improved health and growth of fish fed mannan oligosaccharides: Potential mode of action. *Fish & Shellfish Immunology* 36:525-544. 10.1016/j.fsi.2013.12.029
- Tripoli E, La Guardia M, Giammanco S, Di Majo D, and Giammanco M. 2007. Citrus
 flavonoids: Molecular structure, biological activity and nutritional properties: A review.
 Food Chemistry 104:466-479. 10.1016/j.foodchem.2006.11.054
- Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, and Patil BS. 2010. Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. *J Appl Microbiol* 109:515-527. 10.1111/j.1365-2672.2010.04677.x
- Wang SC, Yang CK, Tu H, Zhou JJ, Liu XQ, Cheng YJ, Luo J, Deng XX, Zhang HY, and Xu J.
 2017. Characterization and Metabolic Diversity of Flavonoids in Citrus Species.
- 393 Scientific Reports 7. ARTN 10549
- 394 10.1038/s41598-017-10970-2

PeerJ

395	Wanka KM, Damerau T, Costas B, Krueger A, Schulz C, and Wuertz S. 2018. Isolation and
396	characterization of native probiotics for fish farming. Bmc Microbiology 18:119.
397	10.1186/s12866-018-1260-2
398	Ytrestøyl T, Aas TS, and Åsgård T. 2015. Utilisation of feed resources in production of Atlantic
399	salmon (Salmo salar) in Norway. Aquaculture 448:365-374.
400	10.1016/j.aquaculture.2015.06.023
401	Yu HH, Han F, Xue M, Wang J, Tacon P, Zheng YH, Wu XF, and Zhang YJ. 2014. Efficacy and
402	tolerance of yeast cell wall as an immunostimulant in the diet of Japanese seabass
403	(Lateolabrax japonicus). Aquaculture 432:217-224. 10.1016/j.aquaculture.2014.04.043
404	

Table 1(on next page)

Composition of each feed group used in the experimental setup.

Composition of each feed group used in the experimental setup.

PeerJ

Table 1

Group designation:	Content:
Control – Base feed	48% protein, 23% fat, 20 MJ/kg, 35% marine content, 26% fishmeal
β-glucan	Base feed supplemented with β -glucans, vitamins $C+E$ and nucleotides
β-glucan + OA	Base feed supplemented with β -glucans and organic acids, vitamins $C+E$ and nucleotides
CF	Base feed supplemented with citrus flavonoids, vitamins $C + E$ and nucleotides
YCW	Base feed supplemented with yeast cell wall extract vitamins C + E and nucleotides

Table 1: Composition of each feed group used in the experimental setup.

Table 2(on next page)

Performance data

Performance data (mean \pm standard deviation) for the experimental feeding period. All calculations were performed as described above. Asterisks denote significant difference from control group values (P < 0.05).

Table 2

1 2

	Control	β -glucan	β-glucan + OA	CF	YCW
Growth	116.8 (±3.2)	120.4 (±7.1)	119.1	119.2	114.9
%)			(± 3.3)	(± 3.6)	(± 8.6)
FCR	$0.68 (\pm 0.04)$	$0.66 (\pm 0.03)$	0.60	0.63	0.64
			(±0.01) *	(± 0.02)	(± 0.07)
SGR (%)	$2.11 (\pm 0.03)$	2.16 (±0.11)	2.14	2.14	2.08
			(± 0.05)	(± 0.07)	(± 0.12)
LER	$6.57 (\pm 0.37)$	6.91 (±0.29)	7.46	7.04	7.18
			(±0.16) *	(± 0.22)	(± 0.84)
PER	$3.10 (\pm 0.17)$	3.23 (±0.13)	3.41	3.26	3.30
			(± 0.07)	(± 0.10)	(± 0.39)

Table 2: Performance data (mean ± standard deviation) for the experimental feeding period. All calculations were performed as described above. Asterisks denote significant difference from

5 control group values (P < 0.05).

Table 3(on next page)

P-values from pairwise log-rank survival curve analyses.

P-values from pairwise log-rank survival curve analyses. The Bonferroni-corrected a-level is 0.005.

PeerJ

1 Table 3

	Control	β-glucan	β-glucan +	CF	YCW
			OA		
Control	-	0.021	0.039	0.038	0.085
β-glucan		_	0.886	0.890	0.567
β -glucan + OA			-	0.987	0.705
CF				_	0.712
YCW					-

- 3 Table 3: P-values from pairwise log-rank survival curve analyses. The Bonferroni-corrected α -
- 4 level is 0.005.

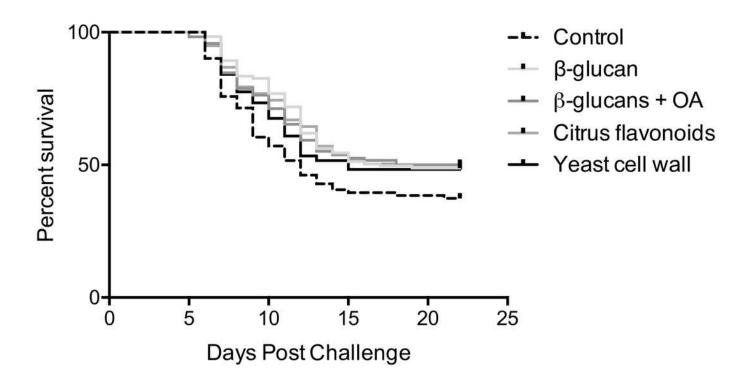
Table 4(on next page)

Results from the experimental infection.

Results from the experimental infection. All hazard ratios are relative to the control group. See Materials & Methods for details.

1 Table 4

Group:	Endpoint survival:	Hazard ratio (95% CI)
Control	37.36%	-
β-glucan	48.76%	0.6677 (0.4385-0.9192)
β-glucan + OA	50.00%	0.6937 (0.4591-0.9647)
CF	48.76%	0.6946 (0.4605-0.9622)
YCW	48.33%	0.7400 (0.4952-1.030)


³ Table 4: Results from the experimental infection. All hazard ratios are relative to the control

⁴ group. See Materials & Methods for details.

Figure 1

Kaplan-Meier survival curves

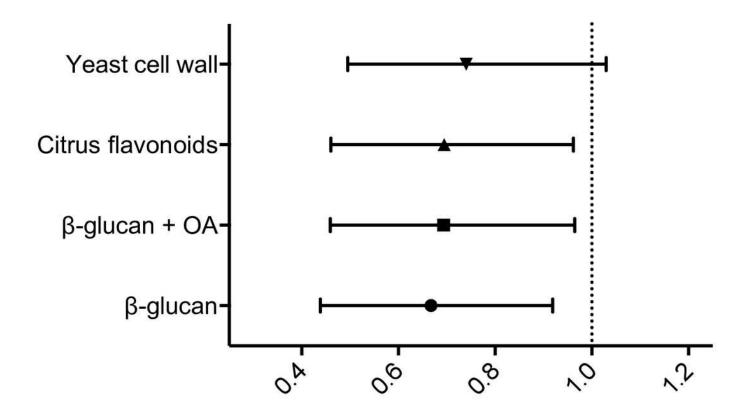

Kaplan-Meier survival curve analysis (Log-rank) of pooled replicates for each feed group. Statistical analysis is explained in Materials & Methods.

Figure 2

Hazard ratios relative to the control group

Hazard ratios relative to the control group, including 95% CI. The vertical dotted line represents a hazard ratio of 1, indicating no difference in relative risk. Statistical analysis is explained in Materials & Methods.

