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ABSTRACT
Background. Alzheimer’s disease (AD) is a prevalent progressive neurodegenerative
human disease whose cause remains unclear. Numerous initially highly hopeful anti-
AD drugs based on the amyloid-β (Aβ) hypothesis of AD have failed recent late-phase
tests. Natural aging (AG) is a high-risk factor for AD. Here, we aim to gain insights in
AD that may lead to its novel therapeutic treatment through conducting meta-analyses
of gene expression microarray data from AG and AD-affected brain.
Methods. Five sets of gene expression microarray data from different regions of AD
(hereafter, ALZ when referring to data)-affected brain, and one set from AG, were
analyzed by means of the application of the methods of differentially expressed genes
and differentially co-expressed gene pairs for the identification of putatively disrupted
biological pathways and associated abnormal molecular contents.
Results. Brain-region specificity among ALZ cases and AG-ALZ differences in gene
expression and in KEGG pathway disruption were identified. Strong heterogeneity in
AD signatures among the five brain regions was observed: HC/PC/SFG showed clear
and pronounced AD signatures, MTG moderately so, and EC showed essentially none.
There were stark differences between ALZ and AG. OXPHOS and Proteasome were the
most disrupted pathways in HC/PC/SFG, while AG showed no OXPHOS disruption
and relatively weak Proteasome disruption in AG.Metabolic related pathways including
TCA cycle and Pyruvate metabolism were disrupted in ALZ but not in AG. Three
pathogenic infection related pathways were disrupted in ALZ. Many cancer and
signaling related pathways were shown to be disrupted AG but far less so in ALZ, and
not at all in HC. We identified 54 ‘‘ALZ-only’’ differentially expressed genes, all down-
regulated and which, when used to augment the gene list of the KEGG AD pathway,
made it significantly more AD-specific.
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INTRODUCTION
Aging (AG), or senescence, is a natural process that leads to deterioration in biological,
physical, mental, and neurodegenerative disorders including dementia (López-Otín et al.,
2013). Alzheimer’s disease (AD), a neurodegenerative disorder with millions of individuals
affected worldwide, is the most common type of dementia (Wang et al., 2009a).

The etiology of AD is not well understood, but about 70% of the risk for AD is thought
to be involving many genes. In the last 25 years, the amyloid cascade, or amyloid-β
(Aβ), hypothesis (Hardy & Higgins, 1992; Hardy & Selkoe, 2002), which holds that Aβ
aggregation in the brain is a main causative factor of AD and mutations in presenilin 1
(PSEN1) (Kelleher & Shen, 2017), presenilin 2 (PSEN2) (Cai, An & Kim, 2015), amyloid
precursor protein (APP) (Selkoe & Hardy, 2016), and apolipoprotein E (APOE) (De Marco
et al., 2017) are responsible for Aβ production, has been widely accepted, and depletion
of Aβ supply or obstruction of Aβ production through targeting the four genes has been
a mainstay of anti-AD drug design strategy. The four genes, together with tau protein
(MAPT ) (Hyman, 2016) (thought to be responsible for neurofibrillary tangles, a second
main hypothesis on AD pathology (Bancher et al., 1989)) have been termed the five AD
‘‘culprit’’ genes. PENS1 and PENS2 are parts of the γ-secretase complex, the enzyme
(together with β-secretase 1, or BACE1) that cleaves APP to produce Aβ, and APOE
enhances proteolytic breakdown of Aβ. The last few years have seen late-phase failures
of the trials of many of these drugs: Semagacestat (Bateman et al., 2009) is an inhibitor
targeting γ-secretase to obstruct Aβ production, Atabecestat (Timmers et al., 2018) and
Verubecestat (Egan et al., 2018) inhibit BACE1 (β-secretase), and Aducanumab (Sevigny
et al., 2016), Bapineuzumab (Tayeb et al., 2013), Solanezumab (Tayeb et al., 2013) and
Crenezumab (Blaettler et al., 2016) are humanized monoclonal antibodies designed to
target Aβ. Reasons for the test failures (Mullard, 2017) are not known and the underlying
pathophysiology of AD remains unclear.

Numerous studies have reported genetic links between AD and AG, including that
AD and AG share a common set of declining synaptic genes (Berchtold et al., 2013),
and that genes related to mitochondrial metabolism and energy production (Wang,
Michaelis & Michaelis, 2010), and genes involved in neuronal calcium dependent signaling
(Saetre, Jazin & Emilsson, 2011), are significantly downregulated in both AD and AG. The
identification of differentially expressed genes (DEGs) (Tusher, Tibshirani & Chu, 2002)
has been widely used in the study of complex disorders, including AD (Avramopoulos
et al., 2011). Such studies have implicated as possible causes for AD mitochondrial and
DNA damage (Swerdlow, 2011), inflammatory response (Sekar et al., 2015), ubiquitin-
proteasome dysfunction (Hong, Huang & Jiang, 2014), and others. Recently the method of
differential co-expression (DCE) analysis has been proposed as suitable for understanding
biological signatures in complex diseases (Amar, Safer & Shamir, 2013).

Aging has long been recognized as a major risk for neurological disorders, including
AD. While it is easy to tell the difference between normal aging and a state of advanced AD,
differentiating between normal AG and the early onset of AD is not. The ability to detect
AD at its early stages offers the best possibility of treatment, either slowing or arresting
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its progress and, hopefully it the future, reversing it. In this study, our goal is to identify
dysfunctional signatures of AG and AD separately, to examine how they differ, and to
gain insights into recognizing signatures of early onset of AD. The materials used for this
study were six sets of whole-genome gene expression microarray data, one set for AG
(brain tissues from 70 years and older versus 40 years old and younger) and five sets for
ALZ (tissues from five brain regions—entorhinal cortex (EC), hippocampus (HC), medial
temporal gyrus (MTG), posterior cingulate (PC), superior frontal gyrus (SFG)—of 65 years
and older AD patients versus age-matched healthy controls). For clarity, we use ALZ instead
of ADwhen specifically referring to the AD datasets. From each of the six datasets (or cases)
we curated sets of DEG and interacting differentially co-expressed (IDCE) genes pairs. The
method of gene set enrichment and KEGG pathways were employed on these curated
gene sets to identify putatively disrupted biological pathways (or functions). The enriched
contents of pathways were analyzed in detail comparatively case wise. Our analysis revealed
strong heterogeneity in AD signatures among the five brain regions, with HC, PC, and
SFG showing clear and pronounced AD signature, MTG moderately so, and EC showing
almost none. There was stark difference between ALZ and AG, the most notable being
the very strong OXPHOS and Proteasome disruptions in HC/PC/SFG, but no OXPHOS
disruption and only weak Proteasome disruption in AG. Our result is consistent with the
Antimicrobial Protection Hypothesis of AD. We identified 54 ‘‘ALZ-only’’ differentially
expressed genes, all down regulated and which, when used to augment the gene list of the
KEGG AD pathway, made it significantly more AD-specific.

MATERIAL AND METHODS
Gene expression microarray data source
Six sets of gene expression microarray data (the six cases) were selected from Gene
Expression Omnibus (GEO) (Barrett et al., 2011) (http://www.ncbi.nlm.nih.gov/geo/). (a)
Five sets of ALZ data (GEO accession number GSE5281) taken from five regions of the
brain selected for being known to be differentially vulnerable to the histopathological and
metabolic features of AD (Liang et al., 2007; Liang et al., 2008b): entorhinal cortex (EC,
from Brodmann’s areas 28 and 34), hippocampus (HC), medial temporal gyrus (MTG,
BA 21 and 37 and proximate BA 22), posterior cingulate (PC, BA 23 and 31), and superior
frontal gyrus (SFG, mostly BA 8). Data from a sixth region, primary visual cortex (VCX;
BA 17) were not included in this analysis. (b) One set of AG data (GEO project accession
number GSE53890) (Lu et al., 2014) taken from prefrontal cortex (BA 9, 10, 11, 12, 46,
and 47) of normal healthy cohort 26 to 106 years of age. From the AG data two groups
were selected, the young or control group, age <40, and the old or test group, age >70. All
microarray data were on the platform Affymetrix U133 plus 2.0 (Table S1).

Database on protein-protein interaction
Protein-protein interaction (PPI) information on 12,231 human protein entries and 74,236
interactions (non-redundant) were downloaded from Human Protein Reference Database
(HPRD) (Prasad et al., 2009) (http://www.hprd.org/) and Uniprot (UniProt Consortium,
2014) (http://www.uniprot.org/) and used in the construction of IDCE pairs.

Peng et al. (2020), PeerJ, DOI 10.7717/peerj.8682 3/31

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5281
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53890
http://dx.doi.org/10.7717/peerj.8682#supp-1
http://www.hprd.org/
http://www.uniprot.org/
http://dx.doi.org/10.7717/peerj.8682


KEGG database on biological functions and pathways
The Kyoto Encyclopedia of Genes and Genomes (KEGG), a database for biological
categories, including biological pathways, was used for querying the functional enrichment
of gene sets (Huang, Sherman & Lempicki, 2008).

Two setss of known AD target genes from AlzGene and AlzBase
Two types of known AD genes were used in this study, AlzGene (Bertram et al.,
2007) (Alzforum; https://www.alzforum.org/) and AlzBase (Bai et al., 2016) (https:
//omictools.com/alzbase-tool). AlzGene is a collection of published Alzheimer’s disease
genetic association studies aimed to include GWAS meta analysis results. It contains
information on 8,246 GWAS entries and 693 genes. AlzBase is a collection of genes ranked
by frequency of appearance in dysregulated cellular functions in a variety of AD- and
AG-related situations. For comparison with gene sets curated in this study ‘‘top’’ genes,
called ‘‘known AD target genes’’ here, from the two databases were selected by using
frequency thresholds: >7 for AlzGene, yielding 106 genes (the top-106 genes), and >15 for
AlzBase, yielding 109 genes (the top-109 genes) (Table S2).

Computational software
Microarray data processing and analysis were done in the R environment (http://cran.r-
project.org/). Differentially expressed genes (DEGs) were selected using LIMMA (Ritchie
et al., 2015). Microarray data were normalized using the Robust Multi-array Average
(RMA) function (Ritchie et al., 2015) in Bioconductor (http://www.bioconductor.org/).
Functional enrichment analysis of gene sets were carried out using DAVID (Huang,
Sherman & Lempicki, 2008) (v 6.7).

Quality screening of data and differentially expressed genes (DEGs)
A flowchart of computational procedures is sketched in Fig. 1. Some of the raw dataset
had poor test-control separation. In particular, PCA analysis showed the test and control
of the original SFG dataset to be substantially unseparated in component 1 (33.79%) but
partially separated in component 2 (16.46%), resulting in a score of zero. Two standard
quality control tests, DEG-based two-way hierarchical clustering (G2HC) and principal
component analysis (PCA), were applied on the raw datasets to assure good test-control
separation and similar dataset size. For each case a reduced, a ‘‘good separation’’ set (Table
S1) of microarrays was determined by pruning microarrays from the original set until
there was perfect separation in both the G2HC (Fig. S1) and PCA (Fig. S2) tests. PCA
analysis of the reduced SFG dataset showed the test and control to be completely separated
in component 1 (42.10%) and partially separated in component 2 (9.58%), resulting in
a score of 1.0. Pruned microarrays were excluded from subsequent analyses (see effect
of dataset reduction in Discussion). In the ensuing analysis in R environment, non-sense
genes and gene duplications were removed from the 46,141 probe sets, leaving 21,765 genes
for all cases. Significant genes were then culled according to false-discovery ratio (FDR) of
the fold-change (FC) in gene expression. Approximately 800 DEGs per case were selected
by LIMMA (Ritchie et al., 2015) with the criteria |FC (log2)|>1 and case-dependent FDR
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Figure 1 Flowchart.Microarray whole-genome gene expression datasets on aging (AG) and Alzheimer’s
disease cohorts (ALZ) were collected and quality-control screened; significant genes were curated using
two independent methods, DEG and IDCE; six curated gene sets were compared with known AD target
genes and were used to query the KEGG pathway database to identify putative disrupted biological func-
tions in AG and ALZ; differences in disruptions in AG and ALZ were identified at the gene level to identify
novel AD target genes. Results on pathway analysis were discussed and compared with literature, and in-
ferences drawn.

Full-size DOI: 10.7717/peerj.8682/fig-1

thresholds (for AG, 7.50E–04; EC, 4.0E–06; HC, 1.0e−05; MTG, 5.0e−06; PC, 1.0e−04;
SFG, 1.25e−05).

Selection of differentially co-expressed gene (DCE) pairs
DCE analysis was done in programming language C. The method of Wang (Wang et al.,
2009b) was used to evaluate the difference between test and control in co-expression
correlation of gene-pairs, as follows. Separately for test and control samples, gene
expressions were normalized over cohort and converted to t -scores. The linear regressions,
r, of the t -scores were obtained for every gene-pair. A positive/negative r implies the gene-
pair is positively/negatively correlated (Fig. S3). A pair is said to have gain of co-expression
(GOC) if rt >rc, and loss of co-expression (LOC) if rt <rc, where the subscript t (c) stands
for test (control). To select gene-pairs with significant change of co-expression, the linear
regression r was converted to a heterogeneity statistic Q (Wang et al., 2009b),

Q= (nt−3)(zt−[z])2+ (nc−3)(zc−[z])2, (1)

where nt (nc) is the test (control) cohort size, z is Fisher’s z-statistics

z = (1/2)log((1+ r)/(1− r)), (2)
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and [z] is the z averaged over all pairs. Gene pairs having top-0.1%Q-statistics, corresponds
to a lower-bound Q-threshold ranging from 4.24 to 5.86 (Fig. S4), were selected as DCE
pairs, yielding approximately 240,000 pairs for each case (Table S3).

Construction of networks from interacting differentially co-expressed
gene (IDCE) pairs
Case specific interacting gene networks (IGNs) were constructed by integration of DCE
pairs with protein-protein interaction (PPI) data: the Human Protein Reference Database
(HPRD) (Prasad et al., 2009) and Uniprot (UniProt Consortium, 2014). If two genes form a
DCEpair and if, according to the PPI data, the pair has PPI, then the two genes forman IDCE
pair and, together with the link between them, are included in the IGN. Approximately
300 genes were selected by IGNs for each case. It turned out that in each case the IGNs
contained only a tiny portion of the entire set of DCE pairs. To examine the effect of this
restriction to our analysis, each of the IGN was expanded to a corresponding extended IGN
(xIGN) as follows: add to the IGN any gene (call it gene G) that has a PPI with at least one
of the existing genes in the IGN (call it gene A) and is a DCE partner with at least another
existing gene in the IGN (call it gene B), provided genes A and B are connected in the IGN.
Then G and B form an IDCE pair in xIGN. By defintion A and B cannot be the same gene,
otherwise G would have already been in IGN. Whereas an IDCE pair in IGN is a DCE pair
with direct PPI, a newly added IDCE pair in xIGN is a DCE pair with once-removed PPI.
Genes in xIGN were also required to have minimum degrees: >2 for AG and >3 for ALZ.

Functional Profiling of the DEGs and the IGNs
Genes in each case-specific DEG, IGN, and xIGN were used separately as a gene set for
querying enriched KEGG pathways using DAVID (Huang, Sherman & Lempicki, 2008) (v
6.7); pathways with p-values of Fisher’s exact test less than 0.05 were considered significant
and ranked by p-value. To simplify language, we shall say a KEGG term suffers a type 1
(putative) disruption when it is enriched in DEGs, and a type 2 disruption, when enriched
in IGN (or xIGN) genes.

RESULTS
Properties of curated gene sets
Eighteen AG and ALZ gene sets—DEG, IGN, and xIGN sets for AG and five ALZ regions,
collectively called curated gene sets, were curated in this work. With case-dependent
stringent FDR thresholds about 800 DEGs were selected for each case. The ratio of
downregulated to upregulated genes was about 7:3 for AG, about 5:1 for EC, HC, PC, and
SFG, and about 3:4 for MTG (Table S4). A two-way clustering of the six cases based on
the union of curated DEGs (containing 3,355 genes) put HC, PC, and SFG in a tightly knit
group and leaves MTG, EC, and AG as outliers (Fig. S5). Because of this clustering result
and because HC and PC are viewed as the most important brain regions characterizing
ALZ, in this study we used HC/PC/SFG as the main group for comparison with AG. The
number of genes in the interacting gene network (IGN) in each case was approximately
350. While the average degree per gene (number of links connected to it) was less than 2,
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a few genes have degrees as high as 14 (Table S4). By design the extended interacting gene
networks (xIGNs) were much larger than their IGN counterparts; the number of genes was
controlled to be approximately 900 by admitting only genes with degree greater than 2 in
the case of AG, and greater than 3 in the ALZ cases (Table S4). The top-10 most significant
DEGs in the six cases had FDR values far smaller than their respective FDR thresholds
(Table S5). Similarly, the highest-degree genes in the IGNs and xIGNs had degrees much
higher than the threshold degree (Tables S6–S7). The overlap between the curated DEG
and IGN gene sets was about 10% of IGN, except for EC (1%) and HC (24%). The overlap
between IGN and xIGN was about 90% of IGN, except for PC (40%), showing that the
DEG and IGN sets were substantially distinct, whereas xIGN was basically an enlargement
of IGN (Fig. 2). In our discussion we focused on IGN and used xIGN only for reference.

Curated gene sets significantly enriched in AlzBase, not AlzGene
The top-106 AlzGene and top-109 AlzBase gene sets are essentially distinct from each
other, having only three genes –PGK1, GAPDH, and CDK5 –in common. The AlzGene
set, collected mainly from SNP experiments, was poorly enriched in the curated genes
sets; with few exceptions the enrichment p-values were greater than 10−2. In contrast, the
AlzBase set, collected mainly from DEG experiments, was highly enriched in the curated
set; with few exceptions the enrichment p-values were less than 10−10, and in a majority
of cases less than 10−15 (Table S8, Fig. 3). The DEG set having the highest enrichment in
the AlzBase set was AG-DEG, with p-value = 7.5E–64, followed by SFG-DEG (1.9E–44);
the set having by far the lowest enrichment was EC-DEG (3.4E–03). These observations
are consistent with our two-way clustering of the six DEG sets (Fig. S5). The top-5 genes
(in frequency of appearance) from AlzGene and AlzBase were distinct from each other.
With one exception—the AlzGene gene ABCA1, an up-regulated gene in DEG sets of
AG, EC, and MTG that did not appear in any of the curated IGN sets—they all appeared
down-regulated genes in one or more of the curated DEG sets and in one or more of the
ALZ-IGN sets. None of the top-5 AlzGene/AlzBase genes played a significant role in our
(later) functional analysis of the curated gene sets (Table 1).

Five major AD culprit genes were not prominent in the curated gene
sets
The five AD culprit genes, APP, MAPT (or tau protein), APOE, PSEN1, and PSEN2,
believed to have key roles in AD-genesis, had DCE partners in the brain regions except
EC (Table S9). SFG had by far the largest number (80) of culprit related DCE pairs, with
HC, at 14 pairs, a remote second. In SFG, MAPT, which codes the tau protein and whose
over-expression can result in the self-assembly of axonal tangles, had 41 DCE partners;
APOE, associated with the common late onset familial and sporadic forms of AD, had
24; APP, which codes amyloid- β protein precursor (AβPP) and whose proteolysis leads
to the formation of Aβ, a primary component found in the brain of AD patients, had 10
(Table S9).

In spite of their numerous DCE partners, the culprit genes either did not appear in the
curated ALZ gene sets or, if they did, were of low ranking. PSEN1 had no IDCE partners,
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Figure 2 Venn diagrams for six sets of DEG, IGN, and xIGN.Vann diagrams of three curated gene sets
DEG (differentially expressed gene), IGN (interacting gene network), and xIGN (extended IGN) from the
six datasets: (A) old versus young, or AG, plus AD affected versus old-matched healthy brain from five
brain regions, (B) entorhinal cortex (EC); (C) hippocampus (HC); (D) medial temporal gyrus (MTC); (E)
posterior cingulate (PC); (F) superior frontal gyrus (SFG). Complete lists of all curated gene sets for the
six cases may be accessed at the Figshare database link: 10.6084/m9.figshare.8952938.

Full-size DOI: 10.7717/peerj.8682/fig-2
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Figure 3 Enrichment of known AD target genes in curated AG and ALZ gene sets. (A) Histogram,
−log10 (p) (Fisher’s exact test p-value) of enrichment of top-106 AlzGene genes in curated gene sets. (B)
Histogram, enrichment of top-109 AlzBase genes. Abbreviation: AG, normal aging; EC, entorhinal cortex;
HC, hippocampus; MTG, medial temporal gyrus; PC, posterior cingulate; SFG, superior frontal gyrus.

Full-size DOI: 10.7717/peerj.8682/fig-3

Table 1 Top-5 genes from AlzGene and AlzBase in the curated gene sets. The top-5 genes are the five genes in each of AlzGene and AlzBase hav-
ing the highest appearance frequencies. In column 2 (DEG) and 3 (IGN), datasets in which the gene occurs (when it does) are given. Number in
brackets gives log2 fold change (down-regulated if negative) in the case of DEG and degree (only genes with degree 2 or greater are included). None
of the top-5 genes appear in any of the gene lists of the three KEGG pathways hsa05130: E. coli infection, hsa00190: oxidative phosphorylation (OX-
PHOS), and hsa03050: Proteasome.

AlzBase
Gene symbol Curated AG and ALZ gene sets Ref.

DEG IGN
NSF AG (−1.31), MTG (−3.20), SFG (−2.88) EC (4), HC (3), MTG (10), SFG (2) Hou et al. (2017)
NECAP1 AG (−1.13), HC (−2.36), PC (−2.46), SFG (−2.75) AG (2), EC (2), HC (3) Okamoto et al. (2018)
MDH1 AG (−1.25), MTG (−3.72), PC (−2.96), SFG (−3.14) EC (3), HC (6), MTG (4) Sonntag et al. (2017)
AMPH AG (−1.31), MTG (−3.43), SFG (−2.65) AG (3), EC (3), MTG (4) Xu et al. (2019)
aPGK1 AG (−1.22), HC (−2.71), PC (−2.40) EC (2), HC (5), MTG (2) Labudova et al. (1999)

AlzGene
aGAPDH HC (−3.88), PC (−3.39) HC (5), MTG (4), PC (6) El Kadmiri et al. (2014)
UBQLN1 AG (−1.17) AG (3), EC (5), HC (4) Li et al. (2017)
ABCA1 AG (1.32), EC (1.61), MTG (2.21) – Nordestgaard et al. (2015)
bCDK5 EC (−2.20), SFG (−1.80) PC (2) Liu et al. (2016)
GSK3B HC (−1.75) AG (2), MTG (5) Llorens-Marítin et al. (2014)

Notes.
EC, entorhinal cortex; HC, hippocampus;; MTG, medial temporal gyrus; PC, posterior cingulate; SFG, superior frontal gyrus.

aGenes were also used as housekeeping genes in AD studies
bGene appears in both AlzGene and AlzBase sets
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either in IGN or xIGN.APOE was the only culprit gene that appeared in IGN; it had a single
IDCE partner in SFG. The culprit genes had more IDCE partners in the larger xIGNs. Two
culprit genes were among the DEGs: PSEN1 in EC (upregulated) and PC (downregulated),
and PSEN2 in MTG (downregulated). MAPT and APOE were in both the curated IGN
and xIGN sets of AG (Table S10).

KEGG pathways were enriched heterogeneously in curated gene sets
Many KEGG pathways were heterogeneously enriched (Fisher’s exact test p-values <0.05)
in the curated gene sets. Relative to the size of the curated set, more KEGG pathways were
enriched in the IGN sets than in the DEG sets. This probably is because the IGNs were
distilled interaction networks; interrelation between genes in the IGNs was more similar
to that in the KEGG pathways (Table S11). The patterns of KEGG pathways enriched in
curated IGN and xIGN sets were broadly similar, but were substantially different from
those enriched in curated DEG sets (Tables S12–S14). In what follows we shall focus on
the DEG and IGN sets.

The categories of KEGG pathways enriched in DEG and IGN genes for AG and
ALZ regions were substantially different, despite important similarities (Tables S12–
S14). Category of pathways both DEG- and IGN-enriched included cell proliferation,
neurodegeneration, protein complexes and metabolism, and inflammation. Pathways in
the category of metabolic related pathways were all DEG-enriched, but not IGN-enriched,
and those in carcinoma, the opposite (Fig. 4).

OXPHOS and pathways of the three neurodegenerative diseases highly
enriched in DEG sets of HC, PC, and SFG
The most prominent feature of the KEGG analysis of the DEGs were the extremely high
enrichment of (the KEGG pathways) Oxidative phosphorylation (OXPHOS), Parkinson’s
disease (PD), Hunting’s disease (HD) and Alzheimer’s disease (AD) in the DEG sets of
three regions HC, PC, and SFG. In addition to these four pathways, Proteasome, Pyruvate
metabolism, and TCA cycle were also among the Top-10 enriched KEGG pathways in
the three regions, and Vibrio cholerae infection and Pathogenic E. coli infection, in two
of the three regions. KEGG enrichment in the other three cases were weaker; in order
of descending enrichment significance: AG, MTG, and EC. Top-10 enriched pathways
in MTG include OXPHOS, V. cholerae infection, and Pathogenic E. coli infection, and
Epithelial cell signaling in H. pylori infection, which it shared with AG and SFG. This last
pathway was the only top-10 KEGG pathway AG had common with the ALZ cases. EC,
which was identified as an outlier in our earlier comparative study of the curated DEG lists,
had only four significantly enriched KEGG pathways, including HD (Fig. 4, Table S12).

Proteasome was the KEGG pathway by far the most enriched in IGN
genes
Proteasome was by far the most prominent pathways in the KEGG analysis of curated IGN
genes; it was the pathway with the highest enrichment significance in five cases including
AG, but was not significant in SFG. Pathogenic E. coli infection significant was significant
in all six cases. Ribosome, not seen in DEG analysis, was significant in all five ALZ cases.
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Figure 4 KEGG pathways most enriched in curated DEG and IGN gene sets. The six columns of hor-
izontal histograms give−log10 p-values of top-10 significantly enriched KEGG pathways in the six case:
from left, AG, normal aging; EC, entorhinal cortex; HC, hippocampus; MTG, medial temporal gyrus; PC,
posterior cingulate; SFG, superior frontal gyrus. Black (red) towers are for DEG (IGN) enrichment. Cate-
gories of KEGG pathways are indicated by color bars to the left of the histogram plot: dark gray, cell pro-
liferation; green, neuro-degeneration; brown, protein complexes and metabolism; cyan, carcinoma; dark
blue, inflammation; orange, metabolic related pathways. See Tables S12–S13 for further details of enriched
KEGG pathways in DEG, IGN, and xIGN gene sets.

Full-size DOI: 10.7717/peerj.8682/fig-4

OXPHOS, AD, PD, HD were significant in HC (but less so than in DEG) but not in PC
and SFG, nor in MTG. AD and HD was also significant in AG, and HD (weakly) in EC.
Five cancer pathways, Pathways in cancer, Endometrial cancer, Prostate cancer, Chronic
myeloid leukemia, Colorectal cancer were significant in AG, the last three pathways also
in PC, and last pathway in PC. No cancer related pathways were significant in HC, MTG,
and EC. (Fig. 4, Table S13).

DEG and IGN genes enriched in the same KEGG pathway tend to be
distinct
When a KEGG pathway was both DEG- and IGN-enriched in a given case, the enriched
genes from the two lists were generally quite different, perhaps not surprising because
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selection criteria for DEG—significant change in expression level—and IGN –significant
change in correlation of expressions of gene pair—were distinct, and because only a small
portion of genes are common to both DEG and IGN (Fig. 2). Enriched genes present
in both IGN lists of AG and ALZ tended to have very different GOC and LOC linkages,
and some enriched genes present in multiple curated ALZ gene lists were absent in the
corresponding AG lists.

ALZ-only hits and novel target genes for the KEGG AD pathway
Excluding the three neurodegenerative diseases, pathways that were among at least two of
the three top-10 KEGG pathways of HC/PC/SFG were OXPHOS, Proteasome, Pyruvate
metabolism, TCA cycle, V. cholerae infection and Pathogenic E. coli infection (Tables
S15–S16). Genes in the gene lists of these six pathways that were DEG hits in at least two
of HC/PC/SFG but not in AG were collected into a set of 54 ‘‘ALZ-only hits’’, of which
43, 47, and 36, respectively, were DEGs of HC, PC, and SFG; all were down-regulated
(Fig. 5 and Table S16). AlzBase contains two of the hits, ATP5B and ATP5G3, and AlzGene,
none. Of the 54 hits, 26 were from OXPHOS, 14 from Proteasome, and 10 from Pyruvate
metabolism and TCA cycle combined (one shared with OXPHOS and 4 are common to
both), and 5 from E. coli infection. All OXPHOS hits except SDHA (the hit shared with
TCA cycle) were mitochondrial enzymes: 9 belong to the ATP family of genes; 9, NDU; 4,
COX; and 3, UQCR. None of the hits not in OXPHOS were mitochondrial. All Proteasome
hits except POMP were from the PSM family of enzymes. All the OXPHOS hits except
ATP6V1E1, ATP6V1H, ATP5J2, and ATP5L were also in the KEGG AD pathway, and none
of the other 32 hits, call ‘‘novel AD genes’’, were (Table 2, Fig. 5).

DISCUSSION
Comparison with original analysis of AG dataset
In a comprehensive study, the authors of the AG dataset presented evidence suggesting that
the transcription factor REST (also known as neuron-restrictive silencer factor, NRSF) is
normally induced and acts as a universal feature of normal ageing in human cortical and
hippocampal neurons, and a neuroprotective modulator by repressing genes that promote
cell death and the pathology of AD, and confers oxidative stress resistance and protects
against toxic insults, such as Aβ oligomers and tau phosphorylation, associated with AD,
but is lost in mild cognitive impairment and AD (Lu et al., 2014). In our study the gene
REST was moderately up-regulated in AG and, in spite of what was suggested in (Lu et al.,
2014), similarly in all five ALZ datasets, but, with a FC (log2) ranging from 0.541 (PC) to
0.914 (SFG), was not a DEG (Table S17). Our result does not directly contradict (Lu et al.,
2014) because the AD work in Lu et al. (2014) was not genomic based. Our ALZ study did
yield many strong AD signatures, including a severe dysfunction of OXPHOS.

Comparison with original analyses of ALZ datasets
The ALZ datasets (we did not analyze the dataset collected from the primary visual cortex)
were also analyzed in Liang et al. (2007), Liang et al. (2008b) and Liang et al. (2008a). In
methodology the main difference between the analyses of these authors and us was, in our
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Figure 5 Volcano plots of ALZ-only hits from six DEG cases. Cases (A) to (F) correspond to volcano
plots for the six DEG sets: AG, normal aging; EC, entorhinal cortex; HC, hippocampus; MTG, medial
temporal gyrus; PC, posterior cingulate; SFG, superior frontal gyrus. DEGs (cyan, downregulated; light
brown, upregulated) were selected using LIMMA with case dependent FDR (for AG, 7.50E−04; EC,
4.0E−06; HC, 1.0e−05; MTG, 5.0e−06; PC, 1.0e−04; SFG, 1.25e−05) and |FC(log2)|>1 (red dashline).
Dots are ‘‘ALZ-only’’ hits (Table 2) in the gene list of leading KEGG pathways enriched in DEGs,
including OXPHOS (deep-blue), Proteasome (red), and others (pink).

Full-size DOI: 10.7717/peerj.8682/fig-5

case, the reduction of the datasets so that all datasets were of similar size (about 10 vs.
10) and, more importantly, had good test-control separation in PCA analysis. In addition,
for function analysis Liang et al. (2008a) used Gene Ontology (GO) and we used KEGG
pathways. In practice our DEG results are quantitatively (Table S18) and qualitatively
consistent with the results in (Liang et al., 2008a), except for the case of SFG. This is
perhaps to be expected when the PCA analysis for the original SFG set (23 control vs.
11 test) had a score of zero, whereas the reduced set (12 vs. 8) had a score of 1. When
the screening criteria (FDR <1.25E–05, |FC|>1) used to selected the 829 DEGs from the
reduced SFG set were applied to the original set the yield was zero; using the criteria FDR
<1.00E–02, |FC|>1 yielded 395 DEGs, which had 92 common genes with the 829-gene
set (Table S18). The functional analyses also yielded drastically different results for SFG.
In our result SFG belonged to the same category as HC and PC, whereas in Liang et al.
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(2008a) it was an outlier and shared no common feature with HC or PC. For instance,
mitochondrial functions were reported to be severely disrupted in HC, PC, and MTG but
not in SFG (Liang et al., 2008b), whereas our result indicated it to be severely disrupted in
all four regions. In both analyses EC was also an outlier, separate from SFG in (Liang et al.,
2008a). We emphasize that concerning SFG there is no contradiction between ours and the
analysis in Liang et al. (2007), Liang et al. (2008b) and Liang et al. (2008a); different sets of
microarrays were analyzed, which yielded different presentations of the pathology of SFG,
differences which may be resolved by new data and analyses.

Comparison with AlzGene and AlzBase
That our curated gene set has very low enrichment in the AlzGene set but much higher
enrichment in the AlzBase set (Fig. 3) could be because gene expression was used to selected
genes in AlzBase, as was in the present work, whereas SNP, one of the most common types
of genomic variation, was used to selected genes in AlzGene. The AlzBase set was more
enriched in our AG than ALZ gene sets because it (AlzBase) was curated from AD brain
as well as AG brain (Bai et al., 2016). Gene expression as a leading determinant factor
may explain why the DEG subsets of the curated genes were, overall, more enriched than
the IGN and xIGN subsets in the AlzBase set, which was essentially determined by DEG.
The IGN and xIGN subsets were determined by co-expression of gene-pairs as well as
PPI data. It is notable that the five major AD culprit genes were not prominent among
the curated genes. In comparison, the top-106 AlzGene gene set contains the four culprit
genes APOE, MAPT, PSEN1, APP (in descending order of appearance frequency), but the
top-109 AlzBase gene set contains none. Culprit genes most likely were more active during
the onset of AD in the patients and less, or even not, active during late stages of AD. In
contrast, curated genes were culled frommicroarray data taken postmortem from patients,
whose deaths presumably were caused by advanced states of AD.

Cancer-related pathways disrupted in AG, essentially not in ALZ
Most of the leading disrupted KEGG pathways in AG were not disrupted in ALZ. Those
that were type 1 disrupted were mainly signaling pathways related to cancer: MAPK
signaling pathway (Dhillon et al., 2007), Cell adhesion molecules (Bendas & Borsig, 2012),
and Calcium signaling pathway (Monteith, Prevarskaya & Roberts-Thomson, 2017) (Table
S12), and type 2 disrupted were pathways related to specific cancers: Pathways in cancer,
Endometrial cancer, Prostate cancer, and Colorectal cancer (Table S13). Because AG
compared old (70 years and above) versus young (40 and below), whereas ALZ compared
AD patients versus age-matched (65 and above) non-AD cohorts, the above results
do not imply AD patients did not have cancer-related dysfunctions, rather, it meant such
dysfunctions were not exacerbated by AD. It has been suggested that an inverse comorbidity
relation exists between AD and some types of cancer, including smoke-related ones (Driver
et al., 2012;Musicco et al., 2013). Our result does not directly support it.

OXPHOS and Proteasome strongly disrupted in ALZ, not in AG
Brain related dysfunctions, especially mitochondrial dysfunction, are often discussed in the
context of both old age and AD. In this work there was clear distinction between the two
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Table 2 Fifty-four AD-only hits and 32 novel AD genes. The 54 AD-only hits were enrichment hits from 6 KEGG pathways—OXPHOS (Oxp), Proteasome (PSM),
Pyruvate metabolism (Pym), TCA cycle (TCA), V. cholerae infection (Vch) and Pathogenic E. coli infection (Ecol)—in two of three DEG sets of HC/PC/SFG and not in
AG. The 32 genes not in the KEGG AD pathway (AD) are called ‘‘novel AD genes’’. Gene families: acylphosphatase (ACYP), Actin Related Protein 2/3 Complex (ARPC),
adenosine triphosphate (ATP), cyclooxygenase (COX), -ketoglutarate dehydrogenase (DLD), fumarate hydratase (FH), glyoxalase (GLO), isocitrate dehydrogenase
(IDH), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), NADH:ubiquinone oxidoreductase (NDU), pyruvate dehydrogenase (PDH), proteasome
maturation protein (POMP), proteasome subunits (PSM), succinate dehydrogenase (SDH), ubiquinol-cytochrome c reductase (UQCR). Abbreviations for the six
cases: EC, entorhinal cortex; HC, hippocampus; MTG, medial temporal gyrus; PC, posterior cingulate; SFG, superior frontal gyrus.

KEGG Protein
families

Gene DEG Up or
Down

IGN Reference & remark

ARPC ARPC1A HC, PC,
SFG

Down Arp2/3 complex is a central player in actin-
based motility of pathogens.

TUBA1B HC, PC,
SFG, MTG

Down AG, EC,
HC, MTG,
PC, SFG

TUBA1C HC, PC,
MTG

Down AG, HC,
MTG, PC,
SFG

TUBB HC, PC,
SFG

Down AG, EC,
HC, MTG,
PC, SFG

Ecol
Tubulin

TUBB3 PC, SFG,
MTG

Down AG, EC,
MTG

Level of E. coli K99 was reported to be greater
in AD compared to control brains(Zhan et
al., 2016). Reduced α-tubulin expression led
to increased human-tau expression in trans-
genic worm (Miyasaka et al., 2018).

ACYP ACYP2 HC, PC Down
GLO GLO1 HC, PC,

MTG
Down

Pym

LDH LDHB HC, PC Down Decreased LDHB relative to LDHA leads to
CNS aging in transgenic mice (Ross et al.,
2010).

DLD DLD HC, PC,
SFG

Down HC, PC DLD activity down in AD-human brain
(Bubber et al., 2005).

MDH MDH2 HC, SFG Down EC MDH activity up in AD-human brain (Bub-
ber et al., 2005).

PDHA1 HC, SFG Down
Pym,
TCA

PDH
PDHB PC, SFG Down HC, SFG

PDH activity down in AD-human brain
(Bubber et al., 2005) and transgenic mice (Yao
et al., 2009).

FH FH PC, SFG,
MTG

Down Activity changed in AD-human brain (Bubber
et al., 2005).

TCA
IDH IDH3G EC, HC,

SFG
Down IDH activity down in AD-human brain (Bub-

ber et al., 2005).
TCA,
Oxp,
AD

SDH SDHA HC, PC Down AG SDH activity down in transgenic mice (Yao et
al., 2009).

ATP6V1E1 HC, PC,
SFG, MTG

Down EC, HC,
MTGVch,

Oxp ATP
ATP6V1H HC, PC Down EC, HC,

MTG

(continued on next page)
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Table 2 (continued)

KEGG Protein
families

Gene DEG Up or
Down

IGN Reference & remark

ATP5J2 PC, SFG,
EC, MTG

Down

Oxp ATP
ATP5L PC, SFG,

MTG
Down

ATP5A1 HC, PC Down EC, HC,
SFG

ATP5B HC, PC,
SFG

Down EC, HC,
MTG, SFG

ATP5C1 PC, SFG,
MTG

Down EC, HC,
MTG, SFG

ATP5G3 HC, PC,
SFG

DownATP

ATP5O HC, PC,
SFG

Down EC

ATP activity down in transgenic mice (David
et al., 2005).

COX4I1 HC, PC Down
COX5B HC, PC Down
COX6B1 HC, PC,

MTG
DownCOX

COX6C HC, PC Down

COX activity down in transgenic mice (David
et al., 2005; Yao et al., 2009).

NDUFA2 PC, SFG Down
NDUFA8 HC, SFG,

MTG
Down

NDUFA9 HC, PC,
SFG

Down HC

NDUFAB1 HC, PC,
SFG, MTG

Down

NDUFB10 HC, PC Down
NDUFC2 PC, SFG Down
NDUFS3 HC, PC,

SFG
Down PC

NDUFS5 HC, PC,
SFG, MTG

Down

NDU

NDUFV2 HC, PC,
SFG

Down HC

NDU activity down in transgenic mice
(David et al., 2005; Rhein et al., 2009).

UQCRC2 HC, PC,
SFG

Down AG

UQCR10 HC, SFG Down

Oxp,
AD

UQCR

UQCRH HC, SFG,
MTG

Down AG, HC, PC

(continued on next page)
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Table 2 (continued)

KEGG Protein
families

Gene DEG Up or
Down

IGN Reference & remark

POMP HC, PC Down EC, HC, PC Overexpression of POMP enhances antioxi-
dant defense (Chondrogianni & Gonos, 2007).

PSMA1 HC, PC,
SFG, MTG

Down AG, EC,
HC, MTG,
PC

PSMB1 HC, PC Down AG, MTG
PSMB2 HC, SFG Down HC
PSMB3 HC, PC,

SFG
Down HC

PSMB4 HC, PC Down
PSMB5 PC, SFG Down HC, MTG
PSMB6 HC, PC Down
PSMC1 HC, PC,

SFG
Down AG, HC

PSMC2 HC, PC,
SFG

Down AG, EC,
HC, MTG,
PC

PSMC5 HC, PC,
MTG

Down AG, EC,
MTG, SFG

PSMD4 HC, PC Down AG, EC,
HC, MTG,
PC, SFG

PSMD8 PC, SFG Down HC, MTG,
PC

PSM
PSM

PSMD12 HC, PC Down EC, HC

In AD-affected brain, PSMB1/6
(chymotrypsin-like) and PSMB5 (caspase-
like) mediated activities decreased, but
no change* in level of α- and β-subunits
(Keller, Huang & Markesbery, 2000). Remark:
*no significance assigned to measure.
Aβ inhibits chymotrypsin-like (PSMB5)
activity of proteasome (Checler et al., 2000).
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conditions. OXPHOS and Proteasome were the two most strongly disrupted pathways in
ALZ –40 of the 54 ALZ-only genes were either mitochondrial or proteasomal, yet OXPHOS
was not at all disrupted, and Proteasome was only type 2 disrupted, in AG (Tables S12
and S13). The Proteasome genes enriched in the IGN-AG gene list were mostly distinct
from those enriched in IGN-ALZ list (Table 2). This suggests loss of mitochondrial and/or
proteasomal function in the non-AD aged has the potential of being used as an indicator
for early onset of AD.

OXPHOS and the three neurodegenerative pathways
The four KEGGmitochondria related pathways OXPHOS, AD, HD, and PD, together with
Proteasome, exhibited by far the strongest type 1 and type 2 disruptions in the ALZ datasets,
especially in HC/PC/SFG (a KEGG pathway is type 1 or 2 disrupted when it is enriched in
a DEG or IGN set). Of the 133 genes in (the) OXPHOS (gene set) only 6 are not from one
of the six families of (genes coding for) mitochondrial enzymes: NADH dehydrogenase
(NDH), NADH: ubiquinone oxidoreductase (NDU), succinate dehydrogenase complex
(SDH), cytochrome c oxidase (COX), ATP synthase (ATP), ubiquinol-cytochrome c
reductase (UQCR). Mitochondrial genes are also preponderant in the gene lists of the
three neurodegenerative diseases: 89/171, 95/142, and 89/193, respectively, in AD, PD, and
HD. The DEGs of HC/PC/SFG were also rich in mitochondrial genes of OXPHOS, 28, 42,
and 32 genes, respectively, in HC, PC, and SFG (Table S19). Aside from the AD culprit
genes related to Aβ production, the 68 AD-specific genes (not common with OXPHOS
or HD or PD, hence also non-mitochondrial) in AD are dominated by genes related to
signal transduction, including genes in the CAC (Calcium Voltage-Gated Channel), CAL
(Calmodulin), CAP (Calpain, Calcium-Activated Neutral Proteinase), GRIN (Glutamate
Ionotropic Receptor NMDA), ITPR (Inositol 1,4,5-Trisphosphate Receptor). Only 7 of
these 68 AD-specific genes were hits in DEG-HC (6/5 hits in PC/SFG), less than the 8 hits
in DEG-AG. In comparison, 6/19/14/10 of the HD and/or PD-specific genes were hits
in AG/HC/PC/SFG, suggesting that the KEGG AD pathway, as it currently stands, is not
particularly AD specific (Table S19).

OXPHOS dysfunction and tau and Aβ pathologies
OXPHOS is the metabolic pathway in the mitochondria that produces ATP, whose energy
is released to power the brain. Dysfunction of mitochondria has long been associated
with AD (Shoffner, 1997; David et al., 2005; Phillips, Simpkins & Roby, 2014; Lin & Beal,
2002), PD (Winklhofer & Haass, 2010), and HD (Damiano et al., 2010). Experiments and
functional analysis on P301L tau transgenic mice demonstrated mitochondrial dysfunction
leads to reduced NDU activity and impaired ATP and the suggestion that tau pathology
involves a mitochondrial and oxidative stress disorder possibly distinct from that caused
by Aβ synthesis (David et al., 2005; Eckert et al., 2010). Experiments on triple transgenic
AD mice found a massive deregulation of 24 proteins, including 3 in the NDU family (in
mitochondria complex I) and 3 in the COX family (complex IV). Because deregulation
of complex I was tau dependent, whereas deregulation of complex IV was Aβ dependent,
the authors concluded that OXPHOS was synergistically impaired by Aβ and tau (Eckert
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et al., 2010; Rhein et al., 2009). Results in this work suggest wide spread mitochondrial
dysfunction; the ALZ-only list includes 9 NDU, 1 SDH (complex II), 4 UQCR (complex
III), 4 COX, and 9 ATP (complex V) coding genes (Table 2, Fig. 5), all down-regulated;
but not any ND (complex 1) coding genes.

The Proteasome and Aβ pathology
The ubiquitin-proteasome system (UPS) is an important part of the proteolysis machinery
in eukaryotic cells; it maintains proteostasis (Lecker, Goldberg & Mitch, 2006), regulates
proteins biosynthesis, and controls levels of presynaptic protein (Speese et al., 2003). UPS
was associated with AD when ubiquitin was detected in neurofibrillary tangles and senile
plaques in AD affected brains (Perry et al., 1987; Mori, Kondo & Ihara, 1987). Proteasome
is the core of UPS that degrades ubiquitinated proteins. Cell model experiments have
shown that the proteasome is inhibited by, but does not directly degrade Aβ. Rather, it
degrades PS1 and PS2 as well as their mutated forms. Mutated PSEN1/PSEN2 leads to the
production of the plaque-forming peptide, Aβ42, and the inhibition of proteasome was
shown to enhance this production (Checler et al., 2000). In the proteasome, degradation of
ubiquitinated proteins/peptides is carried out in the barrel-shaped 20S complex, composed
of four types—α/β/γ/δ –of proteasome subunits (PSMA/B/C/D). The β-subunits contain
peptide cleaving activities, caspase-like by PSMB1/6, trypsin-like by PSMB2/4/7, and
chymotrypsin-like by PSMB5, whereas the other three type of subunits have structural
and regulatory functions. Experiments on autopsied AD affected brains (and controls)
recorded a decrease in caspase-like and chymotrypsin-like activities in AD brain, but saw
no significant decrease in either α- or β-subunit expression (Keller, Hanni & Markesbery,
2000). However, whereas the authors reported statistical significance for the activity
results, the same was not provided for the expression result. The gene POMP encodes a
molecular chaperone that is essential for 20S proteasome formation. Its overexpression
increases proteasome function and enhances proteasome-mediated antioxidant defense
(Chondrogianni & Gonos, 2007). Strong type 1 and type 2 disruptions of Proteasome was
one of the most prominent features of our result. In contrast the only ubiquitin related
pathway noticeably enriched in our data was hsa04120: Ubiquintin mediated proteolysis, in
IGN-EC. The ALZ-only hits from Proteasome include POMP and 13 PSM genes covering
all four types of subunits, including six of the seven β-subunits, PSMB1 to PSMB6 ; all
were down regulated (Table 2, Fig. 5). The KEGG pathway hsa04142: Lysosome pathway,
system of organelles that digests waste macromolecules autophagy in the cytoplasm, did
not surface in our work.

Pyruvate metabolism, TCA cycle, and dementia
In adult human, the brain accounts for about 2% of the body weight but consumes about
25% of body glucose. OXPHOS, pyruvate metabolism, and the TCA (Krebs) cycle are
key glucose metabolic pathways. Pyruvate, the end product of glycolysis, is converted
by the pyruvate dehydrogenase (PDH) complex to acetyl CoA, which is taken by the
TCA cycle to produce nicotinamide adenine dinucleotide (NADH), which is fed into
the OXPHOS process to produce ATP. Aberrant glucose metabolism is a feature of AD
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pathology (Chen & Zhong, 2013). In addition to PDH, key enzymes in pyruvatemetabolism
and the TCA cycle include lactatedehydrogenase (LDH), α-ketoglutarate dehydrogenase
(DLD), isocitrate dehydrogenase (IDH), malate dehydrogenase (MDH), and succinate
dehydrogenase (SDH). A reduced glycolytic energy production, such as caused by aberrant
pyruvate metabolism, is a common symptom of AD patients (Gray, Tompkins & Taylor,
2014). Decreased PDH and COX activity in female 3xTg-AD mice have been reported
(Yao et al., 2009). Activities of TCA cycle enzymes in brains from patients with autopsy-
confirmed AD and clinical dementia ratings (CDRs) before death have been measured, and
significant (p <0.01) decreases in the activities of the PDH complex, IDH, and the DLD
complex, and increases in SDH andMDHwere reported (Bubber et al., 2005). Experiments
on prematurely aging mtDNA mutator mice suggested that decreased LDHB (relative
to LDHA) leads to CNS aging in mice (Ross et al., 2010). In this work both Pyruvate
metabolism and TCA cycle pathways were type 1 disrupted in HC/PC/SFG (p-value =
2.9E–04/6.1E–03/3.4E–03 for Pyruvate; 1.4E–03/2.7E–02/1.4E–05 for TCA), and neither
was in AG. Seven enzyme coding genes associated with the two pathways, including those
encoding LDHB, DLD, MDH2, PDHA1, PDHB, were among the ALZ-only genes; all were
down-regulated (Table 2, Fig. 5).

Pathogenic E. coli infection, tubulin, and tau tangle
Microtubules are dynamic structures that form part of the cytoskeleton and are composed
of heterodimers of α- (TUBA) and β-tubulin (TUBB). The aggregation of the microtubule-
associated protein tau in the form of tangles in the brain is one of the two (the other being
aggregation of Aβ plaques) manifests of AD (KoSIK, Joachim & Selkoe, 1986). Bacterial
pathogens including E. coli (and V. cholerae) induce microtubule destruction in their
invasion of host (Radhakrishnan & Splitter, 2012). Level of E. coli K99 was reported to be
greater in AD compared to control brains (Zhan et al., 2016). Loss of microtubule (Cash et
al., 2003) and tubulin (Zhang et al., 2015) have been reported in the neurons of AD brains.
Level of reduced α-tubulin expression led to increased human-tau expression in transgenic
worm (Miyasaka et al., 2018). In this work the KEGG pathway Pathogenic E. coli infection
was type 1 disrupted in HC/PC/SFG (p-value = 3.9E–02/1.1E–03/7.2E–03) and MTG
(7.2E–03), as well as in AG (6.7E–03), and type 2 disrupted in all six cases. The ALZ-only
set had five genes associated with the pathway, including two α-tubulin genes TUBA1B
and TUBA1C and two β-tubulin genes TUBB and TUBB3; all were down-regulated (Table
2, Fig. 5).

V. cholerae is gram-negative bacterium known for causing the disease cholera. The
KEGG pathway V. cholerae infection was type 1 disrupted in HC, SFG, MTG as well as
in AG. Of this KEGG pathway, the 14 ATPase-coding hits in AG and/or ALZ were also
OXPHOS hits in AG/ALZ, two—ATP6V1E1 and ATP6V1H—were ALZ-only; both are
already in the gene list of the AD pathway. There were a few non-ATPase-coding hits but
none satisfied ALZ-only criteria. No literature was found specifically linking V. cholerae to
AD.
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Antimicrobial protection hypothesis of AD
Recently it has been shown, based on experiments in which Aβ-expressing, APP knockout,
and mouse models, as well as worm and mammalian cell models were infected with
pathogens including C. albicans and S. Typhimurium, that Aβ may be a natural antibiotic
that protects the brain from bacterial infection through the adhesion to and agglutination
of invading microbes by oligomerized and fibrillized Aβ (Kumar et al., 2016). This work
led to the proposal of a new AD amyloidogenesis model, in which Aβ deposition is an
early innate immune response to microbial invasion, during which Aβ first entraps and
neutralizes invading pathogens, then fibrillizes and drives neuroinflammatory pathways
that help fight the infection and clear Aβ and pathogen deposits. Chronic activation of
these pathway leads to sustained inflammation and AD (Moir, Lathe & Tanzi, 2018). The
new model, called the Antimicrobial Protection Hypothesis of AD by its authors, retains
the Aβ production mechanism of the Amyloid Cascade Hypothesis. Implicit in the new
hypothesis is AD tends to be associated with old age because the mechanism for Aβ
clearance gradually breaks down with age. The present work is consistent with the new
hypothesis in that three pathogens infection related KEGG pathways showed disruption in
our datasets: Epithelial cell signaling in Helicobacter pylori infection, type 1 in AG, MTG,
and SFG; Pathogenic E. coli infection, type 1 in all cases except EC, and type 2 in all six
cases; Vibrio cholerae infection, type 1 in AG, HC, MTG, and SFG (Fig. 4, Table S12).
Recently, experiments in transgenic mouse model have shown that acute treatment of
Aβ induces microglia, brain-resident innate immune cells, activation accompanied by
metabolic reprogramming from OXPHOS to glycolysis (Baik et al., 2019). The KEGG
pathway hsa00010: Glycolysis/Gluconeogenesis was not enriched in any of our curated
DEG sets, but was mildly enriched in IGN-HC; no KEGG pathway related to microglia or
inflammation surfaced in our work.

Novel genes for the KEGG AD pathway
It is curious that AD was less type 1 disrupted than HD and PD in each of HC/PC/SFG
(Table S12). Twenty-two of the 54 ALZ-only genes were already in the KEGG AD pathway
gene set (Table 2). This set included a single non-mitochondrial gene, SDHA; the others
were all mitochondrial from OXPHOS. Of the remaining 32 genes, or novel AD genes, 4
were ATP genes fromOXPHOS, 14 were from Proteasome, and 14 from E. coli, V. cholerea,
Pyruvate, and TCA; the 28 non-OXPHOS genes include all the non-mitochondrial genes
except SDHA in the ALZ-only set (Table 2). In comparison to these 28 non-mitochondrial
genes, there were only 8 non-mitochondrial AD pathway hits—SDHA, ATF6, BACE1,
CALM1, GAPDH, GSK3B, NAE1, and RTN3—(Table S19) in the ALZ-DEG datasets. In
other words, as far as non-mitochondrial genes are concerned the KEGG AD pathway and
our ALZ DEG sets are complementary; the former is rich in signal-transduction related
genes but lack genes from E. coli, V. cholerea, Pyruvate, TCA, Proteasome, whereas the
latter is vice versa. When the 32 novel AD genes were added to the KEGG AD pathway set,
then, as expected, AD became more type 1 and type 2 disrupted than HD and PD in all
ALZ datasets (Fig. 6, Table S20).
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Figure 6 Enrichment of curated DEG sets in five key KEGG pathways. In the tower labeled ‘‘AD+ALZ-
only genes’’, the gene list of the KEGG AD pathway was augmented with 32 of the 54 ALZ-only genes not
already in the list, 14 of which are from the pathway Proteasome. Abbreviation: OXPHOS, hsa00190: Ox-
idative phosphorylation; Proteasome, hsa03050: Proteasome; PD, hsa05012: Parkinson’s disease; HD,
hsa05016: Huntington’s disease; AD, hsa05010: Alzheimer’s disease; AG, normal aging; EC, entorhinal
cortex; HC, hippocampus; MTG, medial temporal gyrus; PC, posterior cingulate; SFG, superior frontal
gyrus.

Full-size DOI: 10.7717/peerj.8682/fig-6

In summary, our analysis revealed strong heterogeneity in AD signatures among the five
brain regions; HC/PC/SFG showed clear and pronounced AD signatures, MTGmoderately
so, and EC showed essentially none. There were stark differences between ALZ and AG.
Whereas OXPHOS and Proteasome were the most disrupted pathways in HC/PC/SFG, AG
showed no OXPHOS disruption and only type 2 Proteasome disruption in AG. Metabolic
related pathways including TCA cycle and Pyruvate metabolism were disrupted in ALZ but
not in AG. Our result is consistent with the notion that OXPHOS dysfunction is closely
related to Aβ and tau pathologies and with the Antimicrobial Protection Hypothesis of AD
in that three pathogens infection related pathways were disrupted in ALZ.Many cancer and
signaling pathways were disrupted in AG but our results suggest that having AD does not
exacerbate such disorders in the aged. We identified 54 ‘‘ALZ-only’’ differentially expressed
genes, all down regulated and which, when used to augment the gene list of the KEGG AD
pathway, made it significantly more AD-specific. Because OXPHOS dysfunction is directly
tied to mitochondrial and oxidative stress disorder and energy supply to brain cells, our
result suggests the potential of monitoring the level of neuron activity as a non-invasive
method for detecting the possible early onset of AD in the aged, and that maintaining
healthy mitochondria and proteasome may be a worthwhile strategy for preventing the
onset, or slowing or arresting the progress of AD.

Limitations and perspectives
The general applicability of our results to all AG and AD cases is limited by the relatively
small number of microarray samples used in the present study. Future larger-scaled studies
will determine whether our decision to analyze subsets of the original AG and AD datasets
with better test-control separations was a wise one. Even though our results are generally
consistent with experiments reported in the literature (which we cited), it still lacks direct
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experimental support. Hence our results should best be viewed as possible topics for
experimental study and verification, chief among which is the clear AG-AD difference
with respect to mitochondria and proteasome dysfunction. We may collaborate with
experimental researchers in initiating related verification projects. We are interested in
joining the Oskar Fischer Project and have AD related discussion with other researchers.

Abbreviations
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