Tensiomyographical responsiveness to local fatigue in quadriceps femoris (#44194)

First submission

Guidance from your Editor

Please submit by 8 Jan 2020 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 2 Figure file(s)
- 3 Table file(s)
- 1 Raw data file(s)
- 1 Other file(s)

Custom checks

Human participant/human tissue checks

- ! Have you checked the authors <u>ethical approval statement</u>?
- Does the study meet our <u>article requirements</u>?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Tensiomyographical responsiveness to local fatigue in quadriceps femoris

Rodrigo Martin-San Agustín¹, Francesc Medina-Mirapeix Corresp., 2, José Casaña-Granell¹, José A. García-Vidal², Carmen Lillo-Navarro³, Josep C. Benítez-Martínez¹

Corresponding Author: Francesc Medina-Mirapeix

Email address: mirapeix@um.es

Background: Fatigue influences athletic performance or increased risk of injury in sports and most of the methods to evaluate it require an additional voluntary effort. Tensiomyography (TMG) has emerged as a technique that can assess the presence of local

and general fatigue without requiring additional voluntary efforts. Even so, the evaluation of the TMG's ability to detect fatigue is limited, both at the level of muscle bellies and statistical methods. The aim of this study was to examine and compare the tensiomyographical responsiveness to quadriceps femoris (QF) fatigue by multiple statistical methods. **Methods:** Thirty-nine recreational athletes participated. TMG parameters of QF bellies and maximal voluntary isometric contraction (MVIC) were measured before and after a fatigue protocol. TMG parameters used were maximum radial deformation (Dm), contraction time between 10-90% of the Dm (Tc), contraction velocity between 10-90% (Vc) and of the first 10% (V10) of the Dm. Internal responsiveness of TMG to fatigue was analyzed by paired t-test and standardized response mean (SRM). External responsiveness was examined by correlations, regression models, and receiver operating characteristic (ROC) curves. **Results:** All TMG parameters, except for Tc of rectus femoris and vastus medialis, showed large internal responsiveness. In adjusted regression models by sex, only Dm and V10 of rectus femoris were statistically associated with b coefficients of 0.40 and 0.43 respectively. R2 explained the 22% of the total variance. In addition, these parameters could discriminate between QF with and without fatigue. Since the QF is the main strength contributor during multiple physical activities, clinicians and trainers will be able to discriminate the presence of fatigue and the magnitude of changes in the QF strength by TMG evaluation.

Department of Physiotherapy, Universidad de Valencia, Valencia, España

² Department of Physiotherapy, University of Murcia, Murcia, Spain

³ Department of Pathology and Surgery, Universidad Miguel Hernández de Elche, San Joan, Alicante, Spain

Tensiomyographical responsiveness to local fatigue in quadriceps femoris

3

- 4 Rodrigo Martín-San Agustín¹, Francesc Medina-Mirapeix², José Casaña-Granell¹, José A.
- 5 García-Vidal², Carmen Lillo-Navarro³, Josep C. Benítez-Martínez ¹
- 6 Department of Physiotherapy, University of Valencia, Valencia, Spain
- 7 Department of Physiotherapy, University of Murcia, Murcia, Spain
 - ³ Department of Pathology and Surgery. University Miguel Hernández, Sant Joan, Spain

8 9

- 10 Corresponding Author:
- 11 Francesc Medina-Mirapeix
- 12 Department of Physiotherapy Faculty of Medicine, University of Murcia, Campus de
- 13 Espinardo, Murcia 30100, Spain.
- 14 Email address: mirapeix@um.es

15 16

Abstract

- 17 **Background:** Fatigue influences athletic performance or increased risk of injury in sports and
- 18 most of the methods to evaluate it require an additional voluntary effort. Tensiomyography
- 19 (TMG) has emerged as a technique that can assess the presence of local and general fatigue
- 20 without requiring additional voluntary efforts. Even so, the evaluation of the TMG's ability to
- 21 detect fatigue is limited, both at the level of muscle bellies and statistical methods. The aim of
- 22 this study was to examine and compare the tensiomyographical responsiveness to quadriceps
- 23 femoris (QF) fatigue by multiple statistical methods.
- 24 Methods: Thirty-nine recreational athletes participated. TMG parameters of QF bellies and
- 25 maximal voluntary isometric contraction (MVIC) were measured before and after a fatigue
- 26 protocol. TMG parameters used were maximum radial deformation (Dm), contraction time
- between 10-90% of the Dm (Tc), contraction velocity between 10-90% (Vc) and of the first 10%
- 28 (V10) of the Dm. Internal responsiveness of TMG to fatigue was analyzed by paired t-test and
- 29 standardized response mean (SRM). External responsiveness was examined by correlations,
- 30 regression models, and receiver operating characteristic (ROC) curves.
- 31 **Results:** All TMG parameters, except for Tc of rectus femoris and vastus medialis, showed large
- 32 internal responsiveness. In adjusted regression models by sex, only Dm and V10 of rectus
- femoris were statistically associated with b coefficients of 0.40 and 0.43 respectively. R2
- 34 explained the 22% of the total variance. In addition, these parameters could discriminate between
- 35 QF with and without fatigue. Since the QF is the main strength contributor during multiple
- 36 physical activities, clinicians and trainers will be able to discriminate the presence of fatigue and
- 37 the magnitude of changes in the QF strength by TMG evaluation.

38 39

Introduction

- 40 Fatigue is defined as a decline in muscular performance which produces a reduction in strength
- and power generation (Ditroilo et al., 2011). It can be further explained by factors related to the
- 42 central nervous system as changes at the spinal level (Gandevia, 2001) or by peripheral factors
- 43 associated to the muscle, such as failure of transmission at the neuromuscular junction (Allen,
- 44 Lamb & Westerblad, 2008). Its manifestation can vary in subjects with different training
- 45 backgrounds (Garrandes et al., 2007), type of muscle contraction performed (Kay et al., 2000), or
- even between sex (Albert et al., 2006; Martin & Rattey, 2007; Ansdell et al., 2017).
- 47 Since fatigue influences athletic performance (Thorlund et al., 2008; Ditroilo et al., 2011) or
- 48 increased risk of injury in sports (Zebis et al., 2011; Liederbach et al., 2014), its study has been
- 49 of interest. Multiple methods have been used to induce fatigue, both general fatigue in several
- muscle groups or local fatigue in a specific muscle (García-Manso et al., 2011; Hunter et al.,
- 51 2012; Macgregor et al., 2016; Wiewelhove et al., 2017, 2018). Thus, fatigue has been evaluated
- 52 after short term (Macgregor et al., 2016; Abelairas-Gómez et al., 2018) and long duration efforts,
- such as several days of intense training sessions (Wiewelhove et al., 2017), and also after
- isolated long sessions (2-12h approximately) (Lepers et al., 2002; García-Manso et al., 2011;
- 55 Wiewelhove et al., 2018).
- 56 The most used fatigue evaluation methods have been based on changes in muscle strength
- 57 measured by maximal voluntary isometric contraction (MVIC) (Lepers et al., 2002; Zebis et al.,
- 58 2011) or by jump test (Raeder et al., 2016), by changes in muscle activation both during
- 59 isometric or isokinetic contractions (Garrandes et al., 2007; Thorlund et al., 2008), kinematics
- and kinetics measurements (Liederbach et al., 2014; Tam et al., 2017), biochemical markers
- 61 (Gorostiaga et al., 2012), or by muscular contractile properties (García-Manso et al., 2011; de
- 62 Paula Simola et al., 2016). In a situation of fatigue, most of these methods would require an
- 63 additional voluntary effort. Their application therefore would not be practical or safe facing the
- 64 possible presence of central inhibition (Graven-Nielsen et al., 2002), or the possibility of increase
- any extant muscular damage (Macgregor et al., 2016).
- 66 Tensiomyography (TMG), which uses electrical stimulation and a displacement sensor to
- evaluate muscle contraction properties of one or more muscle bellies (Valencic & Knez, 1997),
- has emerged as a technique that can assess the presence of local and general fatigue without
- 69 requiring additional voluntary efforts (García-Manso et al., 2011; de Paula Simola et al., 2016).
- 70 Local fatigue has been evaluated by TMG for specific muscle group from both lower and upper
- 71 limbs (Carrasco et al., 2011; Hunter et al., 2012; García-Manso et al., 2012; Macgregor et al.,
- 72 2016). In contrast, general fatigue has been evaluated only in the lower limb, being quadriceps
- 73 femoris (QF) the most studied muscle group (García-Manso et al., 2011; de Paula Simola et al.,
- 74 2015, 2016; Giovanelli et al., 2016; Raeder et al., 2016; Wiewelhove et al., 2017).
- 75 Responsiveness is defined as the ability of a tool to detect important clinical changes over time
- 76 (Guyatt et al., 1989). Since this characteristic is essential to assess fatigue by TMG, it has been
- analyzed by multiple studies (García-Manso et al., 2011; Hunter et al., 2012; de Paula Simola et
- 78 al., 2015, 2016; Giovanelli et al., 2016; Macgregor et al., 2016; Raeder et al., 2016; Wiewelhove
- et al., 2017; Abelairas-Gómez et al., 2018). Most of these studies evaluated one muscle belly of

80 the analyzed muscle group and they used one or two statistical methods of either internal responsiveness (e.g. paired t-test and effect size) or external responsiveness (correlation with 81 reference measure or regression models) (Husted et al., 2000). Overall, TMG of those evaluated 82 muscle bellies has shown to be internally and externally responsive in assessing general fatigue 83 84 (García-Manso et al., 2011; de Paula Simola et al., 2015, 2016; Giovanelli et al., 2016; Raeder et al., 2016; Wiewelhove et al., 2017), and internally responsive to local fatigue (Hunter et al., 85 2012; García-Manso et al., 2012; Macgregor et al., 2016; Abelairas-Gómez et al., 2018). 86 However, the external responsiveness of TMG has not been yet assessed for local fatigue, and 87 therefore comparisons between internal and external responsiveness has not been established. 88 89 Furthermore, TMG responsiveness has not been simultaneously evaluated in multiple bellies or by multiple statistical indicators of responsiveness, or if sex can influence the changes in TMG 90 91 parameters caused by fatigue 92 Therefore, the primary objective of our study was to examine and compare the responsiveness of 93 TMG parameters to QF local fatigue of three muscle bellies [rectus femoris (RF), vastus lateralis 94 (VL), and vastus medialis (VM)] by multiple statistical methods. A secondary objective was to examine whether there are differences between sex in the variation produced by fatigue in TMG 95 parameters. Our hypotheses were: QF bellies have different responsiveness to local fatigue; and 96 97 the changes of TMG parameters are similar between males and females.

98 99

Materials & Methods

100101102

103

104

105

106

107108

Participants

Thirty-nine recreational athletes volunteered in this study that was conducted from April to July 2018. All of them performed an aerobic or athletic activity at least three times per week and they were injury free. Participants were recruited by email using the internal network of the Faculty of Physiotherapy at the University of Valencia. Before participation, athletes were informed of the study procedures and their possible associated risks. All of them provided written informed consent. This study was completed following the principles outlined in the Declaration of Helsinki and it was approved by the Ethics Committee of the University of Valencia (Spain) (H1523633864087).

110111112

109

Procedures

113114

115

116

117118

119

All measurements were carried out between 10 a.m. and 2 p.m. Before starting the session, height was measured using a tape measure and body mass and body mass index (BMI) were registered using a standardized body composition analyzer (Tanita BC 418 MA, Tanita Corp, Tokyo, Japan). Next, and prior to the fatigue protocol, TMG parameters were measured and participants performed a warm-up before the strength measurement. This warm-up consisted of 10 minutes cycling at comfortable speed with low resistance and the performance of three

120 submaximal isometric contractions of isometric knee extension (Martins et al., 2017). After the fatigue protocol, the order of the tests was reversed, and the strength test was performed first. 121 First, participants were placed supine and resting on the stretcher. The knee was placed at 120° of 122 flexion (considering full extension at 180°), fixing such position with a triangular foam cushion 123 (García-García et al., 2016; Martín-San Agustín et al., 2018). The area where the TMG sensor 124 and electrodes were placed was shaved and cleaned with gauze and alcohol. The position of the 125 sensor for each QF belly was determined using the anatomical criteria described in the literature 126 (Dahmane et al., 2005; Tous-Fajardo et al., 2010; Rey, Lago-Peñas & Lago-Ballesteros, 2012). 127 This position was marked with a permanent marker so that it would remain throughout the 128 evaluation. The sensor was finally placed on this point perpendicularly to the thigh and the 129 electrodes were placed at 5 cm distance from it, forming an imaginary straight line along the 130 belly (Figure 1). 131

132133

[Please insert Figure 1 about here]

134 135

The contractile properties of each belly were evaluated during an involuntary submaximal 136 contraction with the TMG electro stimulator (TMG-100 System). Starting from 20 mA with 1ms 137 pulses, each stimulation was increased by 10mA until achieving the maximum radial 138 deformation (Dm) of the muscular belly. A time of 10s was left between stimuli to minimize 139 fatigue or potentiation effects (Krizaj, Simunic & Zagar, 2008). Before data acquisition, a pilot 140 test was done to verify the functioning of the TMG. For each belly, spatial and temporal 141 142 parameters were measured: Dm, contraction time between 10 and 90% of the Dm (Tc), 143 contraction velocity between 10 and 90% of the Dm (Vc), and contraction velocity of the first 10% of the Dm (V10). 144 MVIC of the QF was measured by a MicroFET2 handheld dynamometer (Hoggan Health 145 Technologies Inc., Salt Lake City, UT). Participants were seated in an isokinetic dynamometer 146 (Prima Plus, Easytech, Italy) with their torso and hips tied so they were stable, and with a 90° hip 147 flexion. MVIC was evaluated in 90° knee flexion, considering 0° the complete extension. 148 MicroFET2 was fixed with a rigid belt perpendicular to the ankle 5 cm above the malleoli, with a 149 pad between the tibia and the dynamometer to minimize the discomfort caused by the contact 150 (Hansen et al., 2015). MicroFET2 has proven to be a valid method to measure the MVIC of the 151 QF with an excellent inter-examiner reliability (ICC: 0.93, 95% CI 0.83; 0.97) and a minimal 152 153 detectable change (MDC) of 14.1 N*m (95% CI, 9.23; 22.01) (Hansen et al., 2015). After the warm-up, participants completed three MVIC for 5s, with a 60-second rest after each 154 repetition. Through verbal stimuli, participants were instructed to exert and maintain the 155 maximum effort during the session. 156 After performing the baseline measurements, participants were requested to implement a 157 protocol based on a 60s fatiguing isometric contraction at 70% MVC (Melchiorri & Rainoldi, 158 159 2011). The experimental setup was the same as the one adopted during the MVIC test. The

160 handheld dynamometer, previously set at 70% MVIC, was used to display the feedback (Melchiorri & Rainoldi, 2011). 161

162 163

Statistical analysis.

164 165

166

168

Baseline data were summarized as means and standard deviations (SD) for continuous variables and as absolute and relative frequencies for categorical variables. Variables were checked for

normality with the Kolmogorov-Smirnov test and homogeneity of variances with Levene's test. 167 A summary was also provided for participants with and without fatigued OF. It was considered

169 that the fatigue was achieved when the reduction of the MVIC was higher than the upper limit of

the MDC reported in a previous study (22.01 N*m) (Hansen et al., 2015). 170

171 Paired t-tests were used to compare changes in the TMG parameters and MVIC within each sex

172 group. These changes were also compared between sex groups by using non-paired t-tests.

173 Internal responsiveness, which is the ability of a measure to change over a set period, was

174 determined by the paired t-test and supplemented with an effect size statistic, as recommended

175 by Husted et al. (2000) [30]. Of the current effect size statistics we used the standardized

response mean (SRM), which provides an estimate of the magnitude of change that is not 176

177 influenced by sample size (Navarro-Pujalte et al., 2018). It was calculated as (MeanFollowup

MeanBaseline)/Standard deviationFollowup-Baseline and the 95% confidence intervals were 178

179 calculated using the bootstrapping estimation method. Values of 0.20, 0.50, and 0.80 or higher

have been proposed in the literature (Husted et al., 2000) to represent small, moderate, and large 180

181 responsiveness, respectively. Besides, we calculated the percentage of participants that exceeded

MDC. This statistic examines the extent to which change score exceeds the amount of variability 182

accounted by measurement error (Pardasaney et al., 2012), which is calculated as $SEMx1.96x\sqrt{2}$ 183

, where SEM is the standard error of measurement. 184

185 External responsiveness, which reflects the extent to which changes in a measure over a

specified time frame related to corresponding changes in an external reference measure of health 186

status, was determined by correlations, regression models, and receiver operating characteristic 187

188 (ROC) curves (Husted et al., 2000). The external criterion for assessing the external

189 responsiveness of the TMG tool was the magnitude of change in the MVIC.

It was hypothesized that: (i) changes in the external standard in participants with fatigue would 190

be associated with changes in the TMG parameters; (ii) participants without fatigue would have 191

192 the smallest change in the TMG parameters (and therefore change in these TMG parameters can

be useful to classify participants' QF as fatigued or not fatigued). To test the first hypothesis, 193

194 correlations and simple and multiple linear regression models were used. In the regression

models the explanatory variable was the change of each TMG parameter while the response 195

variable was the change in MVIC between before and after protocols. Each model was controlled 196

197 by sex, and comparisons were carried out between the presence or absence of this control.

198 Goodness-of-fit of the model was assessed by R2. To test the second hypothesis, we calculated

the area under the ROC curve (AUC), which represents the probability that the measure of 199

200 201	correctly classifying participants has (Husted et al., 2000). An AUC > 0.70 was used as a generic benchmark to consider acceptable its discriminant ability (Menaspà, Sassi & Impellizzeri, 2010)
202	For sample size calculation, we selected the multiple regression as the main statistic of
202	responsiveness because it allowed us to examine change relationships controlling by a covariate
203	relevant in our study (sex). Regarding this statistic, we used the usual rule of thumb that 15
205	participants per predictor are needed for a reliable equation in multiple regression models
206	(Tabachnick & Fidell, 2007). We recruited a minimum of 30 participants assuming a maximum
207	of 2 explanatory variables (TMG parameter and sex). All analyses were performed using the
207	Statistical Package for the Social Sciences software program (SPSS version 24.0; IBM SPSS,
209	Chicago, IL, USA).
210	Chicago, IL, OSA).
211	Results
212	Participants' characteristics
213	Baseline characteristics of participants are listed in Table 1. A total of 35 (89.7%) participants
214	achieved QF fatigue after the application of the fatigue protocol. They were 19 of 20 females
215	(95%) and 16 of 19 males (84.2%). Participants with and without fatigue showed no significant
216	differences (p>0.05) in any of their baseline characteristics.
217	The contract of the contract o
218	[Please insert Table 1 about here]
219	•
220	Changes associated with the fatigue protocol
221	Participants with local fatigue (n=35) had a significant decrease (31.5%) on their MVIC after the
222	fatigue protocol (from 203.3 N*m to 138.9 N*m). Table 2 shows that both sex groups had a
223	similar pattern of change: males reduced 30.8% and females 32.1%. Table 2 also shows patterns
224	of change by sex groups for TMG parameters of the RF, VL, and VM. All these parameters,
225	except for the Tc of the RF and VM, had significant differences within but not between sex
226	groups.
227	Figure 2 shows changes in TMG parameters for all participants with local fatigue. All
228	parameters, except for Tc, showed a significant difference (p<0.001) for the three bellies of the
229	QF. Dm's decrease ranged from 18.22% to 21.65%; Vc decreased from 15.62 to 22.20%, and
230	V10 decreased from 14.80% to 23.77%.
231	
232	[Please insert Table 2 about here]
233	
234	[Please insert Figure 2 about here]
235	Internal and external recognitioness
236	internal and external responsiveness
237	Internal and external TMG responsiveness to fatigue of QF bellies is shown in table 3. Internal
238	responsiveness statistics suggest that all TMG parameters, except for Tc of RF and VM, showed
239	large internal responsiveness (SRM> 0.8) among participants with QF fatigue. Dm and V10 in

240 241 242 243 244 245 246 247 248 249 250	RF were the parameters in which most of the participants exceeded the MCD (91.3% and 97.1, respectively). Only Dm, Vc, and V10 of the RF showed to be linearly associated with changes in the MVIC. After controlling by sex, adjusted models typically provided b coefficients and R2 with small variations regarding their respective unadjusted model (range 0.01 to 0.05). Consequently, Dm and V10 of RF were still statistically associated with b coefficients of 0.40 and 0.43, respectively. Moreover, the models of these parameters explained the 22% of the total variance. The AUC analysis suggests that changes of several TMG parameters (Dm in RF and VL, Tc in VL, and V10 in RF and VM) were >0.70 and could discriminate between QF with and without fatigue. Also, the overlapping among their 95%CI suggests that none of these TMG parameters is useful as a discrimination tool.
251	10 do 2-201 do 11 diagramma (10 0 2)
252	[Please insert Table 3 about here]
253	
254	
255	Discussion
256	To our knowledge, this is the first study to evaluate the internal and external TMG
257	responsiveness across a variety of QF muscle bellies to changes induced by local fatigue. We
258	found that TMG parameters Dm and Vlight the RF showed both internal and external
259	responsiveness.
260	We used multiple statistical methods to evaluate the internal responsiveness (paired t-test and
261	SRM) and external responsiveness (correlations, regression models and ROC) of the TMG, as
262263	recommended by Husted et al. (2000) [30]. In previous studies, most of these statistics have been used to evaluate only the TMG ability of change to fatigue (García-Manso et al., 20 de Paula
264	Simola et al., 2015). Thus, one strength of our study is that, as far as we know, this is the first
265	study evaluating various statistics from internal and external responsiveness. An additional
266	strength is that we evaluated TMG across multiple muscle bellies within the same study. Most of
267	previous studies assessing fatigue by TMG have only evaluated isolated muscle bellies (García-
268	Manso et al., 2011; Hunter et al., 2012; de Paula Simola et al., 2015, 2016; Giovanelli et al.,
269	2016; Macgregor et al., 2016; Raeder et al., 2016; Wiewelhove et al., 2017).
270	Regarding the internal responsiveness, large and negative SRM of the TMG parameters were
271	found in most of the muscle bellies. Overall, our results are consistent with previous studies that
272	induced local and general QF fatigue (i.e. selective QF fatigue or caused in the entire lower limb
273	musculature). Therefore, the reduction of RF TMG parameters is consistent with previous studies
274	using local (Carrasco et al., 2011) or general fatigue (de Paula Simola et al., 2015). On the other
275	hand, the Changes in VL and VM are also consistent with studies using general fate using
276	Simola et al., 2016; Raeder et al., 2016). In addition, our Dm results are also consistent with
277	other studies that induced local fatigue in other muscles such as the biceps brachii (Hunter et al.,
278	2012; García-Manso et al., 2012) or the gastrocnemius medialis (Macgregor et al., 2016). These
279	finding could be explained by changes in the pH (Hunter et al., 2009) and in different cellular

280 molecules (e.g. Na+ or K+) (Brody et al., 1991), which cause damage in the sarcolemma and the reduct of the electrical stimulus, with a possible decrease in muscle displacement. 281 Our study showed that Dm and V10 of RF had an acceptable external responsiveness in relation 282 to our external criterion, namely changes in the strength evidenced by MVIC. As reflected by the 283 284 regression coefficients, there was a moderate relationship between the amount of change in TMG 285 parameters and strength scores. This relationship is consistent with a previous study using general fatigue (de Paula Simola et al., 2015). Furthermore, Dm and V10 were relevant 286 according s which can be explained by the fact that our sample showed similar change 287 magnitudes in both TMG parameters and strength scores. 288 Our fatigue protocol was highly effective (most of the OF showed fatigue). Males and females 289 had similar strength change scores. According to previous studies (Clark et al., 2005; Lee et al., 290 2017; Ansdell et al., 2017), this was an unexpected finding, which was probably due to the use of 291 292 higher intensities in our study (70% MVIC) compared to the strengths used in previous studies 293 (Clark et al., 2005; Ansdell et al., 2017), since sex differences in muscle fatigue decrease as the contraction intensity increases (Hunter, 2014). Therefore, future investigations should examine 294 whether sex differences in strength changes are detected by sex differences in the TMG changes. 295 Our present study also showed that TMG has discriminative ability to classify the participants' 296 297 OF as having fatigue or not after the application of the protocol. Dm and V10 of the RF also were two of the four parameters with this discriminative ability. This finding is partially 298 consistent with previous authors (Wiewelhove et al., 2017), who examined AUC of RF after 299 general fatigue in elite young athletes. Nevertheless, while AJC of V10 shown in our study was 300 similar to their results, AUC of Dm was higher than theirs (Wiewelhove et al., 2017). 301 302 Differences may be explained by the different type of fatigue (general fatigue caused by several training sessions of high-intensity interval training vs local fatigue by an MVIC test) or by the 303 athletes' training background (junior tennis players vs recreational athletes). Other parameters 304 with that discriminative ability were Dm and Tc of VL, and V10 c M. Since this ability was 305 306 not previously analyzed in these muscle bellies (VL and VM), our study supplements earlier studies which have only evaluated AUC for external responsiveness of the TMG in RF 307 (Wiewelhove et al., 2017) and it provides evidence to expand the application of the TMG to 308 discriminate fatigue. 309 310 Our study had several limitations. First, we used a fatigue protocol based on MVIC. Although this protocol has been shown to be effective in inducing local fatigue (Melchiorri & Rainoldi, 311 2011), other fatigue situations (e.g. concentric contractions) should be explored following our 312 methodology to analyze the consistency of our findings. Second, our study was conducted with 313 recreational athletes (i.e. anyone participating in an aerobic or athletic activity at least three times 314 per week) (Heinert et al., 2008). Since the contractile properties of the muscle are conditioned by 315 the type of exercise performed (Loturco et al., 2015), future research should compare our results 316 with findings from athletes of different sports. 317 Our study found that most of the TMG parameters showed an acceptable internal responsiveness 318 319 of QF local fatigue evinced by a reduction of the MVIC. In contrast, only a few of them showed

320	external responsiveness. Therefore, our study illustrates that the use of only internal or external
321	responsiveness may lead to incomplete conclusions (Husted et al., 2000). In this way,
322	professionals should use both, as recommended by Husted (Husted et al., 2000).
323	This study showed that Dm and V10 of RF measured by TMG were both internally and
324	externally responsive to changes between before and after a local fatigue protocol. Since the QF
325	is the main strength contributor during cycling (Raasch et al., 1997) or running (Montgomery,
326	Pink & Perry, 1994), the fatigue evaluation after an effort is essential to manage recovery of the
327	athlete and the intensity of subsequent training sessions. Thus, clinicians and trainers should be
328	able to direct the fatigue evaluations without making new efforts with TMG, taking in
329 330	consideration Dm and V10 parameters in RF to discriminate the presence of fatigue and the
331	magnitude of the strength changes and, in this way, be able to regulate training loads (e.g. in the
332	presence of fatigue, decrease intensity or activities that involve the QF).
333	Conclusions
334	Fatigue is the basis of the overload and neuromuscular adaptation and it is necessary to improve
335	athletic perform and musculoskeletal rehabilitation, establishing therefore their limits
336	(Hunter, 2016). The evaluation of the presence of fatigue and its magnitude is necessary, and
337	TMG has shown to be a capable tool evaluating it without entailing risks.
338	This study is the first, as far as we know, evaluating the responsiveness of the TMG in local
339	fatigue of the QF, demonstrating that the Dm and V10 parameters of the RF present acceptable
340	responsiveness to fatigue. Therefore, by using the TMG, it is possible to determine whether the
341	QF shows local fatigue or not, and to relate changes in the parameters with the reduction of
342	strength. Thus, our findings establish that TMG is a useful and an indicated technique to evaluate
343	local fatigue of QF.
344	
345	Acknowledgements
346	The authors thank the volunteers for their cooperation during the course of this study.
347	
348	
349	
350	
351	References
352	Abelairas-Gómez C, Rey E, González-Salvado V, Mecías-Calvo M, Rodríguez-Ruiz E,
353	Rodríguez-Núñez A. 2018. Acute muscle fatigue and CPR quality assisted by visual
354	feedback devices: A randomized-crossover simulation trial. PLoS ONE 13. DOI:
355	10.1371/journal.pone.0203576.

356	Albert W, Wrigley A, McLean R, Sleivert G. 2006. Sex differences in the rate of fatigue
357	development and recovery. Dynamic Medicine 5:2. DOI: 10.1186/1476-5918-5-2.
358	Allen DG, Lamb GD, Westerblad H. 2008. Skeletal muscle fatigue: cellular mechanisms.
359	Physiological Reviews 88:287–332. DOI: 10.1152/physrev.00015.2007.
360	Ansdell P, Thomas K, Howatson G, Hunter S, Goodall S. 2017. Contraction intensity and sex
361	differences in knee-extensor fatigability. Journal of Electromyography and Kinesiology:
362	Official Journal of the International Society of Electrophysiological Kinesiology 37:68–
363	74. DOI: 10.1016/j.jelekin.2017.09.003.
364	Brody LR, Pollock MT, Roy SH, De Luca CJ, Celli B. 1991. pH-induced effects on median
365	frequency and conduction velocity of the myoelectric signal. Journal of Applied
366	Physiology (Bethesda, Md.: 1985) 71:1878–1885. DOI: 10.1152/jappl.1991.71.5.1878.
367	Carrasco L, Sañudo B, de Hoyo M, Pradas F, Da Silva ME. 2011. Effectiveness of low-
368	frequency vibration recovery method on blood lactate removal, muscle contractile
369	properties and on time to exhaustion during cycling at VO ₂ max power output. European
370	Journal of Applied Physiology 111:2271–2279. DOI: 10.1007/s00421-011-1848-9.
371	Clark BC, Collier SR, Manini TM, Ploutz-Snyder LL. 2005. Sex differences in muscle
372	fatigability and activation patterns of the human quadriceps femoris. European Journal of
373	Applied Physiology 94:196–206. DOI: 10.1007/s00421-004-1293-0.
374	Dahmane R, Djordjevic S, Simunic B, Valencic V. 2005. Spatial fiber type distribution in normal
375	human muscle Histochemical and tensiomyographical evaluation. Journal of
376	Biomechanics 38:2451–2459. DOI: 10.1016/j.jbiomech.2004.10.020.

3//	Ditrollo M, Watsford M, Fernandez-Pena E, D'Amen G, Lucertini F, De Vito G. 2011. Effects of
378	fatigue on muscle stiffness and intermittent sprinting during cycling. Medicine and
379	Science in Sports and Exercise 43:837–845. DOI: 10.1249/MSS.0b013e3182012261.
380	Gandevia SC. 2001. Spinal and supraspinal factors in human muscle fatigue. Physiological
381	Reviews 81:1725–1789. DOI: 10.1152/physrev.2001.81.4.1725.
382	García-García O, Serrano-Gómez V, Hernández-Mendo A, Tapia-Flores A. 2016. Assessment of
383	the in-season changes in mechanical and neuromuscular characteristics in professional
384	soccer players. The Journal of Sports Medicine and Physical Fitness 56:714-723.
385	García-Manso JM, Rodríguez-Matoso D, Sarmiento S, de Saa Y, Vaamonde D, Rodríguez-Ruiz
386	D, Da Silva-Grigoletto ME. 2012. Effect of high-load and high-volume resistance
387	exercise on the tensiomyographic twitch response of biceps brachii. Journal of
388	Electromyography and Kinesiology: Official Journal of the International Society of
389	Electrophysiological Kinesiology 22:612-619. DOI: 10.1016/j.jelekin.2012.01.005.
390	García-Manso JM, Rodríguez-Ruiz D, Rodríguez-Matoso D, de Saa Y, Sarmiento S, Quiroga M.
391	2011. Assessment of muscle fatigue after an ultra-endurance triathlon using
392	tensiomyography (TMG). Journal of Sports Sciences 29:619-625. DOI:
393	10.1080/02640414.2010.548822.
394	Garrandes F, Colson SS, Pensini M, Seynnes O, Legros P. 2007. Neuromuscular fatigue profile
395	in endurance-trained and power-trained athletes. Medicine and Science in Sports and
396	Exercise 39:149–158. DOI: 10.1249/01.mss.0000240322.00782.c9.
397	Giovanelli N, Taboga P, Rejc E, Simunic B, Antonutto G, Lazzer S. 2016. Effects of an Uphill
398	Marathon on Running Mechanics and Lower-Limb Muscle Fatigue. International

399	Journal of Sports Physiology and Performance 11:522–529. DOI: 10.1123/1jspp.2014-
100	0602.
01	Gorostiaga EM, Navarro-Amézqueta I, González-Izal M, Malanda A, Granados C, Ibáñez J,
02	Setuain I, Izquierdo M. 2012. Blood lactate and sEMG at different knee angles during
103	fatiguing leg press exercise. European Journal of Applied Physiology 112:1349–1358.
04	DOI: 10.1007/s00421-011-2090-1.
05	Graven-Nielsen T, Lund H, Arendt-Nielsen L, Danneskiold-Samsøe B, Bliddal H. 2002.
106	Inhibition of maximal voluntary contraction force by experimental muscle pain: a
107	centrally mediated mechanism. Muscle & Nerve 26:708-712. DOI: 10.1002/mus.10225.
804	Guyatt GH, Deyo RA, Charlson M, Levine MN, Mitchell A. 1989. Responsiveness and validity
109	in health status measurement: a clarification. Journal of Clinical Epidemiology 42:403-
10	408.
11	Hansen EM, McCartney CN, Sweeney RS, Palimenio MR, Grindstaff TL. 2015. Hand-held
12	Dynamometer Positioning Impacts Discomfort During Quadriceps Strength Testing: A
13	Validity and Reliability Study. International Journal of Sports Physical Therapy 10:62-
14	68.
15	Heinert BL, Kernozek TW, Greany JF, Fater DC. 2008. Hip abductor weakness and lower
16	extremity kinematics during running. Journal of Sport Rehabilitation 17:243–256.
17	Hunter SK. 2014. Sex differences in human fatigability: mechanisms and insight to physiological
18	responses. Acta Physiologica (Oxford, England) 210:768–789. DOI:
19	10.1111/apha.12234.
20	Hunter SK. 2016. Sex differences in fatigability of dynamic contractions. <i>Experimental</i>
21	Physiology 101:250–255. DOI: 10.1113/EP085370.

422	Hunter AM, De Vito G, Bolger C, Mullany H, Galloway SDR. 2009. The effect of induced
423	alkalosis and submaximal cycling on neuromuscular response during sustained isometric
424	contraction. Journal of Sports Sciences 27:1261-1269. DOI:
425	10.1080/02640410903165077.
426	Hunter AM, Galloway SDR, Smith IJ, Tallent J, Ditroilo M, Fairweather MM, Howatson G.
427	2012. Assessment of eccentric exercise-induced muscle damage of the elbow flexors by
428	tensiomyography. Journal of Electromyography and Kinesiology: Official Journal of the
429	International Society of Electrophysiological Kinesiology 22:334–341. DOI:
430	10.1016/j.jelekin.2012.01.009.
431	Husted JA, Cook RJ, Farewell VT, Gladman DD. 2000. Methods for assessing responsiveness: a
432	critical review and recommendations. Journal of Clinical Epidemiology 53:459-468.
433	Kay D, St Clair Gibson A, Mitchell MJ, Lambert MI, Noakes TD. 2000. Different
434	neuromuscular recruitment patterns during eccentric, concentric and isometric
435	contractions. Journal of Electromyography and Kinesiology: Official Journal of the
436	International Society of Electrophysiological Kinesiology 10:425–431.
437	Krizaj D, Simunic B, Zagar T. 2008. Short-term repeatability of parameters extracted from radial
438	displacement of muscle belly. Journal of Electromyography and Kinesiology: Official
439	Journal of the International Society of Electrophysiological Kinesiology 18:645–651.
440	DOI: 10.1016/j.jelekin.2007.01.008.
441	Lee A, Baxter J, Eischer C, Gage M, Hunter S, Yoon T. 2017. Sex differences in neuromuscular
442	function after repeated eccentric contractions of the knee extensor muscles. European
443	Journal of Applied Physiology 117:1119–1130. DOI: 10.1007/s00421-017-3599-8.

444	Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY. 2002. Neuromuscular fatigue
445	during a long-duration cycling exercise. Journal of Applied Physiology 92:1487–1493.
446	DOI: 10.1152/japplphysiol.00880.2001.
447	Liederbach M, Kremenic IJ, Orishimo KF, Pappas E, Hagins M. 2014. Comparison of landing
448	biomechanics between male and female dancers and athletes, part 2: Influence of fatigue
449	and implications for anterior cruciate ligament injury. The American Journal of Sports
450	Medicine 42:1089–1095. DOI: 10.1177/0363546514524525.
451	Loturco I, Gil S, Laurino CF de S, Roschel H, Kobal R, Cal Abad CC, Nakamura FY. 2015.
452	Differences in muscle mechanical properties between elite power and endurance athletes:
453	a comparative study. Journal of Strength and Conditioning Research 29:1723–1728.
454	DOI: 10.1519/JSC.000000000000000000000000000000000000
455	Macgregor LJ, Ditroilo M, Smith IJ, Fairweather MM, Hunter AM. 2016. Reduced Radial
456	Displacement of the Gastrocnemius Medialis Muscle After Electrically Elicited Fatigue.
457	Journal of Sport Rehabilitation 25:241–247. DOI: 10.1123/jsr.2014-0325.
458	Martin PG, Rattey J. 2007. Central fatigue explains sex differences in muscle fatigue and
459	contralateral cross-over effects of maximal contractions. Pflugers Archiv: European
460	Journal of Physiology 454:957–969. DOI: 10.1007/s00424-007-0243-1.
461	Martins J, da Silva JR, da Silva MRB, Bevilaqua-Grossi D. 2017. Reliability and Validity of the
462	Belt-Stabilized Handheld Dynamometer in Hip- and Knee-Strength Tests. Journal of
463	Athletic Training 52:809–819. DOI: 10.4085/1062-6050-52.6.04.
464	Martín-San Agustín R, Benítez-Martínez JC, Medina-Mirapeix F, Casaña-Granell J. 2018. Sex
465	Differences and Patterns of Muscle Stiffness in the Knee Flexor and Extensor

	<mark>l-</mark> ,l
466	Musculature Through Analysis of Isolated Bellies. Journal of Strength and Conditioning
467	Research. DOI: 10.1519/JSC.000000000002883.
468	Melchiorri G, Rainoldi A. 2011. Muscle fatigue induced by two different resistances: Elastic
469	tubing versus weight machines. Journal of Electromyography and Kinesiology: Official
470	Journal of the International Society of Electrophysiological Kinesiology 21:954–959.
471	DOI: 10.1016/j.jelekin.2011.07.015.
472	Menaspà P, Sassi A, Impellizzeri FM. 2010. Aerobic fitness variables do not predict the
473	professional career of young cyclists. Medicine and Science in Sports and Exercise
474	42:805–812. DOI: 10.1249/MSS.0b013e3181ba99bc.
475	Montgomery WH, Pink M, Perry J. 1994. Electromyographic analysis of hip and knee
476	musculature during running. The American Journal of Sports Medicine 22:272-278. DOI:
477	10.1177/036354659402200220.
478	Navarro-Pujalte E, Gacto-Sánchez M, Montilla-Herrador J, Escolar-Reina P, Ángeles Franco-
479	Sierra M, Medina-Mirapeix F. 2018. Sensitivity to change of mobility measures in
480	musculoskeletal conditions on lower extremities in outpatient rehabilitation settings.
481	Disability and Rehabilitation:1-7. DOI: 10.1080/09638288.2018.1424948.
482	Pardasaney PK, Latham NK, Jette AM, Wagenaar RC, Ni P, Slavin MD, Bean JF. 2012.
483	Sensitivity to change and responsiveness of four balance measures for community-
484	dwelling older adults. Physical Therapy 92:388–397. DOI: 10.2522/ptj.20100398.
485	de Paula Simola RÁ, Harms N, Raeder C, Kellmann M, Meyer T, Pfeiffer M, Ferrauti A. 2015.
486	Assessment of neuromuscular function after different strength training protocols using
487	tensiomyography. Journal of Strength and Conditioning Research 29:1339–1348. DOI:
488	10.1519/JSC.0000000000000768.

489	de Paula Simola RÁ, Raeder C, Wiewelhove T, Kellmann M, Meyer T, Pfeiffer M, Ferrauti A.
490	2016. Muscle mechanical properties of strength and endurance athletes and changes after
491	one week of intensive training. Journal of Electromyography and Kinesiology: Official
492	Journal of the International Society of Electrophysiological Kinesiology 30:73–80. DOI:
493	10.1016/j.jelekin.2016.05.005.
494	Raasch CC, Zajac FE, Ma B, Levine WS. 1997. Muscle coordination of maximum-speed
495	pedaling. Journal of Biomechanics 30:595-602.
496	Raeder C, Wiewelhove T, Simola RÁDP, Kellmann M, Meyer T, Pfeiffer M, Ferrauti A. 2016.
497	Assessment of Fatigue and Recovery in Male and Female Athletes After 6 Days of
498	Intensified Strength Training. Journal of Strength and Conditioning Research 30:3412-
499	3427. DOI: 10.1519/JSC.000000000001427.
500	Rey E, Lago-Peñas C, Lago-Ballesteros J. 2012. Tensiomyography of selected lower-limb
501	muscles in professional soccer players. Journal of Electromyography and Kinesiology:
502	Official Journal of the International Society of Electrophysiological Kinesiology 22:866–
503	872. DOI: 10.1016/j.jelekin.2012.06.003.
504	Tabachnick BG, Fidell LS. 2007. <i>Using multivariate statistics</i> . Boston: Pearson/Allyn & Bacon.
505	Tam N, Coetzee DR, Ahmed S, Lamberts RP, Albertus-Kajee Y, Tucker R. 2017. Acute fatigue
506	negatively affects risk factors for injury in trained but not well-trained habitually shod
507	runners when running barefoot. European Journal of Sport Science 17:1220–1229. DOI:
508	10.1080/17461391.2017.1358767.
509	Thorlund JB, Michalsik LB, Madsen K, Aagaard P. 2008. Acute fatigue-induced changes in
510	muscle mechanical properties and neuromuscular activity in elite handball players

511	following a handball match. Scandinavian Journal of Medicine & Science in Sports
512	18:462–472. DOI: 10.1111/j.1600-0838.2007.00710.x.
513	Tous-Fajardo J, Moras G, Rodríguez-Jiménez S, Usach R, Doutres DM, Maffiuletti NA. 2010.
514	Inter-rater reliability of muscle contractile property measurements using non-invasive
515	tensiomyography. Journal of Electromyography and Kinesiology: Official Journal of the
516	International Society of Electrophysiological Kinesiology 20:761–766. DOI:
517	10.1016/j.jelekin.2010.02.008.
518	Valencic V, Knez N. 1997. Measuring of skeletal muscles' dynamic properties. Artificial Organs
519	21:240–242.
520	Wiewelhove T, Raeder C, de Paula Simola RA, Schneider C, Döweling A, Ferrauti A. 2017.
521	Tensiomyographic Markers Are Not Sensitive for Monitoring Muscle Fatigue in Elite
522	Youth Athletes: A Pilot Study. Frontiers in Physiology 8:406. DOI:
523	10.3389/fphys.2017.00406.
524	Wiewelhove T, Schneider C, Döweling A, Hanakam F, Rasche C, Meyer T, Kellmann M,
525	Pfeiffer M, Ferrauti A. 2018. Effects of different recovery strategies following a half-
526	marathon on fatigue markers in recreational runners. PLOS ONE 13:e0207313. DOI:
527	10.1371/journal.pone.0207313.
528	Zebis MK, Bencke J, Andersen LL, Alkjaer T, Suetta C, Mortensen P, Kjaer M, Aagaard P.
529	2011. Acute fatigue impairs neuromuscular activity of anterior cruciate ligament-agonist
530	muscles in female team handball players. Scandinavian Journal of Medicine & Science in
531	Sports 21:833–840. DOI: 10.1111/j.1600-0838.2010.01052.x.
532	

Table 1(on next page)

Baseline characteristics of the participants in total and separated by fatigued condition.

Date represents mean and standard deviation unless otherwise noted. BMI: body mass index; TMG: tensiomyography; RF: rectus femoris; Dm: maximal radial displacement; Tc, contraction time; Vc: contraction velocity between 10-90% of the Dm; V10: contraction velocity of the first 10% of the Dm; VL: vastus lateralis; VM: vastus medialis; QF: quadriceps; MVIC: maximal voluntary isometric contraction

Baseline	Total (n=39)	Fatigued	Non-fatigued		
Characteristics	10tar (11 07)	participants (n=35)	participants (n=4)		
Males/females, N (%)	19 (48.7%)/20 (51.3%)	16 (45.7%)/19 (54.3%)	3 (75%)/1 (25%)		
Age (years) Physical	22 (2)	22 (2)	21 (1)		
activity (minutes)	316.5 (180.8)	314.6 (186.7)	332.5 (136.9)		
Anthropometric					
Body mass (kg)	67.37 (13.42)	66.10 (11.12)	78.55 (12.05)		
Stature (cm)	173.3 (9.50)	172.5 (9.09)	180.7 (11.24)		
BMI (kg/m2)	22.22 (2.72)	22.02 (2.71)	24 (2.53)		
QF strength					
MVIC (N*m) TMG	207.56 (74.19)	203.31 (75.82)	244.72 (50.24)		
parameters					
RF					
Dm (mm)	10.26 (1.42)	10.32 (1.44)	9.76 (1.28)		
Tc (ms)	25.45 (4.04)	25.69 (3.95)	23.39 (4.84)		
Vc (mm/s)	327.96 (58.59)	326.62 (69.76)	339.70 (53.04)		
V10 (mm/s)	43.07 (5.32)	43.08 (5.39)	42.93 (5.33)		
VL					
Dm (mm)	5.74 (1.11)	5.63 (0.94)	6.64 (2.04)		
Tc (ms)	21.37 (3.02)	21.54 (3.11)	19.87 (1.35)		
Vc (mm/s)	217.78 (50.10)	211.58 (39.81)	271.95 (97.28)		
V10 (mm/s)	25.31 (5.18)	24.73 (4.21)	30.46 (9.98)		
VM					
Dm (mm)	4.57 (0.85)	4.52 (0.64)	5.08 (2.01)		
Tc (ms)	19.60 (1.82)	19.61 (1.90)	19.48 (1.04)		
Vc (mm/s)	187.22 (33.12)	185.08 (26.57)	205.93 (73.31)		
V10 (mm/s)	23.22 (4.03)	22.97 (2.89)	25.37 (10.19)		

1

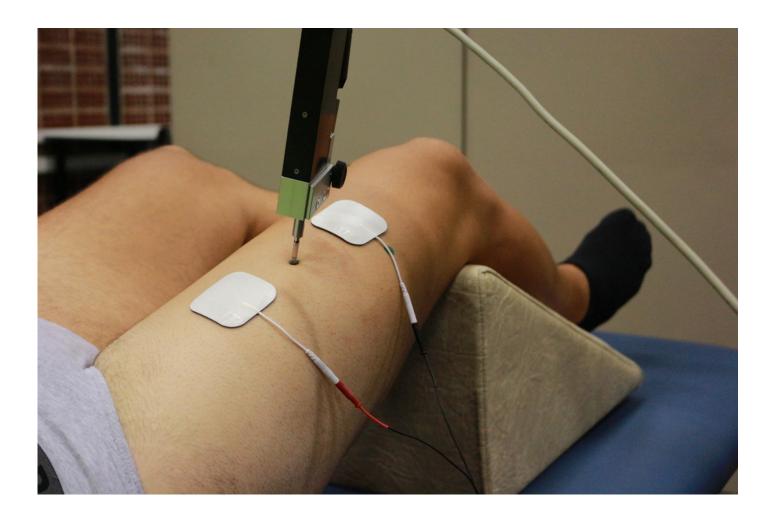
Table 2(on next page)

Differences within and between sex groups in the TMG parameters and MVIC after fatigue protocol.

TMG: tensiomyography; SD: standard deviation; RF: rectus femoris; Dm: maximal radial displacement; Tc, contraction time; Vc: contraction velocity between 10-90% of the Dm; V10: contraction velocity of the first 10% of the Dm; VL: vastus lateralis; VM: vastus medialis; QF: quadriceps femoral; MVIC: maximal voluntary isometric contraction;

Muscle Baseline	Males			Females				p. value	
	Racolina	Fatigued	Differences	Baseline	Entioused	Differences		between sex groups	
	baseiine		Mean (SD); p.value	%	baseime	Fatigued	Mean (SD); p.value	%	
QF strength									
MVIC (N*m)	272.1 (51.0)	187.3 (40.1)	84.7 (37.8); <0.001	30.8	145.4 (30.7)	98.1 (24.4)	47.3 (22.3); <0.001	32.1	0.742
RF									
Dm (mm)	9.91 (1.66)	7.46 (1.87)	2.45 (1.27); <0.001	25.2	10.67 (1.16)	8.71 (1.76)	1.95 (1.13); <0.001	18.7	0.116
Tc (ms)	24.58 (4.25)	24.52 (6.37)	0.06 (3.28); 0.941	1.1	26.62 (3.52)	27.63 (5.43)	-1.01 (4.42); 0.334	4.1	0.283
Vc (mm/s)	330.01 (78.95)	250.71 (66.81)	79.30 (48.65); <0.001	21.8	373.76 (39.15)	256.21 (51.02)	67.55 (42.26); <0.001	20.9	0.504
V10 (mm/s)	43.17 (6.55)	32.78 (7.72)	10.39 (5.35); <0.001	24.4	43.01 (4.37)	33.01 (5.13)	10.00 (4.20); <0.001	23.2	0.762
VL									
Dm (mm)	5.47 (1.18)	4.48 (0.76)	0.99 (1.10); 0.003	20.5	5.78 (0.70)	4.10 (1.15)	1.68 (0.90); <0.001	29.5	0.190
Tc (ms)	21.69 (3.05)	19.93 (4.31)	1.76 (2.44); 0.011	8.6	21.42 (3.24)	19.04 (1.88)	2.38 (2.15); <0.001	10.4	0.586
Vc (mm/s)	203.67 (49.77)	179.33 (66.24)	24.35 (43.77); 0.042	12.8	218.24 (28.76)	170.24 (37.41)	48.00 (43.15); <0.001	20.9	0.299
V10 (mm/s)	24.28 (5.04)	20.46 (6.78)	3.82 (4.33); 0.003	17.3	25.10 (3.45)	18.65 (4.66)	6.45 (4.55); <0.001	25.3	0.238
VM									
Dm (mm)	4.69 (3.91)	3.91 (0.78)	0.78 (0.59); <0.001	16.3	4.37 (0.50)	3.51 (0.69)	0.86 (0.53); <0.001	19.8	0.399
Tc (ms)	20.25 (1.78)	19.96 (2.66)	0.28 (1.97); 0.573	1.4	19.07 (1.88)	18.26 (1.88)	0.81 (1.64); 0.045	3.9	0.404
Vc (mm/s)	186.06 (30.93)	159.90 (25.72)	29.16 (22.46); <0.001	14.9	184.26 (23.12)	153.76 (29.26)	30.50 (26.86); <0.001	16.2	0.780
V10 (mm/s)	23.76 (3.19)	21.09 (3.95)	2.67 (2.97); 0.003	11.2	22.31 (2.51)	18.33 (3.40)	3.98 (2.74); <0.001	17.8	0.119

Table 3(on next page)


Responsiveness statistics for the TMG parameters

TMG: tensiomyography; SRM: standardized response mean; CI: confidence interval; MCD: minimal detectable change; SE: standard error; AUC: area under curve; RF: rectus femoris; Dm: maximal radial displacement; Tc, contraction time; Vc: contraction velocity between 10-90% of the Dm; V10: contraction velocity of the first 10% of the Dm; VL: vastus lateralis; VM: vastus medialis. † Adjusted by sex

Peer Internal responsiveness			External responsiveness Manuscript to be reviewed				
Muscle	Paired t-test	SRM (95% CI)	% MCD	Correlation method (Pearson's r and 95% CI); p-value	Linear regression m	AUC (95% CI)	
	(p- value)				b(SE); p-value	R2	
RF							
Dm (mm)	0.001	-1.83 (-2.31; -1.47)	91.3	0.42 (0.12; 0.65); 0.004	0.40 (0.14); 0.007	0.22	0.73 (0.57; 0.86)
Tc (ms)	0.439	0.13 (-0.24; 0.39)	15.9	0.10 (-0.22; 0.40); 0.276	0.14 (0.15); 0.363	0.06	0.62 (0.45; 0.77)
Vc (mm/s)	0.001	-1.65 (-1.98; -1.30)	79.7	0.33 (0.02; 0.58); 0.020	0.26 (0.13); 0.052	0.13	0.59 (0.42; 0.74)
V10 (mm/s)	0.001	-2.20 (-2.65; -1.78)	97.1	0.45 (0.15; 0.67); 0.002	0.43 (0.15); 0.006	0.22	0.73 (0.57; 0.86)
VL							
Dm (mm)	0.001	-1.33 (-1.74; -0.82)	79.7	0.18 (-0.14; 0.47); 0.133	0.10 (0.12); 0.403	0.05	0.81 (0.65; 0.92)
Tc (ms)	0.001	-0.87 (-1.27; -0.41)	65.2	0.12 (-0.12; 0.48); 0.111	0.23 (0.19); 0.238	0.07	0.92 (0.79; 0.98)
Vc (mm/s)	0.001	-0.86 (-1.21; -0.46)	43.5	0.09 (-0.23; 0.39); 0.298	0.03 (0.11); 0.782	0.04	0.55 (0.39; 0.71)
V10 (mm/s)	0.001	-1.17 (-1.56; -0.71)	68.1	0.12 (-0.20; 0.42); 0.224	0.06 (0.12); 0.638	0.04	0.67 (0.50; 0.81)
VM							
Dm (mm)	0.001	-1.46 (-1.84; -1.07)	76.8	0.12 (-0.21; 0.42); 0.116	0.09 (0.20); 0.643	0.04	0.65 (0.48; 0.79)
Tc (ms)	0.069	-0.34 (-0.72; 0.02)	42	-0.14 (-0.43; 0.18); 0.200	-0.28 (0.28); 0.331	0.06	0.52 (0.36; 0.68)
Vc (mm/s)	0.001	-1.17 (-1.50; -0.79)	68.1	0.17 (-0.15; 0.46); 0.143	0.17 (0.19); 0.364	0.06	0.68 (0.52; 0.82)
V10 (mm/s)	0.001	-1.14 (-1.47; -0.76)	71	0.26 (-0.06; 0.53); 0.054	0.25 (0.19); 0.194	0.08	0.76 (0.60; 0.88)

Figure 1

Tensiomyographical measurement of rectus femoris.

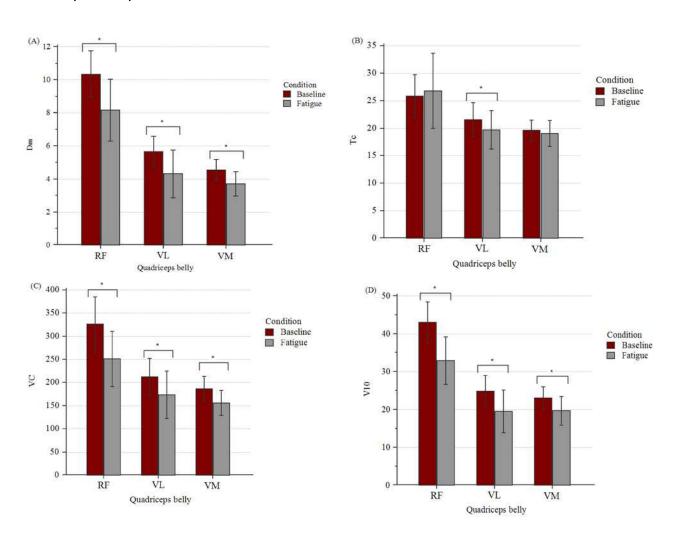


Figure 2

Differences in TMG parameters of quadriceps bellies between pre- and post-fatigue in all participants: (A) Differences in Dm, (B) in Tc, (C) in VC, and (D) in V10.

RF: rectus femoris; VL: vastus lateralis; VM: vastus medialis. *Significant differences set at p<0.05; Specific p-values are shown in table 3.

