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The dromaeosaurid theropod Halszkaraptor escuilliei is characterized by several unusual
features absent in other paravians, part of which has been interpreted as diagnostic of a
novel lineage adapted to a semiaquatic ecology. Recently, these evolutionary and
ecological interpretations have been challenged, and Halszkaraptor has been claimed to
be a transitional form between non-dromaeosaurid maniraptoriforms and other
dromaeosaurids: following that re-evaluation, its peculiar body plan would represent the
retention of several maniraptoran plesiomorphies, lost among other dromaeosaurids, and
not an adaptation to a novel ecology. This alternative scenario is here carefully
investigated and tested. It is shown that most of the statements supporting the alternative
scenario are based on invalid homology statements, inaccurate or improper literature
reports or on misinterpretation of the anatomical terminology. Once these statements
have been corrected, character state transition optimization over a well-supported
phylogenetic framework indicates that the large majority of the peculiar features of the
Halszkaraptor lineage are derived novelties acquired by the latter after its divergence from
the last ancestor shared with eudromaeosaurs, and thus are not maniraptoriform
plesiomorphies. At least seven novelties of the Halszkaraptor lineage are convergently
acquired with spinosaurids, and are integrated in semiaquatic adaptations: one of these is
reported here for the first time. The amount of morphological divergence of
Halszkaraptorinae from the ancestral dromaeosaurid condition is comparable to those of
Microraptorinae and Velociraptorinae. The halszkaraptorine bauplan is thus confirmed as a
peculiar amphibious specialization, and does not represent a “transitional” stage along the
evolution of dromaeosaurids.
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The body plan of Halszkaraptor escuilliei (Dinosauria, Theropoda) is
not a transitional form along the evolution of dromaeosaurid

hypercarnivory
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! Independent, Parma, Italy

Email address: caudand@gmail.com

INTRODUCTION

The bird-like theropod dinosaur Halszkaraptor escuilliei is a based on an almost complete
skeleton from the Upper Cretaceous of Mongolia (Cau et al., 2017). Compared to other
theropods, Halszkaraptor shows several unusual features, supporting the institution of a new
lineage of Dromaeosauridae, the halszkaraptorines (Cau et al., 2017; Cau & Madzia, 2018), and
suggesting a semiaquatic bauplan able to exploit both terrestrial and aquatic resources. Recently,
Brownstein (2019) published a review of the interpretations of Cau et al. (2017), and concluded
that Halszkaraptor was not a semiaquatic form but a “transitional form” between the
plesiomorphic maniraptoriform bauplan and the hypercarnivorous dromaeosaurids. Here, I show
that several statements in Brownstein (2019) are unsupported, inaccurate or contradictory, and
that most of the arguments raised by Brownstein (2019) stem from a substantial misinterpretation
of the literature (in primis, but not uniquely, Cau et al. 2017) or are based on problematic

homology statements.

MATERIAL AND METHODS

Brownstein (2019) cited several statements from the literature in support of his arguments: they
were carefully checked and when not corresponding to the original source, they were reported
and commented. All information from H. escuilliei discussed here was acquired by AC at the
Royal Belgian Institute of Natural Sciences (RBINS), Brussels, where MPC D-102/109 is
temporarily housed (see Cau et al., 2017). First-hand examination of MPC D-102/109 was
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integrated with multi-resolution scan data of the fossil, based on propagation X-ray phase-
contrast synchrotron microtomography performed in 2016, at the European Synchrotron
Radiation Facility in Grenoble, France (see Cau et al., 2017, supplementary information). In
order to test the evolutionary and phylogenetic scenario suggested by Brownstein (2019), I used
a new version of the data set used in Cau et al. (2017) (Supplementary Files). The data matrix
was analyzed using TNT vers. 1.5. (Goloboff et al., 2008), following the same protocol of Cau et
al. (2017: a first round of 100 “New Technology” runs, using default setting, was followed by a
Tree-Bisection-Reconnection run using the shortest trees saved during the first round as starting
topologies). The Triassic dinosaur Herrerasaurus was used as root of the trees. Four spinosaurid
taxa were included in the sample, to test the distribution of the features shared by Halszkaraptor
and those non-coelurosaurian theropods (Cau et al., 2017). The “agreement subtree” algorithm
implemented in TNT was used to reconstruct the taxonomically most comprehensive fully-
dichotomous structure shared by all shortest trees found: for this reconstruction, max tree was set
to 50.000 due to memory limitations in TNT. The agreement subtree topology was used as
framework for character state reconstruction at nodes and for estimating the minimum length of
the recovered branches. Character state transition reconstruction at nodes was performed in
PAUP (Swofford, 2002), importing the agreement subtree topology reconstructed in TNT and
using the ACCelerated TRANsformation (ACCTRAN) optimisation. Taxonomic nomenclature
follows Cau et al. (2017), with emendation of Unenlagiinae following Hartman et al. (2019). The
distribution of the reconstructed state transitions along the theropod phylogeny was used to
compare the alternative scenarios discussed by Cau et al. (2017) and Brownstein (2019).
Institutional abbreviations: MPC, Institute of Paleontology and Geology, Mongolian Academy of
Sciences, Ulanbatar, Mongolia; RBINS, Royal Belgian Insitute of Natural Sciences, Brussels,

Belgium; YFGP, Yizhou Fossil and Geology Park, Yizhou, China.

RESULTS

Several sentences in Brownstein (2019) are inaccurate or problematic, including mentions to
statements in the literature which are actually contradicted by the mentioned references
themselves. In the following references, the term “ref./refs.” followed by one or more numbers

refers to the reference list in Brownstein (2019).
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Literature misreports and unsupported statements

Brownstein (2019) wrote:

"Cau et al. [ref. 32] compared the construction of the skull of H. escuilliei to the anterior skulls
of modern birds like ducks and geese, with which Halszkaraptor was considered somewhat
analogous."

The above sentence in Brownstein (2019) misreports the mentioned source: Cau et al. (2019) did
not compare the skull of H. escuilliei with modern birds like ducks and geese, and did not

consider any analogy between the skull of this dinosaur and those birds.

Brownstein (2019) compared the premaxilla of Halszkaraptor with those of ornithomimosaurs
and therizinosaurians. He wrote:

“However, moderately to strongly (=platyrostral) laterally expanded premaxillae are found in a
variety of maniraptorans and maniraptoriforms [...]. Among these, the premaxillae of
Erlikosaurus are the best preserved and are highly reminiscent of the premaxillae of
Halszkaraptor in their clear lateral expansion in dorsal view [...]”.

Contra Brownstein (2019), it is unlikely that the platyrostral morphology of Halszkaraptor is
homologous to those he referred to other coelurosaurs. In Halszkaraptor, the platyrostral
condition is acquired by the remarkable anteroposterior elongation and dorsoventral flattening of
the prenarial region of the premaxilla, which also results in the posterior placement of the narial
region relative to the snout anterior tip. In ornithomimosaurs, the platyrostral condition is instead
related to the lateral expansion of the perinarial region (e.g., Osmolska et al., 1972; Lee et al.,
2014) which is not followed by any significant elongation of the prenarial region. In
Erlikosaurus, the prenarial part of the premaxilla is taller than long, constrasting with the
opposite condition in Halszkaraptor (Figure 1). Note that the relative elongation of the prenarial
part of the premaxilla and the posterior retraction of the premaxillary margin of the external naris
are not co-variant and thus could be considered as independent features (e.g., Haplocheirus,
Choiniere et al., 2014, figure 4). In Erlikosaurus, the narial fossa is expanded laterally and forms
the majority of the premaxillary body, whereas in H. escuilliei the narial fossa is completely
excluded from the participation to the premaxillary body (Figure 1). The “lateral expansion” of

the premaxilla, claimed by Brownstein (2019), is thus produced by distinct elements in the two
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taxa (i.e., prenarial elongation and depression in Halszkaraptor, vs sub- and perinarial widening

in Erlikosaurus), and could not be considered homologous (Figure 1).

Brownstein (2019) wrote:

“It is unclear how Cau et al. [ref. 32] observed retracted nares in Halszkaraptor, as the anterior
nasals are not preserved in that taxon".

Based on his own statement, Brownstein (2019) assumed that the retraction of the external naris
in Cau et al. (2017) was meant as the position of the narial margin of the nasal. As clearly stated
in the latter paper, the retraction of the external naris referred to the narial margin of the
premaxilla, and not to the narial margin of the nasal. They wrote: “[T]he platyrostral premaxilla
with a dorsolaterally oriented external naris that is retracted beyond the oral margin is unique
among theropods, although in its elongation, the premaxilla is similar to those of spinosaurids”
(Cauetal., 2017, italics@ied here). Brownstein (2019) thus raised a concern for a feature
which actually was not discussed by Cau et al. (2017).

Furthermore, Brownstein (2019) wrote:

"Despite the support for it found here, if the presence of elongate nares is not found as the
plesiomorphic state for coelurosaurs in future analyses, the presence of them in a variety of
theropods that do not show any features for a semiaqautic [sic] lifestyle provides evidence
against the argument of Cau et al. [ref. 32], who argued this feature was indicative of such an
ecology." (Itali@dded here).

Contra Brownstein's (2019) claim, Cau et al. (2017) did not write that the “elongation” of the
naris is present in Halszkaraptor or that it is relevant in whatever ecological scenario. The actual
feature mentioned by Cau et al. (2017), the retraction of the premaxillary narial margin beyond
the premaxillary body, is absent in alvarezsauroids (Choiniere et al., 2014), ornithomimosaurs
(Osmolska et al., 1970; Lee et al., 2014), oviraptorosaurs (e.g., Balanoff et al., 2009; Balanoff et
al., 2012) and therizinosauroids (Lautenschlager et al., 2014), and is instead comparable to that
in baryonychine spinosaurids (e.g., Charig and Milner, 1997; Sereno et al., 1998), and has been
linked to a semiaquatic ecology (see Charig and Milner, 1997; Milner, 2003; Rayfield et al.,
2007; Ibrahim et al., 2014).

Brownstein (2019) wrote:
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"Although Halszkaraptor was differentiated from other theropods in possessing a rostral
neurovascular system not entirely restricted [to] the lateral portions of the premaxillae [ref. 32],
the rostral neurovasculature extends onto the dorsal surface of the body of the premaxilla in basal
members of most other maniraptoran clades",

Several statements by Brownstein (2019) inaccurately listed the external distribution and the
density of the neurovascular foramina in other theropods. Contra Brownstein (2019), the
premaxilla of Shenzhousaurus is much less extensively pitted than in Halszkaraptor (see Ji et al.,
2003, ref. 13 cited by Brownstein, 2019). Contra Brownstein (2019), the neurovascular foramina
in ornithomimosaurus are densely distributed only along the oral margin but are less extensively
distributed (if not absent) along the rest of the premaxillary body (see Kobayashi & Lii, 2003;
Ksepka & Norell, 2004; Kobayashi & Barsnold, 2005; Lee et al., 2014). The same condition is
present in oviraptorosaurs (e.g., Balanoff et al., 2009; Balanoff et al., 2012), where the
premaxilla is extensively pitted only along the oral margin and scarcely penetrated in the rest of
the bone. In all mentioned examples, the condition in these taxa differs from Halszkaraptor,
where the density of foramina is greater and their distribution is more extensive all along the
bone surface. Among theropods, only spinosaurids show a comparable density and distribution
of neurovascular foramina in the premaxilla (Charig and Milner, 1996; Dal Sasso et al., 2005;
Ibrahim et al., 2014, fig. S6).

Furthermore, Brownstein (2019) wrote:

“In the more derived therizinosaur Erlikosaurus, the same morphology, where the premaxillae
harbor neurovascular foramina on both their lateral and mediodorsal surfaces, is clearly present
(see Lautenschlager et al. [ref. 19] for clear scans of the premaxillae of Erlikosaurus; fig.
1C,D)”.

Contra Brownstein (2019), the CT-scanning of Erlikosaurus (Lautenschlager et al., 2014)
demonstrates that in Erlikosaurus both density and number of the external foramina and the
relative size of the internal plexus in that therizinosaurid are much less developed than in
Halszkaraptor (Figure 2). In Erlikosaurus, the external foramina are mainly concentrated along
the oral margin (Lautenschlager et al., 2014), and are less numerous in both absolute and relative
terms than in Halszkaraptor (in the latter, the dorsal surface bears at least 20 foramina,
distributed over a premaxilla which is about five times shorter than that of Erlikosaurus).

Furthermore, the relative size of the internal neurovascular plexus (including its main stem) in
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Halszkaraptor is significantly larger than in Erlikosaurus (Figure 2).

Brownstein (2019) focused his discussion on the tooth replacement patterns in Halszkaraptor.
He wrote:

“One interesting feature of the premaxillary teeth of Halszkaraptor described by Cau et al. [ref.
32] was their delayed replacement rate [sic]. A large amount of research into the loss of teeth in
some maniraptoran dinosaurs has found a delayed replacement rate [sic] to be linked to tooth
loss in several clades, including therizinosaurs and ornithomimosaurs”,

and

“The slowly-replacing [sic] premaxillary teeth of Halszkaraptor are also reminiscent of
adaptations found in herbivorous theropod lineages like therizinosaurs [refs. 11, 15]”.

The above mentioned sentences misinterpreted and misreported the literature. First, Cau et al.
(2017) described a “delayed replacement pattern” in Halszkaraptor, and not a “delayed
replacement rate”. Second, refs. 11 and 15 mentioned by Brownstein (2019), i.e., Zanno et al.
(2009), and Zanno & Makovicky (2011), do not mention “delayed replacement rate” but instead
“low tooth-replacement rate”. Brownstein (2019) thus misinterpreted the terminology used by
Cau et al. (2017) and assumed that Zanno et al. (2009) and Zanno & Makovicky (2011) referred
to the same condition described by Cau et al. (2017). Contra Brownstein (2019), the two terms
are relative to distinct, non-homologous conditions, and are not synonyms. The term “delayed
replacement pattern”, used by Cau et al. (2017) for Halszkaraptor, refers to the differences
between the premaxillary tooth-replacement compared to the maxillary tooth-replacement. The
“low tooth-replacement rate” described by Zanno et al. (2009) and Zanno & Makovicky (2011),
instead refers to the absence of pronounced replacement waves and gaps between teeth,
producing a continuous horizontal cutting surface (Lindsay Zanno, pers. com. , 2019). The “low
tooth-replacement rate” (Zanno et al., 2009, and Zanno & Makovicky, 2011) is absent in
Halszkaraptor, which bears a sinusoid cutting surface along the whole dentition and distinct
replacement waves (Figure 3).

Brownstein (2019) also stated that the “delayed replacement rate [sic] is linked to tooth loss”.
That sentence is not correct: the absence of replacement waves in the teeth is independent to the
loss of teeth, as demonstrated by Pelecanimimus (Perez-Moreno et al., 1994), parvicursorines

(Chiappe et al., 1998) and several troodontids (e.g., Lii et al., 2010), all lacking replacement
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waves yet retaining a complete set of teeth (Zanno & Makovicky, 2011). Given that
Halszkaraptor is unique among all dinosaurs in having the largest number of premaxillary teeth
(Cau et al., 2017), it shows a condition opposite to the loss of premaxillary teeth seen in
therizinosaurids or other omnivorous/herbivorous theropods (Zanno & Makovicky, 2011). In
sum, Halszkaraptor is not “reminiscent of adaptations found in herbivorous theropod lineages”

(contra Brownstein, 2019).

Brownstein (2019) wrote:

"Cau et al. [ref. 32] noted the comparatively long neck of Halszkaraptor [...]. However, [...], it is
unclear why Cau et al. allied this feature to elongate necks in derived semiaquatic avians (e.g.,
Cygnus)".

Cau et al. (2017) did not compared Halszkaraptor neck elongation to the condition in derived
semiaquatic avians (e.g., Cygnus). In the latter study, Cygnus is only mentioned once, but in
relation to the shape of the interpostzygapophyseal lamina and not because of its neck
elongation. Brown (2019) misunderstood two distinct sentences in Cau et al. (2017) and

combined them improperly.

Brownstein (2019) wrote:

"Despite the fact that Cau et al. [rep. 32] claimed the neck of Halszkaraptor composed the
greatest percentage of snout-to-sacrum length among non-avian coelurosaurs, a large number of
clades include taxa that approach, reach, or possibly even exceed that threshold". (Italics added
here).

The above statement misreports the original sentence of Cau et al. (2017), which instead was:
"[c]ompared to body size, the neck is elongate and forms 50% of the snout—sacrum length; this is

the highest value found among Mesozoic paravians thus far" (italics added here).

Brownstein (2019) wrote:

“If this hypothesized ecomorphology for Halszkaraptor is correct, it has major implications for
the evolution of bird-like dinosaurs, with H. escuilliei representing the first aquatic non-avian
maniraptoran and suggesting that the ancestral lifestyle for dromaeosaurids could be one that

took place in the water [ref. 32]”.
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Contra Brownstein (2019), Cau et al. (2017) (his ref. 32) did not suggest that the ancestral

dromaeosaurid lifestyle could be one that took place in the water.

Brownstein (2019) wrote:

“The Djadokhta Formation [...] preserves a highly arid environment [...]. Given this
environmental setting, it is hard to envision that specialized, semiaquatic dromaeosaurs would
populate this ecosystem”.

Other Djadokhtan reptiles show adaptations related to an amphibious lifestyle, like the
neosuchian Shamosuchus diadochtaensis (a taxon characterized by a platyrostral snout and
unserrated subconical dentition; Pol et al. 2009). Even if not the most abundant members,
semiaquatic taxa are present in the Djadokhtan faunal assemblages (Lefeld, 1971): their
relatively low frequency is in agreement with the presence of ephemeral lacustrine deposits in
that Formation (Dingus et al., 2008), but does not constitute a challenge to the ecological

interpretation of Cau et al. (2017).

Misreports and misinterpretation of Halszkaraptor anatomy

Brownstein (2019) wrote:

"In many dromaeosaurids, including velociraptorines, Halszkaraptor, Deinonychus, and
“Bambiraptor” (fig. 5 [sic: this is typo, the actual figure is figure 6]), the anterior end of the
ventral surface of the dentary bulges to form a chin (fig. 5B—F), as in some ornithomimosaurs
(fig. 6H)".

In dromaeosaurids, the anteroventral margin of the dentary lacks the so-called “chin” or bulging
mentioned and indicated in figure 6 of Brownstein (2019): dromaeosaurids are characterized by
subparallel dorsal and ventral margins of the dentary which describe a roughly quadrangular
outline with the anterior margin of the bone when seen in lateral view (see Turner et al., 2012,
figs. 15C, 23A-C, 26, 29A, 38C). In theropod morphology, the term “chin” is used in relation to
the presence of a distinct anteroventral process or flange oriented mediolaterally, not involved in
the symphysial articulation, and does not describe the mere shape of the anteroventral corner of
the dentary (e.g., Brusatte & Sereno, 2007). Furthermore, a “bulge” is expected to be a distinct
swelling not related to the mere topographic confluence of the anterior and ventral margins of the

bone. Both features are absent in dromaeosaurids, Furthermore, contra Brownstein (2019), the
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shape of the anteroventral margin of the dentary in dromaeosaurids clearly differs from
ornithomimosaurs (e.g., Osmolska et al., 1972; Kobayashi & Lii, 2003; Kobayashi & Barsbold,
2005; Lee et al., 2014).

Brownstein (2019, figure 6D) included a drawing of the anterior end of the dentary of
Halszkaraptor in lateral view, and depicted a distinctly convex “bulge” at the anterior end of the
ventral margin (indicated in that figure by an arrow). That drawing is inaccurate and misleading.
The anteroventral end of the dentary in Halszkaraptor is eroded (Figure 1B and 1D), so its exact
shape, including the presence of the “bulge” illustrated by Brownstein (2019, figure 6D), cannot
be determined. Regardless to what actually Brownstein (2019) meant with “bulge” in the

dromaeosaurid dentaries, its presence in Halszkaraptor is not based on evidence.

Brownstein (2019) wrote:

"On the whole, the skull of Halszkaraptor also shares many similarities with basal troodontids,
including [...] tightly packed teeth, and recurved, ziphodont, unserrated crowns".

The combination of terms "ziphodont” coupled with “unserrated" is a contradiction due to the
improper use of the anatomical terminology: "ziphodont" means, literally, tooth with serration
(Langston, 1975). The dentition of Halszkaraptor is not ziphodont.

In Halszkaraptor, only the premaxillary teeth are packed, a condition comparable to Microraptor
but absent in other microraptorines (Xing et al., 2013; Pei et al., 2014). The rest of the dentition
(notably, the whole maxilla) in H. escuilliei is formed by spaced alveoli with complete
interdental septa, differing from troodontids where the anterior maxillary dentition is formed by
tightly packed teeth housed in a sulcus often lacking interdental septa (e.g., Lii et al., 2010). The
topographical differences between the regions bearing packed teeth suggest that the condition in

H. escuilliei is not homologous to that in troodontids.

Brownstein (2019) wrote:

"Shortened caudal series. Halszkaraptor possesses a highly modified caudal series, a feature that
Cau et al. [32] used to support a modified posture in this taxon analogous to some birds".

Cau et al. (2017) did not state that the caudal series of Halszkaraptor is shortened. The actual
number of caudal vertebrae in MPC D-102/109 is unknown, being the distal end of the tail
missing. The preserved part of the tail in MPC D-102/109 is comparable to the majority of basal
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paravians (e.g., Godefroit et al., 2013b; Lefévre et al., 2017) in elongation and proportions of the
vertebrae, and it is not significantly reduced, as instead seen in pygostilian birds or in some
oviraptorosaurs (Zhou et al., 2000; Cau, 2018). Note that Cau et al. (2017) mentioned the tail
size in Halszkaraptor relatively to the exceptional neck elongation, but did not state any peculiar
reduction in the caudal series. Furthermore, Cau et al. (2017) did not write that the unusual
features in the caudal vertebrae of Halszkaraptor support a modified posture like that in birds:
the latter was inferred on the basis of hypertrophied origin and insertion of the m. ileofibularis in,
respectively, ilium and femur (Cau et al., 2017, supplementary information). Brownstein (2019)
thus misinterpreted two distinct and unrelated sentences in Cau et al. (2017), one about the
peculiar features of the caudal vertebrae (not related to tail elongation/reduction), and another

about the pelvic and femoral adaptations supporting hip-extension.

Brownstein (2019) wrote:

"Therefore, the cross-sectional limb morphology of Halszkaraptor provides among the strongest
evidence against a partially marine ecology in H. escuilliei",

and

"These results were used to support a semiaquatic ecological mode in the taxon, with the
forelimb acting as a propulsion device. However, the inferences made by Cau et al. [ref. 32] from
the morphometric analyses are flawed, as the forelimb of Halszkaraptor looks strikingly unlike
the paddles formed by the forelimb bones of plesiosaurs" (Brownstein, 2019).

Brownstein (2019) did not provide any quantitative morphometric analysis in support of his
sentences. Contra Brownstein (2019), the cross-section geometry of Halszkaraptor's ulna
reflects an unusual flattening of the bone (a feature that was first noted in the other
halszkaraptorine Mahakala, see Turner et al., 2011), and recalls the analogous condition
differentiating wing-propelled aquatic birds from other avians (Simpson, 1946). When plotted
relative to ulnar length, the mid-shaft mediolateral diameter of Halszkaraptor ulnar shaft clusters
it among wing-propelled birds and not among other bird groups, and also results proportionally
more expanded transversally than in other non-avian theropods (Figure 4): this morphometric

feature is consistent with the ecomorphological scenario of Cau et al. @7).

Brownstein (2019) also stated:
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“[...] this taxon [Halszkaraptor] was probably not biomechanically suited to live in water, as its
skeleton, like other paravians, would have probably been too light to keep the animal
submerged.”,

and

“The bones of Halszkaraptor are clearly internally hollow to a similar extent as other paravian
dinosaurs. However, in tetrapods adapted for a semiaquatic or entirely aquatic lifestyle [...],
pachyostosis, the extreme thickening of cortical bone, occurs in the limbs. Given that
pachyostosis is present in the limb bones of both avian and non-avian theropods that took to the
water, the absence of such thickening in Halszkaraptor, which Cau et al. [ref. 32] posit was well-
adapted for a semiaquatic ecology, would be very surprising from a biomechanical standpoint”
(Brownstein, 2019).

In the above mentioned statements, Brownstein (2019) challenges Cau et al. (2017) arguing that
vertebrates with hollow long bones and a highly pneumatized postcranial skeleton could not be
adapted to some aquatic lifestyle, and implicitly claims that pachyostosis is a necessary requisite
for a semiaquatic lifestyle. Both Brownstein's (2019) assumptions are falsified by several modern
birds, e.g., the pelicans, characterized by an extensively-pneumatized skeleton (Richardson,
1939), and that are nonetheless well-adapted to piscivory, to exploit the aquatic environment and
to a wing-propelled swimming style (Hini¢-Frlog & Motani, 2010). It is noteworthy that the
degree of internal bone cavitation and pneumatization in the skeleton of pelicans (e.g., Simons &

O'Connor, 2012, fig. 3; Wedel, 2014; Wedel, 2018) is more extensive than in Halszkara

Brownstein (2019) then questioned the analysis of morphospace occupation of Cau et al. (2017)
which focused on the proportions of the medial fingers (I-1I-I1I) in reptiles.

Brownstein (2019) wrote:

“Halszkaraptor lacks the ‘paddle’ in plesiosaurs, Araripemys, and other aquatic vertebrates like
ichthyosaurs, wherein the hand contains many closely appressed phalanges (fig. 2). In contrast,
the forelimbs of marine reptiles, such as mosasaurs, plesiosaurs, and ichthyosaurs, consist of a
massive number of flattened, heavily modified phalanges that form a distinctive paddle shape
entirely distinct from the theropod manus (fig. 3B)”.

Both aquatic chelonians and penguins show that a flipper- or paddle-like shape could evolve

without hyperphalangy (Simpson, 1946; Walker, 1973; Clark & Bemis, 1979; Carpenter et al.,
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2010). The hands of wing-propelled birds have only three fingers, with a phalangeal formula
even more reduced than in Halszkaraptor (Simpson, 1946). Thus, different skeletal
morphologies may produce a functional paddle, which is not constrained to a five-fingered
pattern and to hyperphalangy. To test if the hand of Halszkaraptor fits the overall proportions of
a paddle, Cau et al. (2017) compared the proportions of the three medialmost fingers (fingers I-
II-IIT) in reptiles. These fingers define the outline of the leading edge of the paddle, which is a
key parameter in any flipper morphology (Combes & Daniel, 2001). The morphometric analysis
showed that 1) there is not significant overlap between theropods and other reptiles in finger
proportions, 2) Halszkaraptor does not cluster among the other theropods, and 3) the outline of
the medial/leading edge of the hand in Halszkaraptor is more similar to those of aquatic reptiles
than those of the other theropods.

Brownstein (2019) failed to explain why Halszkaraptor shows so unusual finger proportions: the
finger proportions in Halszkaraptor are not plesiomorphic for Maniraptora, and are not shared
with herbivorous or omnivorous theropods, and thus do not fit Brownstein's (2019) hypothesis.
Contra Brownstein (2019), the forelimb of Halszkaraptor markedly deviates from those of other
dromaeosaurids (e.g., Deinonychus, Ostrom, 1969; Microraptor, Hwang et al., 2002) in several
features, including the overall stouter proportions of the bones, the marked flattening of the ulna,
the significant reduction of the size of the first finger, the presence of a more robust third
metacarpal, and the significant elongation of the phalanges of the third finger: it is noteworthy
that all these features differentiate the forelimb of wing-propelled birds (e.g., penguins) from

other (i.e., non-swimming) avians (Simpson, 1949).

Brownstein (2019) wrote:

“Their resultant reconstruction of the glenoid facing laterally in H. escuilliei is therefore also
unsubstantiated”.

The rationale for the inference of a laterally-facing glenoid in H. escuilliei is explained by Cau et
al. (2017), where it is stated: “Although the fragmentary preservation of the pectoral region
prevents a detailed reconstruction of forelimb range of motion, on the basis of phylogenetic
bracketing, we infer that the glenoid in Halszkaraptor faces laterally, as it does in forelimb-
assisted swimming tetrapods”. A laterally-facing glenoid is a paravian symplesiomorphy

inherited by dromaeosaurids (Turner et al., 2012) and thus, in absence of contrary evidence and
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based on phylogenetic bracketing, it is the most plausible condition for Halszkaraptor. Given
that such a feature is also an adaptation necessary for any form of forelimb-assisted swimming
(Carpenter et al., 2010), the plesiomorphic glenoid condition of paravians which is assumed for

Halszkaraptor is also a potential exaptation for a forelimb-assisted swimming style.

Brownstein (2019) wrote:

"Cau et al [32] noted that the ‘sickle’ claw on pedal digit II is heavily reduced in Halszkaraptor
compared to other dromaeosaurids (fig. 2A,E)".

The above-mentioned statement misreports Cau et al. (2017), who instead wrote: “The second
toe is half the length of the third (Fig. 3e), with a stout phalanx II-2 and a large falciform ungual,
similar to those in other paravians”. (Italics added here). Contra Brownstein (2019), when pedal
ungual II size of Halszkaraptor is plotted against femur length (a frequently-used proxi of body
size in theropod research), there is no significant difference between H. escuilliei, the other

dromaeosaurids, and other basal paravians (Figure 6).

Inaccurate or unsupported references to other taxa

Brownstein (2019) wrote:

"As in basal members of the Ornithomimosauria like Ngwebasaurus [ref. 67] [...],
Halszkaraptor possesses a large number of premaxillary teeth".

According to Choiniere et al., 2012 (reference 67 in Brownstei@019), the premaxillary teeth of

Ngwebasaurus are not preserved, so their actual number is unknown.

Brownstein (2019) wrote:

"Members of basal clades in the Dromacosauridae, including microraptorans and unenlagiines,
also possess a large number (20+) of teeth in their maxillae". (Italics added here).

All known microraptorans have less than 20 teeth in their maxillae, not more (e.g., Turner et al.,
2012, figure 23; Xing et al., 2013; Pei et al., 2014). Note that assuming (erroneously) a larger
number of maxillary teeth in microraptorans has significant implications for the number of

maxillary teeth inferred at the root of Dromaeosauridae (see below).

Brownstein (2019) wrote:
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402  “The complete connection of the postzygapophyses by bone surface [as in Halszkaraptor] is
403  present in the basal-most ornithomimosaur Ngwebasaurus and the basal-most therizinosaur
404  Falcarius, and is present to a lesser extent in basal alvarezsaurs like Aorun and Haplocheirus, the
405 basal ornithomimosaur Pelecanimimus, and the basal tyrannosauroid Guanlong.”

406 Contra Brownstein (2019), all the above-mentioned taxa bear distinct postzygapophyses not-
407 completely merged medially, and show posteriorly-concave interzygapophyseal laminae

408 excavated dorsally by the ligament fossa (Choiniere et al., 2010, Zanno, 2010; Choiniere et al.,
409 2012), and thus lack the autapomorphic complex of H. escuilliei.

410

411 Brownstein (2019) wrote:

412 "Microraptor was an arboreal glider [ref. 21]".

413  Turner et al. (2012; ref, 21 of Brownstein, 2019), does not mention and does not discuss any

414  arboreal and/or gliding adaptation for Microraptor (see also Dececchi &arsson, 2011).

415

416 Brownstein (2019) wrote:

417 "Although it is clear that the prominence of the supratrochanteric process in Halszkaraptor is
418 greater than in these unenlagiines, the supratrochanteric process in many anchiornithids is

419  similarly developed [91, 92]."

420 Brownstein's (2019) references 91 and 92, i.e., Godefroit et al. (2013a) and Godefroit et al.

421 (2013Db), do not mention the supratrochanteric process in anchiornithids. Both Eosinopteryx
422 (Godefroit et al., 2013a) and Aurornis (Godefroit et al., 2013b, Figure 5A) lack a prominent
423  supratrochanteric process like that claimed by Brownstein (2019) (pers. obs., 2015). The

424  supratrochanteric process of the anchiornithids is no more developed in shape and extent than the
425 tuber-like process present in other paravians (e.g., compare Aurornis, Figure SA, or Anchiornis,
426 Huetal., 2009, fig. S4b, with Rahonavis, Turner et al., 2012, fig. 55B) and is much less

427  prominent than in Halszkaraptor, where it forms a peculiar large shelf-like lateral projection
428 overhanging the ilium (Fig. 5B).

429

430 Methodological weakness and non-reproducibility of the phylogenetic analysis
431

432  Brownstein (2019) provided a data matrix in the supplementary information of his paper.
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Unfortunately, the phylogenetic results described in Brownstein (2019) could not be obtained
using the provided data matrix (i.e., the topology resulted using that data set is identical to that in
Cau et al., 2017: extended data figure 10). Even more puzzling is the list of characters that
Brownstein (2019) claimed to form the diagnosis of the clade formed by halszkaraptorines and
unenlagiines, that he obtained in his analysis. He wrote:

"This clade is united by five characters: 27 (0, maxillary fenestra situated at anterior border of
antorbital fossa), 107 (1, Sacral vertebrae number is six), 193 (1, ascending process of astragalus
short and slender), 580 (0, sagittal crest of parietal comprised of two parallel crests), and 828 (0,
Meckelian groove centered)" (Brownstein, 2019).

Note that character numeration does not follow entirely the original character list (supplementary
information of Brusatte et al., 2014): character statements #27, #107, #580 and #828 in
Brownstein (2019) are instead statement #28, #108, #581 and #829 in Brusatte et al. (2014).
Three of the above-listed character states could not be unambiguous synapomorphies of the
“Halszkaraptorinae + Unenlagiinae” node, because they are actually absent among
halszkaraptorines:

The maxillary fenestra is only known in Halszkaraptor among halszkaraptorines (Cau et al.,
2017). In this taxon, it is placed posterodorsally on the antorbital fossa and not “at anterior
border of antorbital fossa”: thus, character 28 of Brusatte et al. (2014) cannot be scored as “0” in
any halszkaraptorine.

The ascending process of the astragalus is only known in Mahakala among halszkaraptorines
(Turner et al., 2011). In this taxon, the ascending process is wide and covers the whole anterior
surface of the tibia (state 0 of character 193 of Brusatte et al., 2014), and is not slender and
restricted over the lateral half of the tibia as in the state 193.1 of Brusatte et al. (2014).

The parietal is only known in Halszkaraptor among halszkaraptorines (Cau et al., 2017). In this
taxon, the bone entirely lacks a sagittal crest, and thus, following the description of the character
in Brusatte et al. (2014), character 581 is inapplicable in Halszkaraptor.

The cause of these bizarre results cannot be determined based on the data provided.

Phylogenetic test

The phylogenetic analysis performed here reconstructed >99.999 shortest trees of 6566 steps (CI
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=0.2333, RI =0.5558). The agreement subtree topology (Figure 7) is formed by 158 of the
included 185 operational taxonomic units, indicating a relatively stable and well-supported
framework among the majority of the taxa. The relationships among the main coelurosaurian
clades are in agreement with the previous iterations of this data set (e.g., Cau et al., 2017; Cau,
2018). The analysis supports the sister group relationships between halszkaraptorines and
unenlagiines, as found in Cau (2018), Gianechini et al. (2018), Hartman et al. (2019), and
advocated by Brownstein (2019). This clade is supported by 11 unambiguous synapomorphies
(Supplementary Files). Note that the result of this analysis confirms only one of the five
synapomorphies suggested by Brownstein (2019) in support of this clade (the presence of six
sacral vertebrae).

Part of the features discussed by Brownstein (2019) and claimed in H. escuilliei are falsified by a
careful analysis of the morphology of Halszkaraptor and other taxa, and do not support
Brownstein's (2019) scenario (e.g., Halszkaraptor actually lacks the “low tooth-replacement
rate”, a “short tail”, or a “reduced” second toe ungual). Other purported features listed by
Brownstein (2019) cannot be considered as shared morphological character statements because
the condition in Halszkaraptor is not topographically homologous to those in non-paravian
maniraptoriforms (e.g., the “platyrostral” premaxilla of Halszkaraptor cannot be homologous to
those in ornithomimosaurus or therizinosauroids). Once these features are removed from the list
of phylogenetically significant features forming the Halszkaraptorine body plan, the latter is
described by 17 morphological character statements (Table 1).

Character state transition optimization indicates that the majority of the features (11 over 17) are
evolutionary novelties acquired along the “Halszkaraptorinae + Unenlagiinae” clade after its
divergence from the other dromaeosaurids (Table 1, Figure 7). Seven of these halszkaraptorine
novelties are convergently acquired by spinosaurids (Figure 8A). Contra Brownstein's (2019)
scenario, only two among the 17 features discussed (i.e., the absence of serration in the
premaxillary dentition, and the presence of a robust metacarpal III) are maniraptoromorph and
paravian symplesiomorphies, conserved in Halszkaraptor and lost along the “microraptorine-

eudromaeosaurian” lineage.

DISCUSSION

The quality of the arguments provided in Brownstein (2019) is dramatically weakened by 1) a
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long series of inaccurate reports, improper, wrong or contradictory citations, 2) the misreports
and misuse of the anatomical and morphological terminology, 3) the use of inaccurate figures
that in some cases explicitly illustrated non-existent features, and 4) the non-reproducibility of
the claimed results. As shown above, most of this rebuttal paper has been necessarily devoted to
identify and correct all these problematic statements, most of which are fundamental in
Brownstein's (2019) alternative scenario, and to remove them from the proper comparison of the
two hypotheses.

Brownstein (2019) systematically misinterpreted several sentences in Cau et al. (2017) and thus
provided a largely inaccurate and misleading depiction of the latter. Several statements that
Brownstein (2019) referred to Cau et al. (2017) are actually absent in the latter. The frequent
referral to fully-aquatic reptiles in Brownstein's (2019) discussion is misleading and unnecessary,
because Cau et al. (2017) did not suggest such an extreme form of aquatic adaptation in H.
escuilliei. The absence of polydactyly and the lack of pachyostosis in Halszkaraptor are not valid
arguments challenging the evolution of a semiaquatic ecology, because several tetrapod lineages
(including some wing-propelled diving birds like pelicans) evolved such an ecology in absence
of those anatomical features. Given that Cau et al. (2017) did not suggest a “partially marine
ecology” [sic] for Halszkaraptor, and did not suggest a plesiosaur-like locomotory style or a
plesiosaur-like forefin morphology in Halszkaraptor, it is unclear why Brownstein (2019) had
focused to that peculiar fully-aquatic bauplan. Note that all aquatic and diving birds (both flying
and flightless) lack the plesiosaur-like features in the forelimb listed by Brownstein (2019), so
the absence of a plesiosaur-like paddle or a plesiosaur-like swimming style do not necessarily
invalidate locomotion in water or a semiaquatic ecology in a maniraptoran theropod. Note that
Cau et al. (2017) described the locomotory style of Halszkaraptor using the relatively neuter
term “forelimb-assisted swimming” instead of any stronger term that may indicate a peculiar
locomotory style more closely analogous to those of, for example, penguins or plesiosaurs. Thus,
contra Brownstein (2019), focusing on the absence of fully-aquatic in Halszkaraptor does not
affect the arguments discussed in Cau et al. (2017). Most of Brownstein's (2019) paper appears
thus devoted to demolish his own arbitrary deformation of the hypothesis of Cau et al. (2017),
and could hardly be considered a valid review of the latter paper.

Brownstein (2019) suggested that most of the features forming the unusual body plan of

Halszkaraptor are maniraptoriform or maniraptoran plesiomorphies which were subsequently
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526 lost along the lineage leading to Eudromaeosauria. As shown above, a significant part of the
527 features listed by Brownstein (2019) in support of that hypothesis are not valid, being based on
528 inaccurate reports not supported by the literature cited therein. In most cases, those statements
529 are based on misinterpretation of the anatomical terminology, or are grounded on problematic
530 homology statements. In the most problematic cases, the mention of those features is merely
531 false, being them absent in the holotype of H. escuilliei (e.g., the so-called “dentary chin” is not
532 present in MPC-D 102/109). Once tested quantitatively, the remaining character statements

533 mentioned by Brownstein (2019) are in large part inferred as synapomorphies of the

534 halszkaraptorine lineage or, at most, as synapomorphies of the clade also including the

535 unenlagiines (e.g., Gianechini et al., 2011, Gianechini et al., 2017; Gianechini et al., 2018), and
536  were acquired by that lineage after its divergence from the other dromaeosaurids. Contra

537  Brownstein (2019), the most parsimonious scenario places the loss of serration in the lateral
538 dentition, the increased number of lateral teeth, the elongation of the neck, and the development
539 of the prominent supratrochanteric shelf, as novelties acquired along the “halszkaraptorine-

540 unenlagiine” lineage: all these features were not inherited from maniraptoriform ancestors, and
541 were not secondarily lost in eudromaeosaurs. The majority of the similarities with some

542 maniraptoriforms are homoplastic convergences (a phenomenon widespread among theropod
543  dinosaurs, see Holtz, 2001; Figure 8A). At least seven of the halszkaraptorine novelties are

544  convergently acquired by spinosaurids, and are integrated in a semi-acquatic and piscivorous
545 ecology (Charig and Milner, 1997; Ibrahim et al., 2014; Cau et al., 2017). One of these features,
546 reported here for the first time, is the “festooning pattern” in the upper dentition size variation,
547  which recalls semi-aquatic crocodilians (see Charig and Milner, 1997; Dal Sasso et al., 2005; Pol
548 etal., 2009). In Halszkaraptor, the anteriormost two maxillary teeth (and corresponding alveoli)
549  are smaller and much slender than the other anterior maxillary teeth and also smaller than the
550 Ilargest premaxillary teeth: this condition produces a distinct sinusoidal (“festooning”) oral

551 margin due to the presence of two zones bearing elongate fang-like teeth, one in the premaxilla
552  and one in the anterior half of the maxilla, separated by a zone bearing reduced teeth (Figure 3).
553  This condition is markedly different from the straight and uniform cutting surface present in the
554  oral margin of the herbivorous theropods (Zanno & Makovicky, 2011; see Figure 1A), and has
555 been interpreted as an adaptation for foraging efficiently in aquatic environments and for

556 grabbing evasive prey items (Vullo et al., 2016). This snout morphology is frequently associated
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with the presence of numerous neurovascular pits opening on most of the premaxillary surface
(Vullo et al., 2016), which is also shared by H. escuilliei and spinosaurids.

Assuming that the peculiar halszkaraptorine features are maniraptoriform plesiomorphies (as
claimed in Brownstein, 2019) is not the most parsimonious explanation of the evidence, because
it would require the secondary loss of all these claimed ancestral states in oviraptorosaurs, in the
“avialan-troodontid” lineage (Averaptora) and in the “eudromaeosaur-microraptorine” lineage.
The scenario supported here confirms the hypothesis that, during their evolution, different
coelurosaurian lineages converged to a non-ziphodont, multitoothed, and long-necked body plan
independently each other (Zanno & Makovicky, 2011; Choiniere et al., 2014). It is noteworthy
that the result of the current study is obtained setting ambiguous character optimization to favor
reversals over convergences (accelerated transformation optimization), and thus endorsing a
possible “deep” (maniraptoriform) origin of the halszkaraptorine features and their later reversal
among eudromaeosaurs (as suggested by Brownstein, 2019): even with that optimization, the
majority of the discussed features are recovered as synapomorphies of the halszkaraptorine
lineage, and cannot be interpreted as maniraptoriform plesiomorphies (contra Brownstein, 2019).
Brownstein (2019) consistently re-interpreted most of the features of Halszkaraptor listed by
Cau et al. (2019) as plesiomorphic conditions of clades more inclusive than Halszkaraptorinae:
careful comparison of the terms used in the two papers shows that the character descriptions used
by Brownstein (2019) differ from those in Cau et al. (2017) in not distinguishing neomorphic and
transformational character statements (Sereno, 2007). For example, Brownstein (2019) did focus
on the presence of the supratrochanteric process of the ilium (a neomorphic character state
shared by many paravians and therizinosauroids) to challenge Cau et al. (2017), whereas the
latter did discuss the development of the shelf-like supratrochanteric process (a transformational
character state present uniquely among the halszkaraptorine-unenlagiine lineage). As a
consequence of such misinterpretation, what is a genuine apomorphy of the halszkaraptorines is
erroneously claimed to be a maniraptoran plesiomorphy. Similarly, Brownstein (2019) did focus
on the presence of the interpostzygapophyseal lamina in the cervical vertebrae (a neomorphic
character state widespread among maniraptoriforms), whereas Cau et al. (2017) did discuss the
development of the expanded and fan-shaped interpostzygapophyseal lamina in the cervical
vertebrae (a transformational character state autapomorphic of H. escuilliei): the plesiomorphic

status of the neomorphic state does not invalidate the autapomorphic status of the
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transformational one.

It should be remarked that Brownstein's (2019) scenario failed to provide an evolutionary
explanation for the autapomorphic features that even the latter paper recognizes as being present
in Halszkaraptor. The mere assertion of a “transitional” morphology in Halszkaraptor does not
provide an explanation for its autapomorphies, because the latter, by definition, are not states
intermediate between non-dromaeosaurids and later-diverging dromaeosaurids, but are instead
novel features acquired uniquely along the terminal branch. All these features are unexplained
under Brownstein's (2019) scenario, because they are not maniraptoran plesiomorphies and are
not correlated to an herbivorous/omnivorous ecology (see Zanno and Makovichy, 2011). Given
that these features are observed among piscivorous and aquatic amniotes, as discussed by Cau et
al. (2017), and in absence of an alternative explanation for their presence in Halszkaraptor, the
ecomorphological hypothesis discussed by the latter study keeps being valid even under the
revised phylogenetic framework advocated by Brownstein (2019). Paradoxically, the sister-taxon
relationship between Halszkaraptorinae and Unenlagiinae suggested by Brownstein (2019) (but
see it discussed also in Cau, 2018; Gianechini et al., 2018; and Hartman et al., 2019), weakens
the so-claimed “transitional” status for the morphology present in Halszkaraptor, because it
removes the latter taxon from a more direct basal divergence near the ancestral dromaeosaurid
node, and places it nested among a disparate branch of non-eudromaeosaurian dromaeosaurids
(Novas et al., 2009; Gianechini et al., 2018). Furthermore, the amount of morphological
divergence of the halszkaraptorines from the ancestral paravian root is comparable to those of
microraptorines and velociraptorines (Figure 8B): asserting that Halszkaraptor is "likely
representative of the morphological transition from the ancestral body plan of maniraptorans to
the one [sic] that characterized dromaeosaurids" (Brownstein, 2019) is thus unjustified. In sum,
even under the phylogenetic framework advocated by Brownstein (2019), there is no reason for
assuming that the disparate morphologies represented by Halszkaraptor and the unenlagiines
were “plesiomorphic” or “transitional” between the basal maniraptoran bauplan and other
dromaeosaurids. The evolutionary scenario suggested by Brownstein (2019) is thus falsified by

its own phylogenetic structure.

CONCLUSIONS

The hypothesis that the body plan of Halszkaraptor represents a “transitional” condition
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619 intermediate between non-paravian maniraptoriforms and eudromaeosaurians is based on a series
620 of non-rigorous homology hypotheses, on the misinterpretation of several character statements
621 describing the coelurosaurian diversity, and has been erected over a problematic list of literature
622  misreports and misquotes. Halszkaraptor markedly diverged from the other maniraptorans, and
623 careful investigation of the character state distribution among coelurosaurs confirms that the

624 large majority of the peculiar features of H. escuilliei are not maniraptoran symplesiomorphies,
625 and cannot define the ancestral dromaeosaurid body plan. A quantitative analysis of the

626 morphological divergence among these taxa falsifies Brownstein's (2019) scenario, dismissing a
627 “transitional” status for the halszkaraptorines relative to other dromaecosaurids. Furthermore, that
628 hypothesis is unable to interpret the peculiarities of the halszkaraptorines which are absent in the
629 herbivorous/omnivorous maniraptoriforms, and fails to explain the similarities between

630 Halszkaraptor, semiaquatic birds and piscivorous reptiles.
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Figure 1

Comparison between the skull of the therizinosaurid Erlikosaurus andrewsi (A, C) and
the paravian Halszkaraptor escuilliei (B, D), in left lateral (A, B) and dorsal (C, D) views.

Key differences in snout morphology: prenarial part of premaxilla taller than long (al) or
longer than tall (a2); platyrostral condition produced by perinarial widening (al) or prenarial
flattening (a2); complete loss of premaxillary dentition (c1) or supranumerary premaxillary
dentition (c2); maxillary dentition lacking replacement waves (d1), or bearing distinct
replacement waves (d2); narial fossa widely overlapping premaxillary oral margin (el) or
narial fossa not overlapping premaxillary oral margin. Scale bars in mm. Figures A and C
provided by S. Lautenschlager (used with permission); figures B and D modified from Cau et

al. (2017).
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Figure 2

De\@pment of the premaxillary neurovascular plexus in some archosaurs.

Semitransparent rendering of premaxilla of Erlikosaurus andrewsi (A, B) in lateral (A) and
dorsal (B) views. Semitransparent rendering of premaxillae of Halszkaraptor escuilliei (C, D)
in lateral (C ) and dorsal (D) views. Semitransparent rendering of anterior end of snout in
Crocodylus sp. (E), Halszkaraptor escuilliei (F) and Erlikosaurus andrewsi (G) in dorsal view.
Semitransparent rendering of snout in cf. Spinosaurus aegyptiacus (H, 1) in lateral (H) and
dorsal (1) views. Figures in (A-D) and (E-I) rescaled at same width for comparison. In red,
rendering of the neurovascular plexus. Arrows in E-I indicate the level of the anterior margin
of the external naris. Figures A, B and G modified from images provided by S. Lautenschlager
(used with permission). Figures C-F modified from Cau et al. (2017). Figures H, | modified
from images provided by D. lurino (used with permission). Abbreviations: en, external naris;

nps, basal stem of the neurovascular plexus; pnr, prenarial part of premaxilla.
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Figure 3

Premaxillae and maxillae of H. escuilliei MPC D-102/109 in right lateral view.

In A, the different bones are colored to help the identification of the distinct elements forming
the rostrum. Note that the majority of the right maxilla is lost (light blue), revealing most of
the left maxilla (pink) in medial view (in his figure 1, Brownstein, 2019, misinterpreted the
preservation of the maxillae and depicted most of the lateral surface of the right maxilla
based on the medial side of the left one). In B, semi-transparent reconstruction of the same
elements, showing the tooth roots and the “festooning” pattern in tooth size variation. Scale
bar in mm. Abbreviations: Imx, left maxilla; lpmx, left premaxilla; m1-2, first and second

maxillary tooth; pdl, paradental lamina; rmx, right maxilla; rpmx, right premaxilla.
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Figure 4

Plot of ulna mid-shaft width relative to ulnar length in theropods.

A, full sample. B, same sample but reduced to non-avian theropods and wing-propelled birds.

Data in Supplementary Files.
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Figure 5

Development of the supratrochanteric process in the paravian theropods Aurornis xui
YFGP-T5198 and Halszkaraptor escuilliei MPC D-102/109.

A, pelvic region of the anchiornithid Aurornis in lateral view. Note that the left ilium is
exposed dorsally, showing the thickness of the dorsal margin of the bone. B, pelvic region of
H. escuilliei, in dorsomedial view. Note the prominent supratrochanteric process which
overhangs the lateral surface of the ilium. Scale bars = 30 mm. Abbreviations: li, left ilium;

pdm, posterodorsal margin; ri, right ilium.
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Figure 6

Pedal ungual Il size among paravians.

Plot of pedal ungual Il length relative to femur length dismisses Brownstein's (2019) claim
that Halszkaraptor's ungual is reduced compared to other dromaeosaurids. Data in

Supplementary Files.
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Figure 7

Phylogeny of the tetanuran theropods focusing on maniraptoriforms.

Agreement subtree of 50.000 shortest trees reconstructed by the phylogenetic analysis, used
as framework for character state transition optimization. Numbers at branches indicate the

morphological features listed in Table 1.
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Figure 8

Comparison between the halszkaraptorine body plan and other theropod clades.

A, number of halszkaraptorine novelties convergently acquired by non-dromaeosaurid
lineages. B, anagenetic distance (in steps) from the paravian node based on the minimum
branch length of the agreement subtree in Figure 7. Note that spinosaurids acquired the
largest number of similarities with halszkaraptorines, and that halszkaraptorine divergence

from the ancestral dromaeosaurid body plan is comparable to those of other clades.
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Spinosauridae  Ornithomimosauria Therizinosauria  Alvarezsauroidea Oviraptorosauria Avialae Troodontidae
_I_ —
Halszkaraptorinae
Unenlagiinae
Eudromaeosauria

All dromeosaurids

Microraptorinae
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Table 1(on next page)

Phylogenetic status of 17 key features of Halszkaraptor.

Nodal optimisation of the morphological features of Halszkaraptor body plan, based on the
agreement subtree topology. Character numeration refers to the character list of the
phylogenetic analysis, with described state indicated by number in brackets. Ambiguously
optimized state changes based on accelerated transformation (marked by *). “Novelty”
means that the character state in H. escuilliei is optimized as evolving among
Halskzaraptorinae or at most among “Halszkaraptorinae + Unenlagiinae” under accelerated

transformation optimisation.
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Unenlagiinae”*. Pygostylia.

Character statement and Homoplasy # char. |Nodes Status in Halszkaraptor
Index (hi)
1) Premaxillae fusion; hi = 0.833. 11(1) |“Halszkaraptorinae + Novelty. Convergent with

pygostylians, oviraptoroids

more than twice longer than deep); hi =
0.875.

“Caudipterydae +
Oviraptoroidea™*.
Lost in heyuannines*. Falcarius.
“Deinocheiridae +
Ornithomimidae”. Spinosauridae.

Oviraptoroidea. and spinosaurids.

2) Premaxillary narial margin placed 27(1) | Averostra. Lost in: Averostran plesiomorphy.

posterior to mid-lenght of premaxillary “Microraptorinae + Note that Halszkaraptor

oral margin; hi = 0.941. Eudromaeosauria”*, shows a novel state: the
Troodontidae, among narial margin placed more
jeholornithids, among posterior then the whole
ornithomimosaurs, in premaxillary body
Allosauroidea, in (convergent with avialans
Tyrannosauroidea. and spinosaurids).

3) Number of premaxillary teeh >4; hi = 14(1) | “Halszkaraptorinae + Novelty. Convergent with

0.8. Unenlagiinae™*. basal ornithomimosaurs and
Ornithomimosauria*. spinosaurids.
Spinosauridae.

4) Premaxillary teeth unserrated; hi = 15(1) |Maniraptoromorpha. Lost in some | Maniraptoriform

0.875. troodontids, and in symplesiomorphy.
“Eudromaeosauria + Convergent with
Microraptorinae”. Re-gained in spinosaurines.
some microraptorines.

5) Lateral teeth unserrated; hi = 0.917. 159(1) |Alvarezsauroids more derived Novelty. Convergent with
than Haplocheirus*. non-dromaeosaurid
Pannaraptora*. Lost at pennaraptorans and
Dromaecosauridae root*. Re- spinosaurines.
gained in “Halszkaraptorinae +
Unenlagiinae”.
Homoplastic in Troodontidae.
Spinosaurinae.

6) >20 maxillary teeth; hi = 0.9. 34(1) |Maniraptoriformes. Lost in Novelty. Convergent with
Pennaraptora. Re-gained in non-pennaraptoran
“Halszkaraptorinae + maniraptoriforms and
Unenlagiinae”. Re-gained in baryonychines.
“Sinovenatorinae +
Troodontinae”. Baryonychinae*.

7) Premaxillary teeth incisiviform; hi = 16(1) |Averostra*. Lost in Averostran

0.917. Alvarezsauroidea™, Averaptora symplesiomorphy.
and Oviraptoroidea*. Homoplastic
in Eudromaeosauria and
Troodontidae.

8) Lateral teeth labiolingually compressed; | 599(0) | Theropoda. Lost in Spinosauridae. | Theropod plesiomorphy.

hi=0.875.

9) Cervical vertebrae elongate (centrum 222(1) |Halszkaraptorinae*. Fukuivenator. | Novelty. Highly

homoplastic among other
maniraptoriforms.
Convergent with
spinosaurids.
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10) Horizontally-oriented caudal 1726(1) | Halszkaraptorinae Novelty.
zygapophyses; hi = 0.
11) Prominent caudal prezygocostal 626(1) |Neotetanurae. Lost in derived Novelty. Homoplastic

laminae; hi = 0.857.

ornithomimosaurs, some

among other

alvarezsauroids, oviraptorids, and | maniraptoriforms.
in Eumaniraptora. Re-gained in
“Halszkaraptorinae +
Unenlagiinae”.

12) Robust metacarpal III; hi = 0.95. 322(0) |Eumaniraptora*. Lost in Eumaniraptoran
“Microraptoria + symplesiomorphy.

Eudromacosauria”*. Homoplastic
among microraptorines.

Lost in “Balaur + Pygostylia”
Lost among Anchiornithinae.
Derived therizinosaurids.

13) Elongate manual phalanx p1-III; hi =
0.933.

292(0)

Lost in Tetanurae*. Re-gained in
Microraptoria*,
Halszkaraptorinae*,
Scansorioperygidae and
Pengornithidae*.

Novelty. Convergent with
some paravian lineages.

14) Shelf-like iliac supratrochanteric
process; hi=0.5.

1773(1)

“Halszkaraptorinae +
Unenlagiinae”*, lost in
Unenlagia.

Novelty.

15) Elongate posterolateral crest on femur;
hi =0.75.

693(1)

Ceratonykini*. Halszkaraptorinae.
Late-diverging troodontids™.

Novelty. Convergent with a
few maniraptorans.

16) Markedly convex extensor surface of |1616(1) | Halszkaraptorinae. Balaur. Novelty.
metatarsal III; hi = 0.5.
17) Unconstricted proximal end of 483(0) | Theropod plesiomorphy. Theropod plesiomorphy.

metatarsal III; hi = 0.941.

Homoplastically lost among
alvarezsauroids. Homoplastic in
Oviraptorosauria. Lost in
Ornithomimidae, Microraptorinae,
Unenlagiinae and Troodontidae.
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