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Xinjiang brown cattle have better meat quality than Kazakh cattle. Circular RNAs
(circRNAs) are a type of RNA that can participate in the regulation of gene transcription.
Whether circRNAs are differentially expressed in the longissimus dorsi between these two
types of cattle and whether differentially expressed circRNAs regulate muscle formation
and differentiation are still unknown. In this study, we established two RNA-seq libraries,
each of which consisted of three samples. A total of 5177circRNAs were identified in
longissimus dorsi samples from Kazakh cattle and Xinjiang brown cattle using the Illumina
platform, 46 of which were differentially expressed. Fifty-five Gene Ontology (GO) terms
were significantly enriched, and 12 Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways were identified for the differentially expressed genes. Muscle biological
processes were associated with the origin genes of the differentially expressed circRNAs.
In addition, we randomly selected six overexpressed circRNAs and compared their levels in
longissimus dorsi tissue from Kazakh cattle and Xinjiang brown cattle using RT-qPCR.
Furthermore, we predicted 66 interactions among 65 circRNAs and 14 miRNAs using
miRanda and established a coexpression network. A few microRNAs known for their
involvement in myoblast regulation, such as miR-133b and miR-664a, were identified in
this network. Notably, bta_circ_03789_1 and bta_circ_05453_1 are potential miRNA
sponges that may regulate insulin-like growth factor 1 receptor (IGF1R) expression. These
findings provide an important reference for prospective investigations of the role of
circRNA in longissimus muscle growth and development. This study provides a theoretical
basis for targeting circRNAs to improve beef quality and taste.
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33 ABSTRACT

34 Xinjiang brown cattle have better meat quality than Kazakh cattle. Circular RNAs (circRNAs) 

35 are a type of RNA that can participate in the regulation of gene transcription. Whether circRNAs 

36 are differentially expressed in the longissimus dorsi between these two types of cattle and 

37 whether differentially expressed circRNAs regulate muscle formation and differentiation are still 

38 unknown. In this study, we established two RNA-seq libraries, each of which consisted of three 

39 samples. A total of 5177circRNAs were identified in longissimus dorsi samples from Kazakh 

40 cattle and Xinjiang brown cattle using the Illumina platform, 46 of which were differentially 

41 expressed. Fifty-five Gene Ontology (GO) terms were significantly enriched, and 12 Kyoto 

42 Encyclopedia of Genes and Genomes (KEGG) pathways were identified for the differentially 

43 expressed genes. Muscle biological processes were associated with the origin genes of the 

44 differentially expressed circRNAs. In addition, we randomly selected six overexpressed 

45 circRNAs and compared their levels in longissimus dorsi tissue from Kazakh cattle and Xinjiang 

46 brown cattle using RT-qPCR. Furthermore, we predicted 66 interactions among 65 circRNAs 

47 and 14 miRNAs using miRanda and established a coexpression network. A few microRNAs 

48 known for their involvement in myoblast regulation, such as miR-133b and miR-664a, were 

49 identified in this network. Notably, bta_circ_03789_1 and bta_circ_05453_1 are potential 

50 miRNA sponges that may regulate insulin-like growth factor 1 receptor (IGF1R) expression. 

51 These findings provide an important reference for prospective investigations of the role of 

52 circRNA in longissimus muscle growth and development. This study provides a theoretical basis 

53 for targeting circRNAs to improve beef quality and taste.

54 Keywords: circRNA, longissimus muscle, Kazakh cattle, Xinjiang brown cattle.

55

56

57

58

59

60

61

62

PeerJ reviewing PDF | (2019:10:42365:1:2:NEW 21 Jan 2020)

Manuscript to be reviewed



63

64

65 INTRODUCTION

66 Circular RNAs (circRNAs) are a newly discovered class of RNAs that exist in the form of 

67 unique covalent rings with no 5' caps or 3' tails (Memczak et al. 2013). CircRNAs are 

68 approximately 100 nucleotides (nt) in length. Because circRNAs usually have no poly-A tails, 

69 they exhibit greater stability and sequence conservation than normal linear RNA molecules 

70 (Junjie U Guo 2014). CircRNAs have many biological characteristics, such as extensive 

71 expression, tissue specificity, high conservation, and cell specificity. CircRNAs also have many 

72 regulatory functions, including interaction with RNA-binding proteins (RBPs) (Conn et al. 2015), 

73 regulation of parental gene transcription (Zhaoyong Li 2015), and sponging of microRNAs 

74 (miRNAs) (Hansen et al. 2013).

75 With improvements in living standards, Chinese residents have paid increasing attention to the 

76 quality of beef. Due to the limitations of Kazakh cattle, we introduced Swiss brown cattle into 

77 the lineage to form Xinjiang brown cattle. Fatty acid composition not only determines the 

78 toughness/fatness of adipose tissue and the oxidative stability of muscles but also affects the taste 

79 of meat and the color of muscle tissue (Wood et al. 2008). Li et al. (2017) studied circRNAs in 

80 the longissimus dorsi muscle of sheep before and after delivery using RNA-seq (Cabili et al. 

81 2015). Heumüller et al. (2019) revealed that circRNAs control the functions of vascular smooth 

82 muscle cells in mice (Heumüller AW 2019). Furthermore, circRNAs have recently been shown 

83 to play vital roles in cell proliferation, differentiation, autophagy and apoptosis during 

84 development. However, no report has described the association between muscle development 

85 and circRNA expression in Xinjiang brown cattle.

86 According to many studies, circRNAs function as miRNA sponges (Memczak et al. 2013).For 

87 example, CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7 to 

88 regulate IGF1R expression (Zeng et al. 2018). In addition, during osteogenesis, circUSP45 

89 inhibits glucocorticosteroid-induced femoral head necrosis by sponging miR-127-5p through the 

90 PTEN/AKT serine/threonine kinase 1 (AKT) signaling pathway (Kuang et al. 2019). Moreover, 

91 Circ-8073 regulates CEP55 expression by sponging miR-449a and promotes the proliferation of 

92 goat endometrial epithelial cells through a mechanism mediated by the PI3K/AKT/mTOR 

93 pathway (Liu et al. 2018). However, no study has constructed a circRNA-miRNA-mRNA 

94 regulatory network for Xinjiang brown cattle.

95 In this study, we systematically investigated the circRNA levels in longissimus dorsi tissue from 

96 Kazakh cattle and Xinjiang brown cattle using RNA-seq. In addition, we predicted the 

97 interactions between miRNAs and circRNAs. Our findings will provide a meaningful resource 

98 for more profound investigations of the regulatory functions of circRNAs in cattle and will 

99 contribute to a better understanding of muscle growth and development in mammals.

100
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101 MATERIAL AND METHODS

102 Ethics statement

103 This experiment was performed in strict accordance with the guiding principles of the guidelines 

104 for the care and use of experimental animals at Jilin University. All experimental programs were 

105 approved by the Animal Care and Use Committee of Jilin University (license number: 

106 201809041).

107 Animal and tissue preparation

108 Kazakh cattle and Xinjiang brown cattle were provided by the Xinjiang Yili Yixin Cattle and 

109 Sheep Breeding Cooperative. After cattle were slaughtered in accordance with the procedure of 

110 the slaughterhouse, and the longissimus muscle was collected at the slaughter line. We tested 6 

111 longissimus dorsi:3 from Kazakh cattle and 3 from Xinjiang brown cattle. We chose 30-month-

112 old adult bullocks weighing approximately 600 kg. All of the samples were immediately snap-

113 frozen in liquid nitrogen and stored at −80 °C until RNA extraction.

114 Hematoxylin-eosin staining

115 Histological observations were performed using conventional histological methods after 

116 preparing longissimus dorsi muscle tissues from Kazakh cattle and Xinjiang brown cattle that 

117 had been preserved with 4% paraformaldehyde for 72 h. Hematoxylin-eosin staining was 

118 performed (Guardiola et al. 2017). The morphology of the muscle tissue was observed using a 

119 fluorescence microscope (Olympus, Japan).

120 Total RNA isolation

121 Total RNA was extracted from each group (the Kazakh cattle group and the Xinjiang brown 

122 cattle group) using TRIzol (Invitrogen, NY, USA). A NanoDrop 2000 spectrophotometer 

123 (Thermo, USA) was used to evaluate the concentrations and quality of the RNA, and agarose gel 

124 electrophoresis was used to evaluate the integrity of the RNA (Fu et al. 2018).

125 RNA library construction

126 Equal amounts of RNA (1 μg of RNA) from each sample were used to construct the circRNA 

127 libraries. The mRNA was enriched with magnetic mRNA Capture Beads, purified using DNA 

128 Clean Beads and fragmented (with the addition of First-Strand Synthesis Reaction Buffer and 

129 random primers).Different index tags were selected for library construction in 

130 accordance with the instructions of the NEBNext® Ultra™ RNA Library Prep Kit for the 

131 Illumina platform (NEB, Ipswich, MA, USA) (Pang et al. 2019). The RNA was cut into short 

132 fragments by adding fragmentation buffer to the reaction system. Six-base random primers 

133 (random hexamers) were added to synthesize the first strand of the cDNA, and buffers, dNTPs, 

134 RNase H and DNA polymerase I were added to synthesize the second strand of the cDNA. The 

135 double-stranded cDNA products were purified. End Repair Reaction Buffer and End Repair 

136 Enzyme Mix were added to the purified products, and the tubes were placed in a PCR instrument 

137 to perform the reactions (Xia et al. 2017). We conducted paired-end sequencing with a read 

138 length of 150 bp. The different libraries were sequenced with an Illumina NovaSeq 6000 
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139 platform by BioMarker Technologies (Beijing, China) based on the target machine data.

140 Sequencing quality control

141 The obtained raw data containing linker sequences and low-quality sequences were subjected to 

142 quality control protocols to ensure accurate analysis. Processing of the data produced high-

143 quality sequences (clean reads). We removed the reads containing linker sequences and the low-

144 quality reads to ensure data quality. We also deleted sequences with >5% N bases (uncertain 

145 bases).The clean data were aligned with the specified reference genome to obtain mapped data. 

146 The Q30 value was used as the standard for testing the quality of our library (Zhang et al. 2019a).

147 Identification of circRNAs

148 CircRNAs were predicted with the CIRI and find_circ software packages (Zhang et al. 2019b). 

149 The circBase database includes circRNA sequences from five organisms: humans, mice, 

150 coelacanths, fruit flies and nematodes. Since the experimental samples were derived from cattle, 

151 we predicted the circRNAs using CIRI software (Gao et al. 2015). In addition, find_circ was 

152 used since the circRNA loci were not able to be directly aligned with the genome; find_circ 

153 anchors independent reads with the 20 base pairs at the end that are incompatible with the 

154 genome to match the reference genome with only matching sites (Memczak et al. 2013). We 

155 downloaded the Bos taurus reference genome from the Ensembl genome browser 

156 (http://www.ensembl.org/Bos_taurus/Info/Index)(Zhou et al. 2015). If the two anchors were 

157 aligned in reverse directions in the linear region, the anchor reads were extended until a circRNA 

158 link was detected. This sequence was considered the circRNA sequence.

159 Differential expression analysis

160 The circRNA expression in each sample was determined and is presented as the number of 

161 transcripts per million kilobases (TPM) (Zhou et al. 2010). The differential expression of 

162 circRNAs was analyzed with DEseq (Bao et al. 2019; Love et al. 2014). In the differential 

163 expression analysis, a fold change(FC)≥1.5 served as the screening criterion. The FC indicates 

164 the ratio of the expression levels between two samples (groups). As an independent statistical 

165 hypothesis test for circRNA expression levels, the differential expression analysis of circRNAs 

166 tended to produce false positive results. Therefore, in this study, the Benjamini-Hochberg 

167 correction was used. The original P-values were analyzed, and false discovery rates (FDRs) were 

168 used as the pivotal indicators to screen differentially expressed circRNAs.

169 Target site prediction and functional enrichment analysis

170 A circRNA-miRNA-mRNA coexpression network was established according to the miRNA 

171 binding sites predicted by miRanda (http://www.microrna.org/microrna/home.do) (Betel et al. 

172 2010; Liu et al. 2019). TargetScan was used to predict the binding sites for miRNAs in mRNAs 

173 (Agarwal et al. 2015). According to the mapped data, the high-quality sequencing results were 

174 subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) circRNA analysis, circRNA 

175 binding site analysis, circRNA gene analysis, differential circRNA expression analysis, and Gene 

176 Ontology (GO) circRNA gene analysis. After the circRNA mapping and miRanda analyses, the 

177 names of the circRNA target genes were subjected to GO analysis using the topGO R packages 
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178 (Fedorova et al. 2019). KEGG enrichment was performed using KOBAS software to analyze the 

179 circRNA target genes (Mao et al. 2005; Xie et al. 2011). GO terms and KEGG pathways for 

180 which P<0.05 were considered significantly enriched.

181 Quantitative real-time PCR (RT-qPCR) analysis of circRNAs

182 To further detect the differentially expressed circRNAs between the treatment groups, SuperReal 

183 PreMix Plus (SYBR Green) (Tiangen, China) was used to perform RT-qPCR according to the 

184 manufacturer’s instructions(Fu et al. 2018; Han et al. 2019). The levels of the circRNAs were 

185 determined relative to the expression levels of β-actin. RT-qPCR was performed using the 

186 following reaction system: 10 μL of 1× SYBR Premix DimerEraser, 1 μL of cDNA, 0.5 μL of 

187 upstream and downstream primers, and 8 μL of ddH2O without RNase. The results were 

188 normalized to β-actin expression. The relative expression levels of the circRNAs were 

189 determined with the 2-ΔΔCT method based on the cycle threshold (Ct) values (Supplementary 

190 Table S1).

191 Statistical analysis

192 The data are presented as the mean ± SD from three independent experiments in RT-qPCR 

193 analysis. The data were analyzed with SPSS 23.0 software. One-way ANOVA was used to 

194 determine the significance of differences, and P<0.05 was considered to indicate a significant 

195 difference.

196

197 RESULTS

198 Morphology of the longissimus dorsi in Kazakh cattle and Xinjiang brown cattle

199 Compared with Kazakh cattle, Xinjiang brown cattle exhibited dramatic differences in 

200 longissimus dorsi morphology (Fig. 1A and1B). We compared the number, area, diameter and 

201 density of muscle fibers in the longissimus dorsi between these breeds and found a greater 

202 number of muscle fibers in Kazakh cattle tissue than in Xinjiang brown cattle tissue. However, 

203 the area and diameter of muscle fibers in Kazakh cattle were smaller than those in Xinjiang 

204 brown cattle. No difference in the density of muscle fibers was observed between Kazakh cattle 

205 and Xinjiang brown cattle (Fig. 1C).

206

207 Overview of circRNA sequencing data

208 We established two RNA-seq libraries. The libraries were sequenced with an Illumina 

209 NovaSeq6000 platform and then subjected to a rigorous filtering pipeline (Fig. 2A). Before 

210 circRNA identification, quality control was carried out by calculating the Q30 value and the GC 

211 content (Supplementary Table S2). Ultimately, we obtained 5177 circRNAs from the RNA-seq 

212 data. We detected 22677 genes and 929 differentially expressed genes. Among the differentially 

213 expressed genes, 471 genes were upregulated, and 458 genes were downregulated. Moreover, the 

214 5177 circRNAs were distributed on 29 autosomes and the X chromosome. Chromosome 11 

215 contained the most circRNAs, and chromosome 23 contained the fewest circRNAs (Fig. 2B). 

216 Next, we analyzed the genomic origins of the expressed circRNAs. Notably, 69.6% of the 
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217 circRNAs were derived from protein-coding exon sequences. Approximately 9.1% and 21.3% of 

218 the circRNAs were derived from intronic regions and intergenic regions, respectively (Fig. 2C). 

219 The sizes of the circRNA candidates ranged from 80 nt to >2000 nt, but the lengths of most of 

220 the candidates were between 200 nt and 600 nt. Approximately 74.85% of the circRNAs had a 

221 predicted spliced length of less than 2000 nt, whereas circRNAs with lengths greater than 2000 

222 nt accounted for 25.15% of the circRNAs (Fig. 2D).

223

224 Identification of differentially expressed circRNAs

225 A volcano plot was constructed to display the relation between the FDR and the FC values for 

226 the levels of all circRNAs and thus to quickly reveal the differences in circRNA expression 

227 patterns (and their statistical significance) between the two libraries (Fig. 3A). An MA map was 

228 constructed to display the overall distribution of the expression levels and the FCs in circRNA 

229 expression between the two libraries (Fig. 3B). We identified 46 circRNAs that were 

230 differentially expressed in the longissimus dorsi muscle between Kazakh cattle and Xinjiang 

231 brown cattle (Supplementary Table S3). The differentially expressed circRNAs included 26 

232 upregulated and 20 downregulated circRNAs in Xinjiang brown cattle compared to Kazakh 

233 cattle. We examined the expression patterns of the differentially expressed circRNAs using a 

234 systematic cluster analysis to explore the similarities and differences between Kazakh cattle and 

235 Xinjiang brown cattle (Fig. 3C).

236

237 Enrichment of the differentially expressed circRNAs

238 GO and KEGG pathway enrichment analyses were conducted to analyze the enriched terms and 

239 pathways associated with the differentially expressed circRNAs. GO annotation was performed 

240 to obtain information about the functions of the differentially expressed circRNAs. The genes 

241 generating the circRNAs were annotated in three GO categories: molecular function, cellular 

242 component, and biological process. According to the GO analysis,55 GO terms were 

243 significantly enriched and were mainly associated with the cell part(GO: 0044464), binding(GO: 

244 005488) and cellular process(GO: 0009987) terms (Supplementary Table S4). Fig. 4 shows the 

245 GO annotations for the upregulated and downregulated mRNAs in the cellular component, 

246 biological process and molecular function categories. In addition, 12 KEGG pathways contained 

247 differentially expressed genes, including mTOR signaling pathways, TGF-beta signaling 

248 pathways, and Hippo signaling pathways (Supplementary Table S5). Thus, the differentially 

249 expressed circRNAs might function as important regulators of muscle growth and development.

250

251 CircRNA-miRNA-mRNA network

252 CircRNAs can act as competing endogenous RNAs (ceRNAs) by functioning as miRNA sponges; 

253 therefore, we searched the sequences of the differentially expressed circRNAs and established an 

254 interactive network map. We predicted 14 miRNAs that may target the 3’ untranslated region 

255 (UTR) of IGF1R. We predicted the interactions between circRNAs and miRNAs with miRanda 

256 to further analyze the functions of the circRNAs. Then, we established the interactive network 

257 map; the network included 66 relationships in which 65 circRNAs interacted with 14 miRNAs 
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258 (Fig. 5 and Supplementary Table S6). We focused on some extensively studied miRNAs in the 

259 network that play crucial roles in muscle growth and development, such as miR-664a and miR-

260 133b. Using the miRNAs that were closely associated with muscle growth and development, we 

261 identified relevant candidate circRNAs that may also be involved in these processes.

262

263 Validation of highly expressed circRNAs and two key circRNAs

264 We randomly selected 6 circRNA candidates and designed primers spanning the junction areas 

265 to confirm the reproducibility of the circRNA data acquired from RNA-seq analysis. The 6 

266 differentially expressed circRNAs between the two RNA-seq libraries included three upregulated 

267 circRNAs (bta_circ_06771_2, bta_circ_19409_2 and bta_circ_12705_1) and three 

268 downregulated circRNAs (bta_circ_01274_2, bta_circ_11905_4 and bta_circ_06819_5). The 

269 results were highly consistent with the RNA-seq results (Fig. 6A). Moreover, we detected the 

270 expression of bta_circ_03789_1 and bta_circ_05453_1 in longissimus dorsi from Kazakh cattle 

271 and Xinjiang brown cattle, and the results indicated that both circRNAs were upregulated in 

272 Xinjiang brown cattle compared to Kazakh cattle. Based on these results, the trends in the 

273 expression of the two circRNAs were consistent with the expression of IGF1R mRNA(Fig. 6B-

274 D). Therefore, bta_circ_03789_1 and bta_circ_05453_1 may be miRNA sponges that regulate 

275 the IGF1Rgene and further affect the regulation of related factors in the longissimus dorsi muscle 

276 in cattle.

277

278 DISCUSSION

279 Beef quality has become increasingly important with improvements in living standards. Notably, 

280 Nolte et al. identified a biological network of lncRNAs associated with metabolic efficiency 

281 in cattle (Nolte et al. 2019). In addition, Ma et al. have proposed that IGF1R copy number 

282 variation (CNV) is a molecular marker that can be used to improve the production of beef 

283 during cattle breeding (Ma et al. 2019). Apaoblaza et al. compared the muscle energy of grass-

284 fed and grain-fed cattle and found that grass-fed beef had higher levels of enzymes reflective of 

285 oxidative metabolism (Apaoblaza et al. 2019). Furthermore, Low expression of MyHC-IIa has 

286 been observed in tough meat relative to tender meat, and MyHC-IIa is considered to be a 

287 biomarker of meat quality (Chardulo et al. 2019). Zhang et al. (2018) evaluated the kinetics of 

288 circRNA expression in C2C12 myoblasts using RNA-seq data (Zhang et al. 2018).Similarly, Cao 

289 et al.(2018) investigated the expression profiles of circRNAs in sheep striated skeletal muscle 

290 (Cao et al. 2018). However, no report has described the association between muscle development 

291 and circRNA expression in Xinjiang brown cattle.

292 CircRNAs, which area newly discovered type of RNA, form covalently closed continuous rings 

293 and are expressed at high levels in eukaryotic transcriptomes (Qu et al. 2015). CircRNAs have 

294 been reported to be relevant to cardiovascular diseases(Fan et al. 2017), cell senescence (Cai et al. 

295 2019), diabetes (Tian et al. 2018), regenerative medicine (Cao RY 2018)and cancer (He et al. 

296 2017). However, no studies have examined the expression of circRNAs associated with muscle 

297 development in Xinjiang brown cattle. In this study, we identified 5177 circRNAs in longissimus 
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298 dorsi tissuesfrom Kazakh cattle and Xinjiang brown cattle using RNA-seq data. We identified 46 

299 circRNAs that were differentially expressed in the longissimus dorsi muscle between these two 

300 breeds. Furthermore, we identified 55 significant GO terms and 12 meaningful KEGG pathways. 

301 The KEGG pathways were associated with mTOR signaling pathways, TGF-beta signaling 

302 pathways, and Hippo signaling pathways. Compared to Kazakh cattle, Xinjiang brown cattle 

303 have strong adaptability and disease resistance and excellent meat quality (Agarwal et al. 

304 2015).Whether the identified differentially expressed circRNAs affect muscle generation and 

305 differentiation via the identified signaling pathways will be the focus of our next study. Many 

306 studies have reported that circRNAs act via related pathways to affect the development and 

307 production of muscle. As shown in a study by Jinet al. (2017), Lnc133b functions as a molecular 

308 sponge of miR-133b to regulate the expression of IGF1R, promoting satellite cell proliferation 

309 and repressing cell differentiation (Jin et al. 2017).

310 CircRNAs and mRNAs have similar sequences that are bound by the same miRNAs. When 

311 bound by miRNAs, upregulated circRNAs serve as ceRNAs that prevent the miRNAs from 

312 binding to their mRNA targets and thus promote the expression of mRNAs at the 

313 posttranscriptional level. In this study, we predicted 66 interactions among circRNAs and 

314 miRNAs in longissimus dorsi muscle from Kazakh cattle and Xinjiang brown cattle. Among the 

315 interacting molecules, bta_circ_03789_1 and bta_circ_05453_1 were differentially expressed 

316 circRNAs that were determined to act as sponges; bta_circ_03789_1 was predicted to sponge 

317 miR-664a, while bta_circ_05453_1 was predicted to sponge both miR-7. Some research has 

318 shown that miR-664 promotes myoblast proliferation and inhibits myoblast differentiation by 

319 targeting SRF and Wnt1 (Cai R1 2018 ). Differential expression of miR-7 has been observed in 

320 myoblasts from subjects with facioscapulohumeral muscular dystrophy and in control 

321 primary myoblasts (Dmitriev et al. 2013). In this study, we created a catalog of circRNAs 

322 expressed in the longissimus dorsi and identified differentially expressed circRNAs between 

323 Kazakh cattle and Xinjiang brown cattle. Furthermore, we predicted two circRNAs that function 

324 as miRNA sponges and potentially regulate the expression of the IGF1R gene to subsequently 

325 regulate muscle growth and development. Our study provides an important resource for 

326 understanding circRNA biology in the contexts of genetics and breeding and provides insights 

327 into the functions of circRNAs in muscle.

328 CONCLUSION

329 These data jointly reveal significant differences in the expression of circRNAs in the longissimus 

330 dorsi between Kazakh cattle and Xinjiang brown cattle. In the future, we will study how the 

331 differentially expressed circRNAs regulate muscle growth and development. Our findings will 

332 provide a meaningful resource for more profound investigations of the regulatory functions of 

333 circRNAs in cattle longissimus muscle growth and development. This study provides a 

334 theoretical basis for targeting circRNAs to improve beef quality and taste.

335
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336 Figure legends

337 Figure 1 The morphology of the longissimus dorsi differed between Kazakh cattle and 

338 Xinjiang brown cattle. (A) and (B) Tissue morphology of the longissimus muscle in Kazakh 

339 cattle and Xinjiang brown cattle, respectively. (C) Comparisons of the number, area, diameter 

340 and density of muscle fibers in the longissimus dorsi between Kazakh cattle and Xinjiang brown 

341 cattle.

342 Figure 2 Deep sequencing of circRNAs in Kazakh cattle and Xinjiang brown cattle. (A) 

343 Distribution of the circRNAs on the cattle chromosomes. (B) Distributions of the sequence 

344 lengths of the circRNAs.

345 Figure 3 Differentially expressed circRNAs were identified. (A) The volcano plot and (B) the 

346 MA map show the circRNAs that were differentially expressed in the longissimus muscle 

347 between Kazakh cattle and Xinjiang brown cattle. The red dots indicate upregulated genes, while 

348 the green dots indicate downregulated genes. (C) Analysis of the expression patterns of the 

349 differentially expressed circRNAs. The highest to lowest fold changes are indicated with a color 

350 code ranging from red to green, respectively.

351 Figure 4KEGG and GO enrichment analyses of target genes in muscle tissue. (A) Scatter 

352 plot of the enriched KEGG pathways for the differentially expressed circRNA cistarget genes. (B) 

353 Diagram of the GO annotations for the differentially expressedcircRNA target genes. The 

354 abscissa indicates the GO classification, the left ordinate indicates the percentage of all circRNA 

355 target genes, and the right ordinate indicates the number of circRNA target genes.

356 Figure 5Network of interactions between circRNAs and miRNAs based on the miRanda 

357 program. The triangles represent the circRNAs, and the oval shape represents the miRNAs. The 

358 pink color indicates the components that are positively regulated in the longissimus dorsi muscle 

359 in Kazakh cattle and Xinjiang brown cattle, and the blue color indicates the components that are 

360 negatively regulated.

361 Figure 6Validation of highly expressed circRNAs and two pivotal circRNAs. (A) Expression 

362 of negatively regulated and positively regulated circRNAs in the longissimus dorsi muscle in 

363 Kazakh cattle and Xinjiang brown cattle. (B-D) Expression levels of IGF1R, circ_03789_1 and 

364 circ_05453_1 in the longissimus dorsi muscle in Kazakh cattle and Xinjiang brown cattle. All 

365 experiments were repeated more than three times. The data are presented as the means±SDs. 

366 Statistical significance was analyzed using one-way ANOVA, and P<0.05 was considered to 

367 indicate significance.

368

369

370 Supplemental Information

371 Table S1. Primers used for RT-qPCR.

372 Table S2. Summary of the circRNAs identified based on the sequencing data.
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373 Table S3. Differentially expressed circRNAs.

374 Table S4. Significantly enriched GO terms.

375 Table S5. Significantly enriched KEGG pathways.

376 Table S6. CircRNA-miRNA coexpression network.
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Figure 1
The morphology of the longissimus dorsi differed between Kazakh cattle and Xinjiang
brown cattle.
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Figure 2
Deep sequencing of circRNAs in Kazakh cattle and Xinjiang brown cattle.
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Figure 3
Differentially expressed circRNAs were identified.
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Figure 4
KEGG and GO enrichment analyses of target genes in muscle tissue.
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Figure 5
Network of interactions between circRNAs and miRNAs based on the miRanda program.
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Figure 6
Validation of highly expressed circRNAs and two pivotal circRNAs.
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