
Submitted 7 January 2015
Accepted 8 March 2015
Published 26 March 2015

Corresponding author
Dan A. Smale, dansma@mba.ac.uk

Academic editor
Sadasivam Kaushik

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj.863

Copyright
2015 Smale et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Disentangling the impacts of heat wave
magnitude, duration and timing on the
structure and diversity of sessile marine
assemblages
Dan A. Smale1, Anna L.E. Yunnie1, Thomas Vance2 and
Stephen Widdicombe3

1 Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth,
UK

2 PML Applications Ltd, Prospect Place, Plymouth, UK
3 Plymouth Marine Laboratory, Prospect Place, Plymouth, UK

ABSTRACT
Extreme climatic events, including heat waves (HWs) and severe storms, influence
the structure of marine and terrestrial ecosystems. Despite growing consensus that
anthropogenic climate change will increase the frequency, duration and magnitude of
extreme events, current understanding of their impact on communities and ecosys-
tems is limited. Here, we used sessile invertebrates on settlement panels as model
assemblages to examine the influence of HW magnitude, duration and timing on
marine biodiversity patterns. Settlement panels were deployed in a marina in south-
west UK for ≥5 weeks, to allow sufficient time for colonisation and development
of sessile fauna, before being subjected to simulated HWs in a mesocosm facility.
Replicate panel assemblages were held at ambient sea temperature (∼17 ◦C), or
+3 ◦C or +5 ◦C for a period of 1 or 2 weeks, before being returned to the marina for
a recovery phase of 2–3 weeks. The 10-week experiment was repeated 3 times, stag-
gered throughout summer, to examine the influence of HW timing on community
impacts. Contrary to our expectations, the warming events had no clear, consistent
impacts on the abundance of species or the structure of sessile assemblages. With
the exception of 1 high-magnitude long-duration HW event, warming did not alter
not assemblage structure, favour non-native species, nor lead to changes in richness,
abundance or biomass of sessile faunal assemblages. The observed lack of effect
may have been caused by a combination of (1) the use of relatively low magnitude,
realistic heat wave treatments compared to previous studies (2), the greater resilience
of mature adult sessile fauna compared to recruits and juveniles, and (3) the high
thermal tolerance of the model organisms (i.e., temperate fouling species, principally
bryozoans and ascidians). Our study demonstrates the importance of using realistic
treatments when manipulating climate change variables, and also suggests that
biogeographical context may influence community-level responses to short-term
warming events, which are predicted to increase in severity in the future.
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INTRODUCTION
Ecosystems the world over have responded to climate change, with major implications

for humanity’s use of ecological goods and services (Rosenzweig et al., 2008; IPCC,

2014). Links between a changing climate and shifts in species distributions and the

structure of communities and ecosystems have been documented convincingly for many

taxa across many regions (Parmesan & Yohe, 2003; Wernberg et al., 2011; Pinsky et al.,

2013; Poloczanska et al., 2013). In conjunction with gradual warming trends, discrete

extreme climatic events are increasing in frequency and intensity as a consequence of

anthropogenic climate change (IPCC, 2012; Coumou, Robinson & Rahmstorf, 2013). As

such, understanding and predicting biological responses to ‘events’, rather than ‘trends’,

is becoming increasingly important, although event-based research still lags behind

trend-based work (Jentsch, Kreyling & Beierkuhnlein, 2007; Thompson et al., 2013). It is

clear that discrete climatic events can drive step-wise changes in species’ distributions

and, ultimately, ecosystem structure and functioning. Storms, floods and heat waves,

for example, can have catastrophic effects on both marine and terrestrial ecosystems

(Jentsch, Kreyling & Beierkuhnlein, 2007; IPCC, 2012), with substantial socio-economic

ramifications.

Despite growing appreciation of the importance of extreme events in determining

ecosystem structure (Jentsch, Kreyling & Beierkuhnlein, 2007; Thompson et al., 2013),

the vast majority of knowledge stems from terrestrial research, even though marine

ecosystems provide myriad of ecological goods and services, including nutrient cycling,

provision of food and other resources, biogenic coastal defence and climate regulation.

Marine ecosystems, like their terrestrial counterparts, are affected by extreme climatic

events, including heat waves (Garrabou et al., 2009; Wernberg et al., 2013), cold snaps

(Firth, Knights & Bell, 2011), storms (Dayton & Tegner, 1984; De’ath et al., 2012) and

floods (Fabricius et al., 2014), which are driven by complex oceanographic processes such

as ENSO, as well as interactions across the air-sea and land-sea interfaces. In shallow

marine habitats, the number of days of anomalously high seawater temperatures has

increased along 30% of the world’s coastlines in the last 30 years (Lima & Wethey,

2012). The recent European heat waves (‘HWs’) of 2003 and 2006, for example, induced

widespread mortality, shifts in species’ distributions and declines in local biodiversity

in the Mediterranean Sea (Garrabou et al., 2009; Lejeusne et al., 2009; Marba & Duarte,

2010). Similarly, a record-breaking marine HW in the southeast Indian Ocean in 2011

caused major alterations to the structure of benthic ecosystems and loss of habitat-forming

species along the west Australian coastline (Moore et al., 2012; Smale & Wernberg, 2013;

Wernberg et al., 2013). Prolonged periods of extremely high seawater temperatures

affect processes across all biological scales, from genes (Bergmann et al., 2010) to whole

organisms (Diaz-Almela, Marba & Duarte, 2007) to ecosystems (Wernberg et al., 2013).

There is a pressing need to understand how marine HWs affect the ecological

performance of benthic marine organisms and how climate variability influences species

interactions and community dynamics (Thompson et al., 2013). Few studies have simulated

short-term climate variability in marine environments (but see Smale et al., 2011;
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Kim & Micheli, 2013; Kordas et al., in press) and even fewer have disentangled mean effects

of climate variables from increased variability (but see Benedetti-Cecchi et al., 2006). More

generally, experiments in marine climate change ecology have tended to focus on a few

species in isolation, most often within a laboratory setting, rather than on suites of multiple

species interacting with each other and the natural environment (Wernberg, Smale &

Thomsen, 2012). Understanding how temperature variability, in conjunction with mean

increases in temperature, will affect species interactions and community dynamics will

improve our ability to predict, and plan for, ecological responses to climate change (Kordas,

Harley & O’Connor, 2011; Wernberg, Smale & Thomsen, 2012).

Sessile marine assemblages (i.e., marine organisms attached to hard substrata) have

proved useful experimental models for investigating the relative importance of both

physical (Piola & Johnston, 2008) and biological processes (Smale, 2013). Within the

context of marine climate change, several studies have manipulated temperature on or

around settlement panels colonised by sessile marine invertebrates, to examine their

response to warming (Sorte, Fuller & Bracken, 2010; Smale et al., 2011; Kim & Micheli,

2013; Kordas et al., in press). Here we developed this approach further by conducting the

most complex warming experiment to date, whereby 3 key properties of marine HWs

(magnitude, duration and timing) were manipulated and mature sessile invertebrate

assemblages were subjected to realistic HW simulations. Based on existing knowledge

we proposed and tested the following hypotheses: (1) high magnitude, long duration

HWs will be detrimental to some marine taxa and cause shifts in community structure

(Garrabou et al., 2009; Wernberg et al., 2013); (2) high magnitude, long duration HWs will

be less detrimental (and perhaps beneficial) to non-native species compared with native

species, as non-native species often exhibit wide thermal tolerances and high resilience to

environmental stress (Stachowicz et al., 2002; Sorte, Fuller & Bracken, 2010; Sorte, Williams

& Zerebecki, 2010; Diez et al., 2012), and; (3) these patterns will be broadly consistent

across different HWs that occur during seasonal thermal maxima (i.e., during summer,

HW ‘timing’ will be less important than HW magnitude and duration).

MATERIAL AND METHODS
Study site and sessile assemblages
Experimental assemblages were grown under natural conditions on panels deployed

at Torquay Marina, southwest U.K. (50◦27′31.44′′N, 3◦31′45.20′′W). The study site

is relatively unimpacted by freshening events and supports a high abundance and

diversity of sessile invertebrate fauna. Submerged hard surfaces are colonised by a rich

marine fauna, dominated by ascidians (e.g., Ciona intestinalis, Diplosoma listerianum,

Botryllus schlosseri), bryozoans (e.g., Electra pilosa, Cryptosula pallasina) and polychaetes

(e.g., Spirobranchus sp.). Filamentous algae and macroalgae are also common on vertical

and upward-facing surfaces that receive sufficient light. Several non-native species have

also been recorded at the study site (e.g., the bryozoans Watersipora subtorquata and

Bugula neritina, the ascidians Asterocarpa humilus and Corella eumyota).
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Figure 1 Heat wave simulations and experimental design. Experimental design and temperature treat-
ments. (A) Coloured bars show timings and durations of experimental phases within each HW Timing.
For each Timing, a set of Field Controls (FC) remained in situ. (B) Time series indicating sea temperature
at the study site (daily means are based on 72 records per day, taken every 20 min; monthly mean
generated from daily temperatures recorded over 3 preceding years), as well as mean daily temperatures
(n = 5 mesocosm tanks ± SD) for each HW Magnitude treatment during the experimental period.

Experimental design
The experiment comprised of 3 phases; (1) a ‘colonisation’ phase in the field, (2) an

‘experimental’ phase within mesocosms of either 1 or 2 weeks in duration and (3) a final

‘recovery’ phase in the field (Fig. 1). The experiment was initiated at 3 different times

throughout the summer of 2013 to investigate the effects of HW timing on ecological

responses. For Phase 1, 36 settlement panels (20 × 20 cm, constructed from black

double-skinned sheets of polypropylene, ‘Correx’) were attached to a fibreglass reinforced

plastic (FRP) grid in 6 rows of 6 panels (Fig. S1). The FRP grid (L = 148 cm, W = 121 cm,

D = 2.5 cm) was suspended horizontally at a depth of 1.5 m directly beneath a pontoon

near to the seaward entrance of the marina. Panels were faced down towards the seabed in

order to reduce light and sedimentation levels and therefore select for sessile fauna (rather

than algae). Faunal assemblages were targeted because they are relatively well known
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(in terms of both taxonomy and species-specific physiology), often comprise multiple

non-native species, and are relatively speciose. After a colonisation phase of ∼6 weeks,

30 panels were transported in cool boxes to the mesocosm facility at Plymouth Marine

Laboratory (PML) within 1 h. Six panels were selected at random to remain on the grid

throughout the experiment to serve as field-based controls. Seawater temperature at the

study site was continuously monitored (every 20 min) with a ‘Hobo’ temperature logger

attached to the experimental grids.

Within the mesocosm facility, 15 × 1 tonne capacity tanks were employed for Phase

2 (Fig. S1). Each tank held 0.58 m3 of freshly collected seawater which was constantly

circulated using a peristaltic pump (Sci-Q 323; Walston Marlow Bredel, Falmouth, UK)

and aerated by 2 air stones. Tanks were randomly assigned to one of 3 HW Magnitude

treatments; 5 control tanks (hereafter ‘C’) were maintained at ambient sea temperature at

the collection site (∼16.0 ◦C), 5 tanks were maintained at 3 ◦C above ambient (hereafter

‘T1’) and 5 tanks were maintained at 5 ◦C above ambient (hereafter ‘T2’). Temperatures

in the control tanks were maintained through equilibration with air temperature within

the mesocosm facility, which was controlled with a Refrigerating Heat Pump unit (Bartlett

Refrigeration Limited, Exeter, UK). Temperatures in the treatment tanks were elevated

and maintained using aquarium heaters (AquaVital 300W submersible heater thermostat)

and electrical timers (Fig. 1). HW Magnitudes were representative of actual short-term

seawater warming anomalies recorded in marine habitats (e.g., Jones, Berkelmans & Oliver,

1997; Garrabou et al., 2009; Wernberg et al., 2013). Two panels were selected at random and

allocated to each tank, 1 for a 1 week HW duration and the other for a 2 week duration

treatment (see below). Panels were held horizontally in the tanks, facing downwards, by

attachment to a 1 m2 suspended plastic mesh.

Throughout the experimental phase, ‘Hobo’ loggers were deployed in each tank to

record temperature every 15 min, and salinity and temperature were manually recorded 3

times per week and adjustments made as necessary. Approximately 0.2 tonnes of seawater

per tank (i.e., 1/3 of the total volume) was replaced each week. Natural light regime was

approximated using daylight simulation lights within the mesocosm with an average 12-h

photoperiod per day. Throughout Phase 2, panel assemblages were fed to satiation (as

indicated by continuous faecal production and replete ascidian intestines) through the ad-

dition of an algal cell suspension (800 ml per tank, three times per week). The suspension

comprised a mix of the unicellular algae Isochrysis galbana, Tetraselmis suecica and Rhi-

nomonas reticulata (cultured at PML) in seawater, with an average cell density of ∼5 × 106.

Following a 1 week HW duration, 15 panels (i.e., 1 panel per tank) were returned to

their original grid in Torquay Marina for a recovery period (Phase 3). After a further week,

the remaining 15 panels were also returned to their original grid (Fig. 1). Following a

recovery period of ∼3 weeks for the 1-week HW duration and ∼2 weeks for the 2-week

HW duration panels, all panels were harvested and preserved in 80% IMS for subsequent

scoring and analysis (see below). The entire 10-week experiment (Phase 1–3) was repeated

3 times, with each experimental HW ‘Timing’ commencing ∼2 weeks apart (from May
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25th until June 21st), so that the timing of the simulated warming events was staggered

throughout the summer (Fig. 1).

Panel analysis
Panel assemblages were quantified at the end of Phase 1, 2 and 3. Panels were removed

from the mesocosm tanks (Phase 1 and 2) or IMS containers (Phase 3) and submerged in

a shallow Pyrex dish of seawater/IMS for examination under a dissecting light microscope.

A wire mesh overlay, which projected 121 small squares (∼1.3 × 1.3 cm) for scoring, was

used to analyse the inner 15 × 15 cm portion of each panel (the peripheral 2.5 cm was not

scored to account for edge effects). Sessile organisms were identified to as high a taxonomic

level as possible, always to genus and predominantly to species, and quantified by scoring

every individual (solitary taxa) or colony (colonial taxa) occurring in each sub-sampled

square of the scoring area. Any individual or colony occupying more than one square was

scored multiple times accordingly, thereby generating an abundance score weighted by spa-

tial coverage. Colonies or individuals that were heavily overgrown and clearly smothered

by other encrusting taxa were assumed to be non-functional and were not counted. After

the final analysis (Phase 3), all sessile fauna was scraped from the panel, dried at >60 ◦C for

48 h and then weighed to determine the total dry biomass of each panel.

Statistical analysis
Data were analysed as 2 independent experiments based on HW duration (i.e., 1 and 2

week exposures), as direct comparisons were not appropriate due to potential confounding

effects of total time spent in the mesocosms and in recovery (Phase 3). Instead, the effects

of HW Magnitude were examined for each dataset separately before making qualitative

comparisons of their relative effects between the 1 and 2 week HW durations. Initially,

patterns in assemblage structure at the end of the experiment (i.e., after the Phase 3) were

compared between the HW Magnitude treatments (i.e., control, T1, T2 and field controls)

for each HW Timing (i.e., Timing 1, 2 and 3). A Bray-Curtis similarity matrix based on

square-root transformed abundance data was used to construct Principal Coordinate

Analysis (PCO) plots. Permutational multivariate analysis of variance (PERMANOVA)

was used to examine differences between treatments, by employing a 2-way crossed

design with HW Magnitude and Timing as fixed factors. Tests used 4,999 permutations

under a reduced model, with significance accepted at P < 0.05. In addition, variability in

assemblage level metrics (i.e., total abundance, species richness, total biomass) at the end

of the experiment was examined with univariate permutational ANOVA (using the same

model described above but with similarity matrices based on Euclidean distances).

As panel assemblage structure was highly variable after the colonisation stage (Phase 1),

further analyses were conducted on relative changes in assemblage structure, in addition

to absolute assemblage structure at the end of the experiment. Here, the percent cover

of each taxa at the end of the colonisation phase (Phase 1) was subtracted from the

final percentage cover recorded at the end of the experiment (Phase 3). Thus, a positive

value indicated an increase in spatial cover from the initial colonisation phase through

the experimental and grow-out phase whereas a negative value indicated a decrease.

Smale et al. (2015), PeerJ, DOI 10.7717/peerj.863 6/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.863


Multivariate assemblage-level analysis were then conducted on relative changes, first by

adding 1,000 to each score to generate positive values, then by constructing similarity

matrices based on Euclidean distances of untransformed data. For the 1 week and 2 week

HW duration experiments independently, differences in assemblage structure between

HW Magnitude and Timing were then visually and statistically examined using the

same approach described above for patterns of absolute assemblage structure. Where

a significant interaction between HW Magnitude and Timing was detected, pairwise

comparisons within each level of the interaction term were conducted. Patterns of relative

change in the abundance of dominant species, both native and non-native, in response to

the HW Magnitude treatments were also examined, using one-way PERMANOVA to test

for differences between HW Magnitude within each Timing. All statistical procedures were

conducted with the PERMANOVA add-on (Anderson, Gorley & Clarke, 2008) for PRIMER

v.6 software (Clarke & Warwick, 2001).

RESULTS
Heat wave simulations
Temperatures in the treatment tanks were stable throughout the experimental period

(Phase 2), with mean values (±SD) of 16.9 ± 0.5 ◦C, 19.8 ± 0.3 ◦C and 21.8 ± 0.4 ◦C for C,

T1 and T2, respectively. Control tank temperatures were well-aligned with monthly mean

temperature for the study site (based on in situ logger data for 2010–2013). Daily mean

temperatures for the field site indicated that a short-term warming event occurred through

mid-July 2013 (Fig. 1). Even so, daily mean temperatures for T1 and T2 were greater than

the maximum daily mean recorded in the field (Fig. 1).

Assemblage level responses
A total of 34 taxa (24 species and 10 distinct genera), 7 of which were classified as

non-native, were recorded on the 108 experimental panels (Table S1). Overall, panel

assemblages were well developed by the commencement of the experimental stage (Phase

2), with an average richness of 14.5 ± 0.5 species per panel and an average total faunal

cover of 67.4 ± 3.5% (Fig. S2). At the end of the experimental runs (Phase 3) average

panel richness and total cover (%) was 15.4 ± 0.3 and 80.3 ± 6.7%, respectively (Fig. S2).

Following colonisation (Phase 1), panel assemblages were fairly variable in structure, most

likely due to high spatial variability in settlement and recruitment (Fig. S3). Even so, panel

assemblages within each experimental event were generally clustered together whereas no

partitioning between the randomly assigned treatments was observable (Fig. S3).

Partitioning in absolute multivariate assemblage structure at the end of the experiment

was principally related to the timing of the experimental run, in that panel assemblages

were clustered by the ‘HW ‘Timing’ rather than by HW ‘Magnitude’ for both the 1 week

and 2 week durations (Fig. 2). Within each Timing, there was no clear partitioning in

multivariate assemblage structure between the Magnitude treatments (i.e., C, T1, T2),

indicating that the HW simulations had little effect on overall assemblage structure

based on absolute abundances. However, the assemblages on the field controls (FC) were
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Figure 2 Multivariate assemblage structure following the recovery period (Phase 3). Principal Co-
ordinates Analysis (PCO) plots indicating absolute multivariate assemblage structure at the end of the
experiment, following recovery phase (Phase 3) for the 1 week (A) and 2 week (B) HW durations.
Multivariate partitioning is based on Bray-Curtis similarities of square root transformed abundance
data. Centroid symbols indicate the HW Magnitude treatment for each panel (C = Controls at ambient
temperature, T1 = +3 ◦C, T2 = +5 ◦C) and labels indicate the different HW Timings (i.e., experimental
runs).

generally dissimilar to those on the experimental panels (Table 1 and Fig. S4), suggesting

that the 1 or 2 weeks spent in the mesocosm facility influenced community succession

to some degree, as could be expected. Even so, when compared to variability between

Timings, differences in assemblage structure between field controls and experimental

controls were minimal (Fig. 2). For the 1 week HW duration, a significant effect of

Magnitude was detected, and post-hoc tests indicated that the C panels supported distinct

assemblages from the T2 panels (Table 1). For the 2 week HW duration, significant

differences between assemblages on C panels and those on T1 and T2 panels was recorded

following HW Timing 2 (Table 1). Univariate permutational ANOVA indicated that total

abundance and species richness differed between treatments, but only following the 2 week

duration experiments (Table S2). Pairwise tests showed that the Field Controls differed

from the experimental treatments (which were all statistically similar), again suggesting

some effect of the experimental procedure. Plots of species richness, total abundance and

total biomass (dry weight) at the end of the experiment (after Phase 3) showed no clear

differences between the HW Magnitude treatments (Fig. 3).

Analysis of variability in assemblage structure based on relative changes in abundance

(i.e., the difference between initial abundances after Phase 1 and final abundances after

Phase 3) showed that responses to the HW Magnitude treatments varied considerably

between HW Timings (Fig. 4). For example, variability in shifts in assemblage structure

was much greater for Timing 1 and 2 compared with Timing 3, for both the 1 and 2

week HW durations (Fig. 4). PERMANOVA detected significant differences in assemblage

structure (based on relative changes in abundance) between Timings for both HW

durations (Table 2). For the 1 week HW duration experiments, the main and interactive
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Table 1 PERMANOVAs to test for effects of HW simulations on absolute assemblage structure. PER-
MANOVAs to test for differences in multivariate assemblage structure (after Phase 3) between HW
Timings and HW Magnitudes based on absolute abundance data. Permutations (4,999 under a re-
duced model) were based on Bray-Curtis similarity matrices constructed from square-root trans-
formed abundance data. Main tests were conducted on both the 1-week (A) and 2-week (B) HW
duration experiments separately. Significant P values (at P < 0.05) are shown in bold. Significant
Magnitude/Magnitude × Timing interaction effects were investigated further with post-hoc pairwise
comparisons.

Source df SS F P

(A)

Magnitude 3 1,226 1.88 0.010

Timing 2 2,7267 62.87 0.001

Ma × Ti 6 1,313 1.01 0.485

Residual 52 11,276

Total 63 41,467

Post-hoc tests for Magnitude: FC ≠ C & T2, C ≠ T2

(B)

Magnitude 3 2,420 4.25 0.001

Timing 2 25,517 67.20 0.001

Ma × Ti 6 2,101 1.85 0.001

Residual 52 9,872

Total 63 40,312

Post-hoc tests for Ma × Ti:

Timing 1: FC ≠ C & T1 & T2

Timing 2: FC ≠ C & T1 & T2, C ≠ T1 & T2

Timing 3: FC ≠ C & T1 & T2

effects of Magnitude were non-significant (Table 2). However, for the 2 week HW duration

experiment, a significant Magnitude × Timing interaction was detected (Table 2).

Post-hoc pairwise comparisons between HW Magnitudes for each HW Timing showed

that assemblage structure for the T2 panels was significantly different to those observed for

the C and T1 panels following Timing 1 (Table 2). This was also evident in the PCO plots,

with clear partitioning between T2 assemblages and C/T1 assemblages following Timing 1

(Fig. 5). For Timing 2 and 3, however, no significant differences were detected between HW

Magnitudes (Table 2), although some partitioning between T2 and C/T1 assemblages was

again evident following Timing 2 (Fig. 5).

Species level responses
There were no consistent trends in the responses of native dominant species to the

HW Magnitude treatments (Fig. 6). Relative changes in abundances were variable,

both between species and between Timings for the same species (Fig. 6). The only

significant differences between HW Magnitudes were observed for the colonial ascidian

Botryllus schlosseri, after 2 of the 1-week HW duration events, and the bryozoan Electra

pilosa, after a 2-week HW event (Fig. 6 and Table S3). For B. schlosseri, the rate of increase

in abundance was significantly lower on the T2 panels compared with the control panels
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Figure 3 Assemblage-level metrics following the recovery period (Phase 3). Mean (±SE) species
richness (A, B), total abundance (C, D) and total dry weight biomass (E, F; in g) of panel assemblages
following the recovery phase (Phase 3) for the 1 wk HW duration (A, C, E) and 2 wk HW duration (B, D,
F) experiments. Magnitude treatments, are: C = Controls at ambient temperature, T1 = +3 ◦C and T2
= +5 ◦C, which were run for either 1 or 2 wk durations. Assemblage data from Field Controls (FC) are
also shown.

(Fig. 6 and Table S3). For E. pilosa, which decreased in abundance during the HW Timing

1, the rate of decline was greater on the T2 panels compared with the control panels (Fig. 6

and Table S3).

The responses of non-native species were similarly variable and no clear trends were

observed (Fig. 7 and Table S4). The ascidian Corella eumyota and the bryozoans Bugula

neritina and Tricellaria inopinata generally increased in abundance between Phase 1 and
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Figure 4 Relative changes in assemblage structure following the recovery period (Phase 3). Principal
Coordinates Analysis (PCO) plots indicating relative changes in multivariate assemblage structure be-
tween the colonisation phase (Phase 1) and the recovery phase (Phase 3) for the 1 week (A) and 2 week
(B) HW exposures. Multivariate partitioning is based on Euclidian distances between untransformed
differences in abundance between Phase 1 and Phase 3. Centroid symbols indicate the HW Magnitude
treatment for each panel (C = Controls at ambient temperature, T1 = +3 ◦C, T2 = +5 ◦C) and labels
indicate the different HW Timings (i.e., experimental runs).
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Table 2 PERMANOVAs to test for effects of HW simulations on relative changes in assemblage
structure. PERMANOVAs to test for differences in multivariate assemblage structure between HW
Magnitudes and Timings, based on relative changes in species abundances (change in abundance between
Phase 1 and Phase 3). Permutations (4,999 under a reduced model) were based on Euclidean distances
between untransformed changes in abundance. Main tests were conducted on both the 1-week (A) and
2-week (B) HW duration experiments separately. Significant P values (at P < 0.05) are shown in bold.
Significant Magnitude/Magnitude × Timing interaction effects were investigated further with post-hoc
pairwise comparisons.

Source df SS F P

(A)

Magnitude 2 32,932 1.96 0.100

Timing 2 536,120 31.93 0.001

Ma × Ti 4 21,862 0.65 0.753

Residual 36 302,220

Total 44 893,130

(B)

Magnitude 2 11,938 0.57 0.737

Timing 2 112,350 5.43 0.001

Ma × Ti 4 193,060 4.66 0.002

Residual 36 372,660

Total 44 690,010

Post-hoc tests for Ma × Ti:

Timing 1: C = T1 ≠ T2

Timing 2: C = T1 = T2

Timing 3: C = T1 = T2

Phase 2 and the magnitude of increase did not vary between the HW Magnitude treat-

ments (Fig. 7 and Table S4). The compass ascidian, Asterocarpa humilis, decreased in abun-

dance in HW Timing 2, and the magnitude of decline was significantly greater on the HW

Magnitude treatments T1 and T2 compared with the control panels (Fig. 7 and Table S4).

DISCUSSION
Contrary to our expectations, the simulated HW events had no clear, consistent impacts

on the abundance of species or the structure of sessile assemblages. The first hypothesis,

that long duration high magnitude HWs would alter assemblage structure was supported

to some degree, as assemblages subjected to +5 ◦C for 2 weeks were distinct to those

held at ambient temperature or at +3 ◦C (as determined by relative changes in species’

abundances). However, this pattern was observed for only 1 of the 3 HW Timings. The

second hypothesis, that non-native species would be less impacted by warming events than

native species, was not supported as there were no clear trends in responses of non-native

species to simulated HWs. The third hypothesis, which stated that changes in species

abundances and shifts in community structure would be consistent between HW Timings,

was also not supported.
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Figure 5 Relative changes in assemblage structure following 2-week HW duration treatments, shown
separately for each HW Timing. Principal Coordinates Analysis (PCO) plots indicating relative changes
in multivariate assemblage structure between the colonisation phase (Phase 1) and the recovery phase
(Phase 3) for HW Timing 1 (A), 2 (B) and 3 (C) individually, following a 2 week HW duration. Mul-
tivariate partitioning is based on Euclidian distances between untransformed differences in abundance
between Phase 1 and Phase 3. Centroid symbols indicate the HW Magnitude for each panel (C = Controls
at ambient temperature, T1 = +3 ◦C, T2 = +5 ◦C).
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Figure 6 Relative changes in abundances of native species following HW simulations. Responses of
dominant native species to the HW Magnitude treatments (C, black bars; T1, dark grey bars; T2, light
grey bars) after 1 week (A, C, E, G) and 2 week (B, D, F, H) HW durations. The average change in
abundance (between Phase 1 and 3, n = 5 panels, ±SE) is shown for Ciona intestinalis (A, B), Botryllus
schlosseri (C, D), Electra pilosa (E, F) and Balanus crenatus (G, H). Lower case letters indicate significant
differences between HW magnitudes (at P < 0.05, based on one-way PERMANOVAs within each HW
Timing and duration).
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Figure 7 Relative changes in abundances of non-native species follwoing HW simulations. Responses
of the most abundant non-native species to the HW Magnitude treatments (C, black bars; T1 dark grey
bars, T2, light grey bars) after 1 week (A, C, E, G) and 2 week (B, D, F, H) HW durations. The average
change in abundance (between Phase 1 and 3, n = 5 panels, ±SE) is shown for Corella eumyota (A, B),
Asterocarpa humilis (C, D), Bugula neritina (E, F) and Tricellaria inopinata (G, H). Lower case letters
indicate significant differences between HW Magnitudes (at P < 0.05, based on one-way PERMANOVAs
within each HW Timing and duration).
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The support for Hypothesis 1 emerged from the first HW Timing, as the T2 assemblages

were dissimilar to the C and T1 assemblages, based on relative changes in species

abundances. The observed differences in assemblage structure were principally driven

by a greater decline in the abundance of the bryozoan Electra pilosa, the ascidian Ciona

intestinalis (non-significant) and the barnacle Balanus crenatus (non-significant) on panels

subjected to the high-magnitude HW treatment (T2). These species are all widespread

in cold temperate seas, and there is some evidence to suggest that their ecological

performance (i.e., filtration rates, growth) declines at temperatures in excess of ∼21 ◦C

(Southward, 1964; Menon, 1972; Peterson & Riisgard, 1992). As such, it is likely that

the highest-magnitude warming treatment negatively impacted their performance and

resulted in lower abundances compared with the cooler treatments. What is not clear,

however, is why these patterns were not consistently observed across the HW Timings.

Interestingly, the colonial ascidian Botryllus schlosseri was negatively impacted by the

warmer treatments in the short duration experiment, but no significant differences were

observed in the longer duration experiment. B. schlosseri, which is widespread outside its

native range, has a broad thermal tolerance and temperatures in excess of 23 ◦C do not

inhibit growth or survival (Epelbaum et al., 2009; McCarthy, Osman & Whitlatch, 2007).

As such, it could be that short-term elevated temperatures had an indirect effect, through

altered competitive interactions for example, but this requires further investigation.

Our results do not align with other studies on marine community-level responses

to short-term warming events, which have reported high levels of species mortality,

decreases in diversity and significant shifts in community structure (Allison, 2004; Sorte,

Fuller & Bracken, 2010; Smale et al., 2011; Eggers, Eriksson & Matthiessen, 2012; Smale &

Wernberg, 2012). We suggest the reasons for this divergence are two-fold. Firstly, several

of these previous studies (Allison, 2004; Sorte, Fuller & Bracken, 2010; Eggers, Eriksson &

Matthiessen, 2012) subjected assemblages to heat stress events in the magnitude of ≥10 ◦C

above ambient temperature. As such, the lack of ecological responses observed in the

current study is likely to be a consequence of a lower-intensity HW Magnitude treatment.

Given that warming anomalies of +2–4 ◦C above long-term average temperatures are

typical of the most extreme marine HWs that occur in nature (Garrabou et al., 2009;

Wernberg et al., 2013), the magnitudes of warming treatments applied in the current

study were more realistic. High intensity stress experiments are undoubtedly useful for

examining physiological response mechanisms, identifying ecological winners and losers

and predicting ‘worst case scenarios.’ We would argue, however, that such experiments

may overestimate the effects of warming and downplay the resilience of populations and

communities to temperature variability characteristic of natural systems (see Wernberg,

Smale & Thomsen, 2012 for further discussion). Secondly, previous community-level

warming studies that used heated settlement panels (Smale et al., 2011; Smale & Wernberg,

2012), examined the response of early-stage assemblages to short-term warming events,

as opposed to the mature, fully developed assemblages studies here. Previous research

would suggest that early life stages are the most susceptible to environmental stressors

such as warming (see Byrne & Przeslawski, 2013; Harvey, Gwynn-Jones & Moore, 2013 for
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recent syntheses), and there is emerging evidence to suggest that the microbial processes

which influence invertebrate settlement (i.e., biofilm development) are strongly affected

by temperature (Russell et al., 2013; Whalan & Webster, 2014). It seems likely, therefore,

that early successional stages comprising recently-settled organisms are more sensitive

to short-term warming events than developed assemblages comprising mature stage

organisms (but see Sorte, Fuller & Bracken, 2010), but further work is required.

Our study also demonstrates the importance of assemblage type and biogeographical

context in determining ecological responses to short-term warming events. The sessile

invertebrate species forming the model assemblages used in the present study are generally

widespread in temperate ecosystems and have wide environmental tolerances, being

common in marinas and other habitats characterised by large fluctuations in sediments,

salinity and temperature. The majority of the species sampled are also found further

south, in warmer waters. This could explain the observed resilience of the assemblages to

realistic HW Magnitude treatments, which perhaps did not exceed the thermal thresholds

of these populations. Indeed, many species exhibited a positive response to warming, in

that they increased in abundance throughout the experiment even when subjected to the

highest-magnitude warming treatment. Recent work by Lord & Whitlatch (in press) has

experimentally shown that ecological responses to temperature of sessile invertebrates

varies with latitude, as populations at the ‘warm edge’ of species ranges are negatively

impacted by warming. In the current study, the species recorded were not sampled from

range edge populations and, as such, demonstrated capacity to tolerate a simulated HW of

+5 ◦C for 2 weeks. Clearly, populations found at the range edge of species’ distributions are

the most vulnerable to extreme warming events, as has been shown in recent marine HWs

in both Europe (Garrabou et al., 2009; Puce et al., 2009) and Australia (Smale & Wernberg,

2013; Wernberg et al., 2013).

Our results did not support our second hypothesis, that short-term warming events

would be less detrimental, or even favourable, to non-native species compared with native

species. The only significant change in abundance we observed was for the non-native

compass ascidian Asterocarpa humilis, which exhibited greater declines in abundance at

higher temperatures. This is somewhat contradictory to previous work, which shown

that warming may favour non-native species and facilitate their spread (Stachowicz et

al., 2002; Sorte, Williams & Zerebecki, 2010; Smale et al., 2011; Sorte & Stachowicz, 2011).

Again, this is likely to be context-dependent, as the non-native species sampled in the

current study were seemingly not at a competitive advantage at higher temperatures,

probably because native species generally remained within their thermal thresholds even

at the high-magnitude treatment. Even so, there is widespread consensus that longer-term

gradual warming will facilitate the spread of non-native species in North Atlantic marine

ecosystems (Occhipinti-Ambrogi, 2007; Pederson et al., 2011).

With regards to the realism of our HW manipulations, it is important to note that

many naturally-occurring marine HWs are driven by oceanographic processes that

cause the influx of warm water (and associated dispersal stages of warm-water species)

into cooler zones (e.g., Wernberg et al., 2013). As such, ‘real world’ HWs can cause a
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reshuffling of the species pool through the advection of warm water species, which may be

competitively superior to the cool water species during (and after) the warm water event.

Our experiments did not involve a reshuffling of the species pool, which could include the

addition of warm water non-native species for example, and therefore did not incorporate

all possible mechanisms of ecological change. However, marine HWs such as the

Mediterranean event of 2003 (Garrabou et al., 2009) are characterised by in situ warming

driven by anomalous air-sea heat transfer, which has a direct physiological effect of the

local species pool. As such, our HW manipulations are more akin to this type of event.

The greatest source of variability we observed was related to the timing of substrate

colonisation and assemblage development. It has long been known that sessile marine

fauna exhibit pronounced variability in their timings of reproduction, recruitment

and growth (e.g., Thorson, 1950) and, as a result, the timing of the commencement of

succession processes can strongly influence assemblage structure (Harms & Anger, 1983).

Here, the onset of colonisation was staggered by just 2 weeks between experiments, yet

temporal variability in assemblage structure far outweighed that caused by the warming

treatments. Moreover, the HW Magnitude treatments had discernible effects on sessile

assemblage structure following only one of the three HW Timings, which implied that

some assemblage types are more susceptible to warming events than others. Interestingly,

the ‘Timing 1’assemblages, which were most impacted by the simulated HWs, generally

had lower species richness and greater total abundance values compared with the

subsequent assemblages subjected to Timing 2 and 3. This corresponds with the findings of

Allison (2004), which manipulated species diversity and thermal stress on rocky shores to

show that community responses are dependent on the characteristics of both the stress and

the species present in the community, which varies in time. Clearly, further work on the

influence of diversity on community resistance (and resilience) to marine HWs is needed

to better understand ecological responses to temperature variability.

CONCLUSIONS
Our realistic HW simulations had few discernible effects on the diversity, structure

and successional trajectories of sessile invertebrate assemblages, which were resistant to

short-term warming. The study highlights the importance of (i) conducting experiments

on naturally-occurring suites of species, at observed densities, (ii) simulating naturally-

occurring stress events though realistic treatments and (iii) considering biogeographical

and temporal context in predictions of ecological responses to warming. Such an approach

will improve realism and expand the inference space of climate change experiments, which

is necessary to develop useful predictions of ecological responses to future change.
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