EEG based assessment of stress in horses: A Pilot Study 2 3 4 5 Nora Vanessa de Camp^{1,2}¹*, Mechthild Ladwig-Wiegard²¹, Carola Ines Ellen Geitner²¹, Jürgen Bergeler^{2,1}[&], Christa Thöne-Reineke²[&] 6 7 8 ¹ Behavioral physiology, Institute of biology, Humboldt University Berlin, Germany 9 ² Institute of animal welfare, animal behavior and laboratory animal science, Freie Universität Berlin, Germany 10 These authors contributed equally to this work 11 [&]These authors also contributed equally to this work 12 13 Corresponding Author: 14 Nora Vanessa de Camp Email address: ndecamp@jpberlin.de 15 16 17 18 19 Abstract 20 21 As has been hypothesized more than 20 years ago, data derived from EEG (Electroencephalography) 22 measurements can be used to distinguish between behavioral states associated with animal welfare. In our 23 current study we found a high degree of correlation between the modulation index of phase related 24 amplitude changes in the EEG of horses (n=6 measurements with three different horses, mare and 25 gelding) and their facial expression, measured by the use of the horse grimace scale. Furthermore, the 26 pattern of phase amplitude coupling was significantly different between a rest condition and a stress 27 condition in horses. This pilot study paves the way for a possible use of EEG derived phase amplitude 28 coupling as an objective tool for the assessment of animal welfare. Beyond that, the method might be 29 useful to assess welfare aspects in the clinical setting for human patients, as for example in the neonatal 30 intensive care unit. 31 Introduction Is EEG a useful tool to assess welfare in horses? Animal welfare and animal well-being is part of 32 33 controversial discussions. This happens in different contexts, be it socio-political or ethical discourses, 34 factory farming and food production, animals in private husbandry, animal-assisted therapy, zoos, wildlife 35 or animal experiments. They all have in common that both forming and exchange of opinions are often 36 based on emotions rather than on scientific findings. The assessment of welfare and well-being of animals 37 is sometimes made by how humans feel when they find animals in certain situations. Besides the lack of

Deleted:

1

39	ethological knowledge, in many areas related to animal husbandry or the use of animals, there are none or
40	only imprecise legal regulations. In the field of laboratory animal science, legal matters are more closely
41	regulated, both in the context of authorization and in connection with surveillance. The commencement of
42	Directive 63/2010/EU enforced efforts concerning animal welfare on <u>a</u> national and European level and
43	specified personal and institutional prerequisites. People working in this field have to prove their expertise
44	and have to be continuously educated. Housing facilities and experiments have to be approved and
45	procedures have to be ethically justified. Serious and extensive efforts have to be made in order to replace,
46	reduce and refine (3Rs) experimental procedures performed on the animals or their housing conditions.
47	There must be a close documentation of all interventions and a scientifically reasoned assessment and
48	classification in degrees of severity according to the impairment of the animals' well-being.
49	For the assessment of welfare and well-being of animals in factory farming and food production, animals
50	in private husbandry, animal-assisted therapy, zoos, wildlife or animal experiments, we need adequate
51	techniques for an objective measurement of animal welfare (Barnett & Hemsworth, 1990) and associated
52	physiological states as for example EEG, because, judging about animal welfare is most often based on or
53	at least influenced by human assumptions and humanization
54	(http://www.oie.int/index.php?id=169&L=0&htmfile=chapitre_1.7.1.htm). It has been shown that
55	observers who are "used" to expressions of horses that are associated with pain or stereotypic behaviors
56	tend to underestimate these signs regarding horses <u></u> welfare (Lesimple & Hausberger, 2014). In a very recent
57	review article, the authors explicitly mention EEG as potential tool to assess cognition and welfare, which
58	are strongly associated (Hausberger et al., 2019). Especially in horses, which are most often kept as working
59	animals, husbandry systems as well as education and training of the animals impact the welfare state even
60	though behavioral data do not always represent the internal state of the animal, as has been shown in a
61	comparative behavioral study with Chilean working horses and Rodeo horses (Rosselot et al., 2019). The
62	need for an objective assessment of animal welfare is clearly apparent. Several authors proposed EEG as
63	promising tool, but it is necessary to show that EEG is significantly correlated with behavioral data and to
64	determine how to best analyze relatively complex skin derived EEG data to assess subtle changes.
65	We addressed these questions by combining a well- established technique for pain and stress assessment,
66	the horse grimace scale (Dalla Costa et al., 2014, 2018), with telemetric EEG recordings as a promising
67	novel tool for the measurement of objective data related to animal welfare and signs of stress (Senko et al.,
68	2017, Hohlbaum et al., 2017, Häger et al., 2017). Facial expression scores are well-established to measure
69	pain in human infants (Grunau & Craig, 1987) and for some nonhuman species with clear facial expression,
70	such as horses HGS (Dalla Costa et al., 2014), mice MGS (Langford et al., 2010) and rats (Sotocinal et al.,
71	2011). Dalla Costa et al. validated the facial expression score by promising a statistical approach to identify
72	a classifier that can estimate the pain status of the animal based on Facial Action Units (FAUs). There exists

Commented [JV1]: Very long run-on sentence. Please fix.

Deleted:

Commented [JV2]: What is HGS and MGS and why is there no analog for rats?

Deleted: for example

Commented [JV3]: Do you mean by using a promising statistical approach? Doesn't quite make sense as worded.

75 no doubt that animals are able to experience pain, fear, stress and other moods and show these through 76 facial expressions. The electroencephalogram (EEG), first described by Berger, is a method to measure tiny 77 summed electrical potentials on the scalp surface that arise from pyramidal cells of the cortex (Berger, 78 1929). Therefore, non-invasive EEG measurements always represent network activity of cortical neurons 79 rather than single cell activity. Cortical networks are highly dynamic and they are broadly orchestrated, 80 which leads to electrical oscillations that can be measured on the surface of the scalp (Kida et al., 2016). 81 These oscillations are in the range of very slow waves below 0.1 Hz, as they occur for example in preterm 82 babies (Vanhatalo et al., 2002). Faster oscillations are categorized as theta, alpha, beta and gamma bands. 83 Some authors additionally define waves above 90 Hz as a "high gamma EEG-band" (Cavelli et al., 2017). 84 A shift from low frequency EEG activity towards high frequency, low amplitude activity has been described 85 during the castration procedure of calves (Coetzee, 2013). A shift of EEG band activity and lateralization 86 have also been observed during attention-related processes in horses (Rochais et al., 2018). 87 More than 20 years ago, it was hypothesized that new tools of EEG analysis will lead to objective 88 measurements for the assessment of animal welfare (Klemm, 1992). One method to find qualitative 89 changes of network activity is phase amplitude coupling (PAC), also known as cross frequency coupling 90 (Tort et al., 2010). PAC is based on amplitude modulations between EEG bands if they occur in a certain 91 phase relation to each other (Tort et al., 2010). This phenomenon does, for example, occur during certain 92 vigilance states (Scheffzück et al., 2011) or it can be modified by the application of drugs (Scheffzück et 93 al., 2013). Therefore, we used, in a proof of concept experiment, the HGS as well as the PAC as a 94 qualitative network change index and compared the intensity of amplitude modulation under resting 95 condition and during stress condition (i.e., anticipating a medical treatment of horses in the veterinary 96 clinic). We hypothesized that the HGS as well as the PAC are significantly different in the horses in 97 accordance to the different conditions and that there is an association between HGS and PAC, which 98 means the EEG could be an objective tool for the assessment of animal welfare.

- 99
- 100
- 101

102 Methods

103 <u>Ethical Approval</u>

- All procedures were approved by the local ethics committee (L0294113, <u>Berlin, LAGeSo</u>), and followed
- 105 the European and the German national regulations (Animal Welfare act, 2010/63/EU). All animal

procedures were performed in accordance with the animal care committee's regulations [Freie UniversitätBerlin].

Commented [JV4]: This paragraph could use a summary/concluding statement here.

108

109 Subjects

110	The three adult horses belonged to the demonstration stock for veterinary students at the Freie Universität	
111	Berlin. The horses were adults, of different sex and diverse breedings (one trotter, two warmblood	Commented [JV5]: Define for readers not familiar with
112	horses). The mare <u>had</u> been used in three veterinary demonstration treatments, the trotter (gelding) in two	Deleted: have been
113	and the warmblood gelding in one treatment. The horses were not used as working or sports horses at the	Deleted: has
114	university but they <u>had</u> unknown origin. All horses are healthy, used to handling and kept in boxes during	Commented [JV6]: Stalls?
115	the night and a paddock or pasture during the day. The experiments took place in their familiar	Deleted: have
116	environment at the horse clinic.	
117	Procedure	Commented [JV7]: Materials should come before Procedure.
118	During six different days, three adult horses were recorded (n=6 different veterinary interventions). All of	
119	our measurements took place during routine teaching lessons for the students, which does mean that no	
120	further experimental animals have been used solely for our study. We measured two vigilance states of	Commented [JV8]: Please use past tense and avoid
121	each horse for each experimental day (some horses have been recorded at two different veterinary	passive voice where possible. Check and edit throughout.
122	treatments) with the horse grimace scale and with EEG. Both measurements took place simultaneously	Commented [JV9]: Unclear relevance.
123	for about 30 minutes duration. The recordings were always performed by the same persons. One person	
124	did the video recordings, another person did the EEG recordings and a third person remained near to the	
125	horse to relocate the antenna, if necessary. The two experimenters, responsible for data acquisition (video	
126	and EEG), always started their new video and EEG files at the same time (each file approximately 10	
127	minutes). First, the animals were recorded in a familiar situation in the stable to assess the relaxed state	
128	as a reference, called "resting condition". The second measurement took place in the examination stand in	
129	anticipation of stressful situation i.e. a veterinary treatment, called "stress condition" (Fig. 1).	
130	Material <u>s</u>	
131	Panasonic Digital camera Lumix FMC-FZ200, Disposable adhesive surface silver/silverchloride	
132	electrodes (Spes Medica S.r.l., 111 Genova, Italy), abrasive cream (Abralyt HiCl, Easycap GmbH,	
133	Herrsching, Germany), EEG telemetry unit (with an AC coupled amplifier, sampling rate 500Hz) (Lapray	
134	et al., 2009)	Commented [JV10]: Write in full sentences please.
135	Horse Grimace Scale	
136	A Panasonic Digital camera Lumix FMC-FZ200 was used to record the facial expression of the horses	
137	during the different conditions. The records were used for analyzing the HGS in accordance to Dalla	Commented [JV11]: Redundant with above.
138	Costa et al. (2014). One HGS value was calculated for each video file. Regarding the correlation with	
139	EEG coupling coefficients, corresponding files were selected, but the video files were of longer duration	

143	than the EEG files. To calculate the total pain score with the HGS, six facial coding units are used (Ears
144	stiffly backwards, orbital tightening, tension above eye area, prominent strained chewing muscles, mouth
145	strained and pronounced chin, strained nostrils and flattening of the profile). For each coding unit a score
146	of 0, 1 or 2 can be given. This results in a maximal total pain score of 12 points. The HGS has a relatively
147	high inter observer reliability. The Interclass Correlation Coefficient (ICC) has a value of 0.92 (Dalla
148	Costa et al., 2014).

149

150 EEG recordings

151 Disposable adhesive surface silver/silverchloride electrodes (Spes Medica S.r.l., 111 Genova, Italy) were 152 placed on the nose (between the ears) as ground and reference (Fig 2 (2, 3) and between the eye and ear 153 to record from the right somatosensory cortex region (parietal position, Fig 2 (1)). Before fixating the 154 electrode, the location was shaved and the skin was cleaned with an abrasive cream (Abralyt HiCl, 155 Easycap GmbH, Herrsching, Germany) in order to remove dead skin cells and to achieve a lower 156 impedance. The data was recorded and sent by a telemetry unit (with an AC coupled amplifier, sampling 157 rate 500Hz) (Lapray et al., 2009). Only phases without artefacts were taken into account for analysis. 158 Selected sequences lasted on an average 90s in case of the resting condition and 50 s in case of the stress 159 condition. For each veterinary intervention and each condition (rest or stress), only one sequence was 160 used for analysis. Some horses have been treated two times, at different days (at least one week between 161 the first and the second measurement). 162

163 **EEG analysis**

164 EEG segments without artefacts (muscle, extended line noise) were selected.

We analyzed the <u>data</u> with <u>M</u>atlab (2016, MathWorks) and with <u>B</u>rainstorm (Tadel et al., 2011). EEG raw data were filtered with digital butterworth filters with a custom written <u>M</u>atlab script. The filter was designed with the function butter (n=3rd order). We calculated the normalized cutoff frequency (Wn) for EEG bands delta [0-4Hz], theta [4-8Hz], alpha [8-13Hz], beta [13-30Hz], low gamma [30-80Hz] and high gamma [80-120Hz]. Wn is a number between 0 and 1, where 1 corresponds to the Nyquist frequency which

- 170 is half the sampling rate (here: 500Hz).
- 171 The numerator and denominator values (IIR filter), achieved with the function butter, were used with the
- 172 <u>Matlab function filtfilt to filter the EEG data.</u> For the delta EEG band, a lowpass filter was used. We
- 173 extracted all other EEG frequency bands with a bandpass filter design.

Commented [JV12]: Please write in past tense.

Commented [JV13]: You only had three horses – so two here? Explain which given the small sample

Phase amplitude coupling and Phase Locking Value (PLV) were analyzed with brainstorm software (Tadelet al., 2011).

To obtain Canolty maps (Canolty et al., 2006), <u>the</u> following procedure was computed (neuroimage.usc.edu/brainstorm/Tutorials/Resting): The EEG was filtered at the low frequency of interest, using a narrow band pass filter. The amplitude troughs of the desired low frequency were detected in the signal. A time window <u>was</u> defined around the detected troughs in order to compute a time frequency decomposition using a set of narrow band-pass filters.

181

182 <u>Analysis</u>

183 To extract statistically significant changes of amplitude modulation, we compared the modulation indices 184 calculated with the open source software brainstorm (Tadel et al., 2011) between the resting condition and 185 the stress condition of the horses. With the brainstorm function "Canolty", the data are screened for 186 amplitude modulations at higher frequency bands in relation to a certain slower phase frequency (here, we 187 show the results for 8 Hz, figure 3). First, we pooled all cycles of the phase frequency (8Hz) for each animal 188 during a time window of 1s, corresponding to 8 phase cycles, and used the sum for each animal. The 1s 189 time window is independent of the duration of raw data; it means that 8 phase frequency waves are 190 represented in the resulting Canolty-map computation by the program brainstorm. Furthermore, we were 191 interested in the information, at which point in the phase frequency cycle a possible amplitude modulation 192 takes place (for example, at the trough or the up-stroke of the 8 Hz phase frequency wave). We had a 193 resolution of 125 modulation index values (given by the program brainstorm with the function "Canolty") 194 within a single cycle of the phase frequency, which corresponds to 360° of the 8Hz phase frequency wave. 195 10ms in the Canolty-maps correspond to 2,9° of the phase frequency. We calculated the differences of 196 modulation indices for every 2.9° of the phase frequency between the resting and the stress condition. The 197 statistically significant results are shown as polar plot (number of statistically significant differences in 198 relation to 360° of the phase frequency, Figure 4). Furthermore, we calculated the coefficient of correlation 199 between the modulation index of the EEG and the results of the horse grimace scale for both behavioral 200 states (function "corr", type "Spearman", Matlab, 2016b). For each kind of analysis, we used timely 201 corresponding files of EEG and video. The sequences taken into account are longer for the video files than 202 for the EEG, because, in the case of the EEG, we chose sequences without artefacts (most often artefacts 203 from mobile phones in near vicinity). 204 We tested data for distribution with the Lilliefors test (Matlab 2016b). Tests were performed with the non-

201 parametric Kruskal Wallis test and a subsequent multiple comparison test in order to achieve exact

206 statistical relations between groups. All tests are implemented in the Matlab statistics toolbox (Matlab 207 2016b, MathWorks). 208 209 210 Results 211 212 We graded the horses' comfort behavior according to the horse grimace scale (Dalla Costa et al., 2014). 213 EEG data and behavioral data were analyzed independently by two different persons to avoid a statistical 214 bias. Both methods reflect changes of behavioral state. 215 **Horse Grimace Scale** 216 217 We were able to identify statistically significant changes of the facial expressions between the resting 218 condition and the stressful condition in horses (p=0,006). The mean facial expression score for the resting 219 condition is 4.12 (with a standard deviation of 0.57 and an upper and lower confidence interval of 5.42 and 220 2.83). The mean facial expression score for the condition stress is 6 (with a standard deviation of 0.61 and 221 an upper and lower confidence interval of 7.34 and 4.66). 222 EEG 223

224 We were not able to detect statistically significant changes of horses' EEG band power between the rest 225 condition and the stress condition in anticipation of a veterinary treatment. Nevertheless, there is a tendency 226 towards slightly elevated EEG band power during the stress condition in comparison to the rest condition. 227 In contrast, we were able to identify major changes of phase amplitude coupling between the rest, and the 228 stress condition (Fig 3). A progressive decay of phase amplitude coupling between 8Hz low frequency and 229 the gamma and high gamma band takes place from rest towards stress. Besides the mere decay of coupling 230 density, a qualitative change regarding phase relation between the high and low frequency is clearly visible. 231 For the rest condition, the coupling patterns extend from gamma to high gamma (up to 250 Hz) with 232 maximal coupling coefficients during the up stroke and the down stroke of the 8 Hz low frequency 233 (indicated as white sine wave in Fig 3a). For the condition stress (Fig 3b), the phase amplitude coupling 234 pattern is still visible in the gamma range but overall coupling strength is lower in comparison to the resting 235 state. Statistically significant differences of phase related amplitude modulation between the rest and the 236 stress condition can be found during the upstroke (around 90° of the phase frequency) and during the down 237 stroke (around 260°) (Fig 4), confirming the optical impression from the Canolty maps (supplementary **Commented [JV14]:** You must report reliability for the raters' rating.

Commented [JV15]: You must report the test statistic here, confidence interval or effect size if possible/relevant table 1). Furthermore, only the down stroke of the 8Hz phase frequency reveals strong coupling coefficients

239 with gamma and high gamma EEG bands. The coefficient of correlation (Rho) between the EEG derived

240 data (Coupling coefficients of the Canolty map) and the horse grimace scale is -0.86 (p=0.00031) for the

241 down stroke of the phase frequency (here at 290°) and 0.71 (p=0.01) for the up stroke of the phase

242 frequency. The quality of raw data is good, the presence of nested activity (faster frequencies o top of slow

243 frequencies) was confirmed with a wavelet analysis (Fig 5<u>A,B</u>).

244 Discussion

245 Why assess welfare in horses? The horse is both companion as well as working animal (Hausberger et al., 246 2019). Facial expressions associated with pain and stress are well described (for example Dalla Costa et al., 247 2014) and relatively easy to assess for a trained observer. On the one hand, horses raise several issues of 248 animal welfare status, as, for example, regarding training methods, sports, as working animals and even as 249 companions (boredom) (Hausberger et al., 2019). On the other hand, they represent both companion as well 250 as working animal in husbandry and sports. To judge about the validity and utility of EEG measurements 251 in the context of animal welfare, horses are perfectly suited because they are used to handling procedures 252 (which reduces the impact of the EEG application procedure itself on the subjects' behavior) and other 253 indications of wellbeing, which we used as comparative value. 254 As has been proposed earlier (Klemm, 1992), we were able to extract differences in EEG network 255 activity during stress and rest in horses, mental states that are obviously characterized by significant 256 changes in HGS. In order to validate the behavioral states "stress" and "rest" in horses, we used the horse 257 grimace scale (Dalla Costa et al., 2014, 2018). Phase amplitude coupling seems to be an extremely robust 258 tool to extract activity patterns in the brain, associated with distinct behavioral states to access animal 259 welfare. One reason for the robustness might be that phase amplitude coupling is extracting information 260 that is inherently linked to intrinsic neural network phenomena. The measurement does not rely on 261 absolute values, which may be influenced by technical or intra-individual issues, but on a relational 262 modulation index. Furthermore, phase related amplitude modulations seem to be an ubiquitous 263 phenomenon for neural networks, as they are also involved in the generation of peristaltic movements of 264 the intestinal tract (Huizinga et al., 2015). In fact, phase amplitude coupling in the intestinal tract is also 265 associated with the regulation of peristaltic movements according to incoming stimuli (for example food 266 intake). Further studies with a higher number of animals and more electrode positions may be beneficial 267 to confirm our results and to gain further insights regarding anatomical correlations of certain behavioral 268 representations in the EEG. Here, we used one electrode in a parietal position. This position is near to the 269 somatosensory cortex, a well characterized cortical region which is responsible for the representation of 270 one's own body. Other electrode positions may give different results, as, for example, frontal electrode 271 locations and should be addressed in subsequent studies.

Commented [JV16]: ?

Commented [JV17]: What is the distinction here? Unclear.

Commented [JV18]: Unclear as worded.

272	Our results indicate a change of network activity during stress in the region of the somatosensory cortex.
273	The progressive decay of coupling strength between the rest and the stress condition, with a maximum at
274	half way of the down stroke (260°, figure 4), rather than an abrupt change, may be due to the general
275	wave characteristics of envelope-signals, which are recorded from bigger neural networks. We can only
276	speculate that the underlying entrainment of smaller sub-networks may work cascaded to form the
277	progressive decay. A combination with non-invasive imaging techniques, as, for example, MRI or fMRI
278	would be interesting to gain further insights regarding network entrainment and the anatomical
279	correlation, <u>However</u> , the technique is extremely challenging for behaving horses.
280	It can be excluded that physical pain is the main driver for the change of neural network activity because
281	we took all stress recordings in the anticipation state, before any kind of physical pain or sedation
282	appeared. The representation may look different in other brain regions. The mere touching or handling of
283	the horse or the presence of people can be excluded as influencing factors, because these factors appeared
284	in both conditions. Since the brain is more or less a black box in the case of non-invasive EEG
285	measurements, it is very difficult or maybe impossible to reason about the origin of the coupling pattern
286	on the cellular level with our method. The strong kind of stress reaction, which is probably associated
287	with a medical treatment, may be relatively conserved among individuals. This may be different for minor
288	forms of stress as, for example, during training, handling or social interaction. In these cases, we would
289	expect a high intra-individual difference. To understand the change of phase amplitude coupling in
289 290	expect a high intra-individual difference. To understand the change of phase amplitude coupling in relation to behavior in a better way, much more data are needed with different studies, different animals
289 290 291	expect a high intra-individual difference. To understand the change of phase amplitude coupling in relation to behavior in a better way, much more data are needed with different studies, different animals and different behavioral contexts.
289 290 291 292	expect a high intra-individual difference. To understand the change of phase amplitude coupling in relation to behavior in a better way, much more data are needed with different studies, different animals and different behavioral contexts.
289 290 291 292 293	expect a high intra-individual difference. To understand the change of phase amplitude coupling in relation to behavior in a better way, much more data are needed with different studies, different animals and different behavioral contexts. Facial expression can hardly be used to recognize welfare in species like birds, reptiles etc. with poor
289 290 291 292 293 294	expect a high intra-individual difference. To understand the change of phase amplitude coupling in relation to behavior in a better way, much more data are needed with different studies, different animals and different behavioral contexts. Facial expression can hardly be used to recognize welfare in species like birds, reptiles etc. with poor facial expression. If it is possible to establish reliable EEG patterns associated with stress for different
289 290 291 292 293 294 295	expect a high intra-individual difference. To understand the change of phase amplitude coupling in Image: comparison of the coupling in relation to behavior in a better way_ much more data are needed with different studies, different animals Image: comparison of the coupling in and different behavioral contexts. Image: comparison of the coupling in Image: comparison of the coupling in Facial expression can hardly be used to recognize welfare in species like birds, reptiles etc. with poor Image: comparison of the coupling in facial expression. If it is possible to establish reliable EEG patterns associated with stress for different Image: comparison of the coupling in species in future studies, a translational approach for species with poor facial expression might be Image: comparison of the coupling in
289 290 291 292 293 294 295 295 296	expect a high intra-individual difference. To understand the change of phase amplitude coupling in Image: comparison of the coupling in relation to behavior in a better way_ much more data are needed with different studies, different animals Image: comparison of the coupling in and different behavioral contexts. Image: comparison of the coupling in Image: comparison of the coupling in Facial expression can hardly be used to recognize welfare in species like birds, reptiles etc. with poor Image: comparison of the coupling in Facial expression. If it is possible to establish reliable EEG patterns associated with stress for different Image: comparison of the coupling in species in future studies, a translational approach for species with poor facial expression might be Image: comparison of the coupling in the coupling i
289 290 291 292 293 294 295 295 296 297	expect a high intra-individual difference. To understand the change of phase amplitude coupling in relation to behavior in a better way_ much more data are needed with different studies, different animals and different behavioral contexts.Image: Comparison of the behavior in a better way_ much more data are needed with different studies, different animals and different behavioral contexts.Facial expression can hardly be used to recognize welfare in species like birds, reptiles etc. with poor facial expression. If it is possible to establish reliable EEG patterns associated with stress for different species in future studies, a translational approach for species with poor facial expression might be possible. It must be kept in mind that the activity of the brain is highly dynamic, also known as neural plasticity. The context can change the activity of the brain. Every measurement of the EEG can also
289 290 291 292 293 294 295 295 296 297 298	expect a high intra-individual difference. To understand the change of phase amplitude coupling in Image: Trelation to behavior in a better way_ much more data are needed with different studies, different animals and different behavioral contexts. Image: Trelation to behavior contexts. Facial expression can hardly be used to recognize welfare in species like birds, reptiles etc. with poor Image: Trelation to species with poor facial expression might be species in future studies, a translational approach for species with poor facial expression might be Image: Trelation to behavior and the activity of the brain is highly dynamic, also known as neural plasticity. The context can change the activity of the brain. Every measurement of the EEG can also Image: Trelation to the EEG can also potentially influence the content of the EEG – some kind of uncertainty relation. Telemetric EEG Image: Trelation to the term of
289 290 291 292 293 294 295 295 296 297 298 299	expect a high intra-individual difference. To understand the change of phase amplitude coupling in relation to behavior in a better way, much more data are needed with different studies, different animals and different behavioral contexts.Image: Comparison of the com
289 290 291 292 293 294 295 295 295 297 298 299 299 300	expect a high intra-individual difference. To understand the change of phase amplitude coupling in relation to behavior in a better way_ much more data are needed with different studies, different animals and different behavioral contexts. Facial expression can hardly be used to recognize welfare in species like birds, reptiles etc. with poor facial expression. If it is possible to establish reliable EEG patterns associated with stress for different species in future studies, a translational approach for species with poor facial expression might be possible. It must be kept in mind that the activity of the brain is highly dynamic, also known as neural plasticity. The context can change the activity of the brain. Every measurement of the EEG can also potentially influence the content of the EEG – some kind of uncertainty relation. Telemetric EEG recordings are extremely useful in this context, because they do not restrict the freedom of movement of the animals. In this context_it must also be discussed whether the location (home box during the rest
289 290 291 292 293 294 295 295 296 297 298 299 800 301	expect a high intra-individual difference. To understand the change of phase amplitude coupling in relation to behavior in a better way, much more data are needed with different studies, different animals and different behavioral contexts. Facial expression can hardly be used to recognize welfare in species like birds, reptiles etc. with poor facial expression. If it is possible to establish reliable EEG patterns associated with stress for different species in future studies, a translational approach for species with poor facial expression might be possible. It must be kept in mind that the activity of the brain is highly dynamic, also known a <u>s</u> neural plasticity. The context can change the activity of the brain. Every measurement of the EEG can also potentially influence the content of the EEG – some kind of uncertainty relation. Telemetric EEG recordings are extremely useful in this context, because they do not restrict the freedom of movement of the animals. In this context, it must also be discussed whether the location (home box during the rest condition versus treatment location during the stress condition) had an impact on the EEG. This
289 290 291 292 293 294 295 296 297 298 299 300 301 802	expect a high intra-individual difference. To understand the change of phase amplitude coupling in relation to behavior in a better way ₁ much more data are needed with different studies, different animals and different behavioral contexts. Facial expression can hardly be used to recognize welfare in species like birds, reptiles etc. with poor facial expression. If it is possible to establish reliable EEG patterns associated with stress for different species in future studies, a translational approach for species with poor facial expression might be possible. It must be kept in mind that the activity of the brain is highly dynamic, also known as neural plasticity. The context can change the activity of the brain. Every measurement of the EEG can also potentially influence the content of the EEG – some kind of uncertainty relation. Telemetric EEG recordings are extremely useful in this context, because they do not restrict the freedom of movement of the animals. In this context, it must also be discussed whether the location (home box during the rest condition versus treatment location during the stress condition) had an impact on the EEG. This possibility gannot be fully excluded. But, the home box and the examination stand are located in the same
289 290 291 292 293 294 295 296 297 298 299 300 301 802 303	expect a high intra-individual difference. To understand the change of phase amplitude coupling in relation to behavior in a better way, much more data are needed with different studies, different animals and different behavioral contexts. Facial expression can hardly be used to recognize welfare in species like birds, reptiles etc. with poor facial expression. If it is possible to establish reliable EEG patterns associated with stress for different species in future studies, a translational approach for species with poor facial expression might be possible. It must be kept in mind that the activity of the brain is highly dynamic, also known as neural plasticity. The context can change the activity of the brain. Every measurement of the EEG can also potentially influence the content of the EEG – some kind of uncertainty relation. Telemetric EEG recordings are extremely useful in this context, because they do not restrict the freedom of movement of the animals. In this context, it must also be discussed whether the location (home box during the rest condition versus treatment location during the stress condition) had an impact on the EEG. This <u>possibility cannot</u> be fully excluded. But, the home box and the examination stand are located in the same building; furthermore, both locations are familiar to the horses. Of course, the examination stand might
289 290 291 292 293 294 295 295 296 297 298 299 300 301 302 303 304	expect a high intra-individual difference. To understand the change of phase amplitude coupling in relation to behavior in a better way, much more data are needed with different studies, different animals and different behavioral contexts. Facial expression can hardly be used to recognize welfare in species like birds, reptiles etc. with poor facial expression. If it is possible to establish reliable EEG patterns associated with stress for different species in future studies, a translational approach for species with poor facial expression might be possible. It must be kept in mind that the activity of the brain is highly dynamic, also known <u>as</u> neural plasticity. The context can change the activity of the brain. Every measurement of the EEG can also potentially influence the content of the EEG – some kind of uncertainty relation. Telemetric EEG recordings are extremely useful in this context, because they do not restrict the freedom of movement of the animals. In this context, it must also be discussed whether the location (home box during the rest condition versus treatment location during the stress condition) had an impact on the EEG. This <u>possibility cannot</u> be fully excluded. But, the home box and the examination stand are located in the same building; furthermore, both locations are familiar to the horses. Of course, the examination stand might generally be associated with veterinary interventions for these horses_because they are routinely used to

Commented [JV19]: unclear Deleted: But

Commented [JV20]: stall?

Commented [JV21]: Stall? Deleted: can not

308	be triggered by novelty (here: a novel environment) but the stress factor may arise indirectly from the
309	location, which is associated with stress rather than directly due to the veterinary treatment itself.
310	
311	Since we did not use "experimental" horses exclusively for our study but demonstration horses of the
312	university that were used for teaching purposes in a hands-on training for veterinary students, we were not
313	able to select the horses in an optimal way for the purpose of the study. The number of training sessions
314	was limited to six veterinary interventions at six different days with three different horses. It would be
315	important to repeat this study with more horses and more observations.
316	
317	Another important factor is the miniaturization of EEG amplifiers as well as comfortable electrodes that
318	are as small as possible. For our future studies with a higher number of electrodes, we developed light
319	curing polymer electrodes (de Camp et al., 2018). Furthermore, in a current project, the amplifier with 8
320	Channels will be miniaturized to 9x12mm. This EEG system will be potentially useful to assess EEG
321	measurements in small species like birds or rodents. Another system is considered as bus system, to
322	include other bio-signals as for example ECG or breathing. Welfare monitoring may gain robustness by
323	integrating multi-modal data.
324	
325	Conclusions
326	We hypothesized that the HGS as well as the modulation index (phase amplitude coupling, PAC) derived
327	from EEG data are significantly different in the horses in accordance to different behavioral conditions and
328	second, that there is an association between HGS and PAC, which means the EEG could be an objective
329	tool for the assessment of animal welfare.
330	In conclusion, we were able to find an association between the scientifically validated horse grimace scale
331	and an EEG pattern, associated with two distinct behavioral states, namely stress and rest in horses. Phase

332 amplitude coupling might be a robust tool for the objective assessment of animal welfare and well-being of

- animals. Furthermore, it may be useful to judge about brain states as well as comfort of neonates or disabledpersons, who are unable to communicate actively.
- B35 Our pilot study gives <u>preliminary</u> evidence that EEG measurements can be an objective tool for the
 assessment of animal welfare and stress.
- 337
- 338

339 Acknowledgements

- 340
- 341 We would like to thank Prof. Heidrun Gehlen, PD Dr. Dr. Ann Kristin Barton and Sabita Stöckle

Commented [JV22]: ?

342					
343	References				
344					
345	Barnett J L, Hemsworth, P H. 1990. The Validity of Physiological and Behavioural Measures of Animal				
346	Welfare. Applied Animal Behaviour Science 25: 177-187.				
347					
348	Berger H. 1929. Ueber das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie 87: 527-570.				
349					
350	de Camp N V, Kalinka G, Bergeler J. 2018. Light-cured polymer electrodes for non-invasive EEG				
351	recordings. Sci Rep 8:14041.				
352					
353	Canolty RT, Edwards E, Dalal, SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight				
354	RT. 2006. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313.5793				
355	: 1626-28.				
356					
357	Cavelli M, Rojas-Líbano D, Schwarzkopf N, Castro-Zaballa S, Gonzalez J, Mondino A, Santana N,				
358	Benedetto L, Falconi A, Torterolo P.2017. Power and coherence of cortical High Frequency Oscillations				
359	during wakefulness and sleep. European Journal of Neuroscience 18: ejn 13718.				
360					
361	Coetzee J F. 2013 Assessment and management of pain associated with castration in cattle. <i>The Veterinary</i>				
362	Clinics of North America Food animal practice 29(1): 75-101.				
363					
364	Dalla Costa E, Minero M, Lebelt D, Stucke D, Canali E, Leach M C. 2014. Development of the Horse				
365	Grimace Scale (HGS) as a Pain Assessment Tool in Horses Undergoing Routine Castration. <i>PLoS ONE</i>				
366	9(3): e92281.				
367 bco					
808	Dalla Costa E, Pascuzzo R, Leach MC, Dal F, Lebelt D, Vantini S, <u>Minero M.</u> 2018. Can grimace scales				
369	estimate the pain status in norses and mice? A statistical approach to identify a classifier. <i>PLoS ONE</i> .				
271	15(8): e0200359 DOI: 10.1571/journal.pone.0200359				
b72	Grupou P.V.E. Croig K.D. 1087. Dain expression in properties: facial action and any Pain 28: 205.410				
512	Grunau K V E., Clarg K D. 1987. Pain expression in neonates. factar action and cry. <i>Full</i> 28. 393-410.				
373	Häger C, Biernot S, Buettner M, Glage S, Keubler LM, Held N, Bleich EM, Otto K, Müller CW, Decker				
374	S, Talbot SR, Bleich A., 2017. The Sheep Grimace Scale as an indicator of post-operative distress and	 Delete	d: et al.		
375	pain in laboratory sheep. PLoS One 12(4):e0175839. DOI: 10.1371/journal.pone.0175839	Forma	tted: Germ	an (Germa	any)

376 377 378 Hausberger M. Stomp M. Sankey C. Brajon S. Lunel C. Henry S. 2019. Mutual interactions between cognition and welfare: the horse as an animal model. Neuroscience and Biobehavioral Reviews, Elsevier, 2019, 107, pp.540-559. DOI:10.1016/j.neubiorev.2019.08.022 hal-02278242

Formatted: English (United States)

Hohlbaum K, Bert B, Dietze S, Palme R, Fink H, Thöne-Reineke C. 2017. Severity classification of repeated isoflurane anesthesia in C57BL/6JRj mice-Assessing the degree of distress. <i>PLoS One</i> 12(6):e0179588 DOI: 10.1371/journal.pone.0179588			
Huizinga J D, Parsons S P, Chen J-H, Pawelka A, Pistilli M, Li C <u>, Yu Y, Ye P, Liu Q, Tong M, Zhu Y F.</u> <u>Wei, D</u> . 2015 Motor patterns of the small intestine explained by phase-amplitude coupling of two pacemaker activities: the critical importance of propagation velocity. <i>Am J Physiol Cell Physiol</i> 309: C403-C414.			
Kida T. Tanaka E. Kakigi R. 2016. Multi-Dimensional Dynamics of Human Electromagnetic Brain			
Activity. Frontiers in Human Neuroscience 9:713.			
Klemm W R. 1992. Are there EEG correlates of mental states in animals? <i>Neuropsychobiology</i> 26(3): 151-			
65.			
Langford D.I. Bailay, A.L. Chanda M.L. Clarks S.E. Drymmond T.E. Eshols S. Click S. Ingress I. Klasson			
Langfold D J, Baney A L, Chanda M L, Clarke S E, Diuminiond T E, Echols S, <u>Onck S, Ingrao J, Klassen-</u> Boss, T. LaCroix Erslich M L. Matsumiya L. Sorge, P. E. Sotosinel S G. Tabaka LM, Wong D, yan den			
Ross, I, Lauroix-Fraisn M L, Matsumiya L, Sorge K E, Sotocinal S G, Tabaka J M, Wong D, Van den Maagdenberg A M I M, Ferrari M D, Craig K D, Mogil I S, 2010, Coding of facial expressions of pain in			
the laboratory mouse Nature Methods 7(6): 447-9			
the laboratory mouse. Nature methods 7(6). 447-2.			
Lapray D. Bergeler J. Dupont E. Thews O. and Luhmann H J. 2009. A novel telemetric system for recording			
brain activity in small animals. In Telemetry: Research, Technology and Applications, D. Barculo and J.			
Daniels, eds. Nova Science Publishers), pp. 195-203.			
Lesimple C, Hausberger, M. 2014. How accurate are we at assessing others' well-being? The example of			
welfare assessment in horses. Frontiers in Psychology 5(21), doi: 10.3389/fpsyg.2014.00021			
OIE (World Organization for Animal Health). Chapter 7.1. Introduction to the recommendations for animal			
welfare. Terrestrial Animal Health Code 2010. Available at			
http://www.oie.int/index.php?id=169&L=0&htmfile=chapitre_1.7.1.htm.			
Rochais C, Sébilleau M, Menoret M, Oger M, Henry S, Hausberger M &			
Cousillas H. 2018. Attentional state and brain processes: state-dependent lateralization of EEG profiles in			
horses. Scientific Reports 8:10153 DOI:10.1038/s41598-018-28334-9.			
Rosselot P, Mendonca I, Gonzalez I, Tadich I. 2019. Benavioral and Physiological Differences between			
working morses and Chinean Rodeo noises in a manufing rest. Animais 9, 397, DOI: 10.3390			
Scheffzijck C. Kukushka VI. Vyssotski A.I. Draguhn A. Tort A.R.I. Brankack, I. 2011. Selective Counting			
between Theta Phase and Neocortical Fast Gamma Oscillations during REM-Sleep in Mice PLoS ONF			
6(12): e28489.			

421 422 423	Senko T, Olexova L, Mokosakova M, Krskova L. 2017. Angiotensin II enhancement during pregnancy influences the emotionality of rat offspring (Rattus norvegicus) in adulthood. Potential use of the Rat Grimace Scale. <i>Neuro Endocrinol Lett</i> 38(2):117-123	
424		
425 426	Scheffzück C, Kukushka V I, Vyssotski A L, Draguhn A, Tort A B L, Brankack J. 2013. Global slowing of network oscillations in mouse neocortex by diazepam. <i>Neuropharmacology</i> 65: 123-133.	
427		
428	Sotocinal S G, Sorge R. E, Zaloum A, Tuttle A H, Martin L J, Wieskopf J S, <u>Mapplebeck J C S, Wei P</u> ,	
429	Zhan S, Zhang S, McDougall J J, King O D, Mogil J S. 2011. The Rat Grimace Scale: A partially automated	
430 431	method for quantifying pain in the laboratory rat via facial expression. <i>Molecular Pain</i> 7:55.	
432	Tadel F, Baillet S, Mosher J C, Pantazis D, Leahy R M. 2011. Brainstorm: a user-friendly application for	
433	MEG/EEG analysis. Comput. Intell. Neurosci. 879716.	
434		
435	Tort A B, Komorowski R, Eichenbaum H, Kopell N. 2010. Measuring Phase-Amplitude Coupling Between	
436	Neuronal Oscillations of Different Frequencies. J Neurophysiol 104: 1195-1210.	
437		
438	Vanhatalo S, Tallgren P, Andersson S, Sainio K, Voipio J, and Kaila K. 2002. DC-EEG discloses	
439	prominent, very slow activity patterns during sleep in preterm infants. <i>Clin.Neurophysiol.</i> 113: 1822-1825.	
440		
441	Figure legends	
442	Fig 1. Horse in examination stand. The telemetry unit is fixed at the shoulder with a piece of tape. As an	
443	example, typical facial expressions in this picture are: Ears oriented backwards (score 2), closed eyes	
444	(here 0), tension above eyes (score 1), tension in the region around jaw muscles (score 1), tension around	
445	muzzle and prominent chin (score 1), tension around nozzles, flattened profile (score 2). The sum of all	
446	facial expression scores is 7 for this image.	
447	Fig 2. Electrode positions. The ground and reference electrode were placed above the nose (2,3), the	
448	recording electrode was placed in a parietal position between the right eye and ear (1).	
449		
450	Fig 3. Canolty maps for rest EEG and stress EEG. Phase related amplitude modulation is shown as	
451	heat map. The low frequency for both behavioral conditions is 8 Hz (indicated as white sine wave in	
452	subplot a). Maximal amplitude modulation is visible during the up- an down stroke of the low frequency	
453	in the gamma and high gamma band with a peak at 130 Hz during rest (subplot a). In the stress condition	
454	(subplot b) the coupling pattern is quantitatively weaker, additionally the phase relation is changed.	
455	Amplitude modulation is maximal during the down stroke, the upstroke is only weakly associated with	
456	amplitude modulation in contrast to the resting condition (subplot a). Maximal modulation index values	
457	are again visible around 130 ° in the high gamma range.	
458	Fig 4. Number of statistically significant differences of phase related amplitude modulation between	
459	rest and stress. Most differences of the EEG derived modulation index between behavioral states can be	
460	found for the upstroke of the phase frequency around 60°. A minor fraction of significant differences is	
461	visible during the down stroke around 210°.	
462	Fig 5. EEG raw data trace with nested activity of multiple bands. One second of original EEG	
463	recording is shown as raw data trace (upper panel) and wavelet analysis (lower panel). High power is	

464 coded as warm color (red). The wavelet analysis reveals nested activity in the alpha, beta and gamma465 band of the EEG.

466