Seasonal pattern of influenza and the association with meteorological factors based on wavelet analysis in Jinan City, eastern China, 2013-2016

Wei Su Corresp., Equal first author, 1, Ti Liu Equal first author, 2, Xingyi Geng 3, Guoliang Yang

Corresponding Author: Wei Su Email address: suwei@sdufe.edu.cn

patterns

under varweillance, worldwick

Background: In uenza is a worldwide surveillance disease which has dicerent characteristics of seasonality in temperate and tropical regions. Previous studies have illustrated that the seasonality of in uenza was modeled by climate variables. Hence, we aim to study the potential meteorological drivers of incuenza seasonality in Jinan, China.

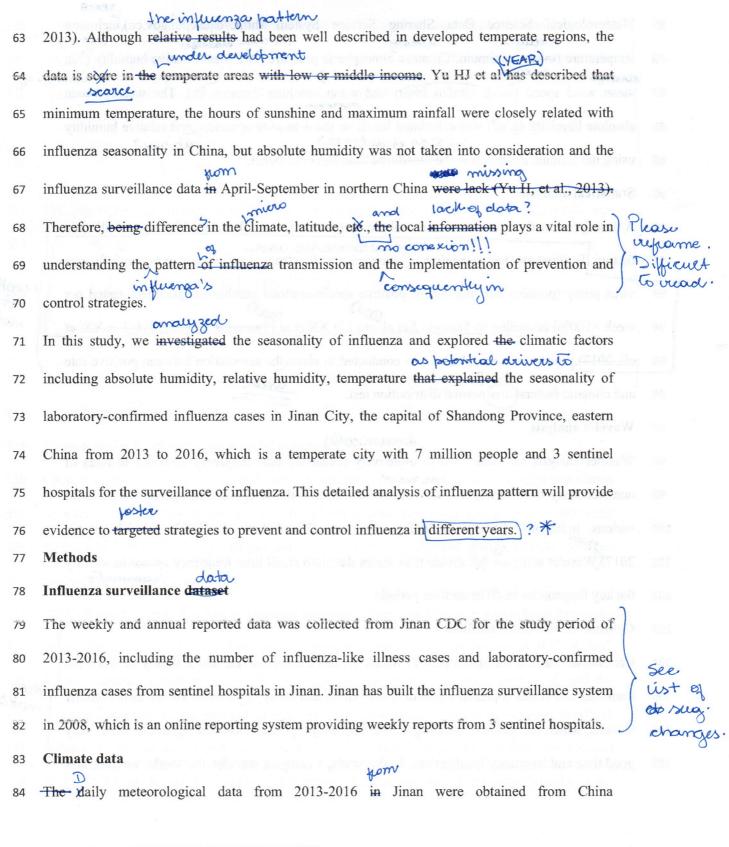
Methods: The raw data of three inquenza sentinel hospitals and relative climatic factors (minimum, mean temperature, relative humidity, sunshine, rainfall and speed of wind), from 2013-2016, were collected. The statistical analysis and wavelet analysis were used to explore the epidemiological characteristics of inquenza and the potential association between in uenza virus and climatic factors.

Results: We found the dynamics of incuenza characterized by annual cycle with remarkable winter epidemic peak from December to February. Weekly mean atmosphere pressure, the weekly temperature (mean and minimum) and the weekly humidity (relative and absolute) were potential climatic drivers to shape the incuenza seasonality, During the epidemic season, the temperature and the relative humidity preceded the onset of in uenza epidemic for approximately 6-8 weeks and 3-4 weeks, respectively.

Conclusion: Climatic factors were signicantly associated with inquenza seasonality in Jinan at the inquenza epidemic season, which provided the scientic support for the inquenza control and prevention.

-> 1) Are the findings in line with finan exit vaccination ralendar?

¹ Shandong University of Finance and Economics, Jinan, Shandong Province, China


² Shandong Center for disease control and prevention, Jinan, Shandong Province, China

³ Jinan Center for disease control and prevention, Jinan, Shandong Province, China

42	Introduction	
43	Influenza remains a global public health concern that the annual epidemics may cause 10-20% of in the population worldwide (CITE)	
44	the population infection, 3-5 million severe illness and 29.1-64.6 deaths worldwide (Iuliano It is estimated that	
45	AD et al.,2018) The influenza epidemics show obvious seasonality in winter in temperate	
46	areas in developed countries and more diverse in tropical and subtropical areas, where influenza	
47	displays semi-annual or annual epidemic cycles, and year-round activity (Tamerius JD, et al.,	
48	2013). However, difference exists between regions and durations as well as in magnitude of	
49	transmission periods (Onozuka D et al., 2015). Azziz Baumgartner et al-illustrated 7 of 47 (15%)	
50	temperate countries occurring two or three influenza epidemic period every year, and year-round	
51	activity in 3 of 43 (7%) temperate countries (Azziz BE et al., 2012). Thus, accurately	
52	documenting dynamics of influenza epidemic and understanding the epidemic patterns of them,	
53	are of great important from the viewpoint of not only scientific interest, but also of public health	
54	(Thai PQ et al., 2015). epidemics	?
55	The series of influence is associated with many factors ex virus variation, climate, to	succeptab
56	environmental changes, etc., among which the climatic factors play the most important role in the seen seen on the one that	in influenz
57	(Lofgren E et al., 2007; Tamerius J, et al., 2011; Lowen AC et al., 2014; Tamerius J, et al., 2011).	
58	The experimental and epidemiological studies illustrated that decreases of temperature and	
59	absolute humidity (AH) increased influenza virus survival and transmission in temperate regions	
60	(Shaman J et al., 2011; Shaman J et al., 2009; Shaman J et al., 2010). Tamerius JD et al showed	
61	that the onset of influenza epidemics was associated with the cold-dry and humid-rainy condition	
62	in temperate and tropical areas, respectively (Tamerius JD, et al., 2013; Bloom-Feshbach K et al.,	

Peerl reviewing PDF | (2019:04:36671:0:1:NEW 30 Apr 2019)

* Specify the areas you are talking about. Is it temperate X tropical? Do you have examples? In the mext phrases you cite a istudy just about temperate regions.

PeerJ reviewing PDF | (2019:04:36671:0:1:NEW 30 Apr 2019)

*Please cite istudies from Unina, even if it is about other awas. ?) why? what do you mean by "different years"? Do you mean in the next years?

107

Meteorological Science Data Sharing Service System (http://data.cma.gov.cn),including 85 (average, autosses average temperature (mean, minimum, °C), mean atmospheric pressure (Pa), mean relative humidity (%), 86 (average, accumulated? (average, average of mean wind speed (m/s), rainfall (mm) and mean sunshine duration (h). The weekly mean 87 absolute humidity (g/m³) was calculated based on the data of temperature, and relative humidity 88 by Xiao et al (2012) using the formula described in the literature (Xiao H, et al., 2012). 89 90 Statistical analysis A descriptive analysis was used to reveal the characteristics of influenza epidemics and climatic 91 As outcome we used factors. To illustrate the seasonality of influenza, we choose the weekly positive rate as influenza 92 virus proxy (positive rate=number of positive specimens/total number of specimens tested per 93 week ×100%) according to Tameriu J et al and Liu XX et al (Tamerius J, et al., 2011; Liu XX, et 94 al., 2017). Spearman's correlation was conducted to show the association between positive rate 95 unear and climatic factors after normal distribution test. 96 Wavelet analysis 97 dynamically Wavelet analysis has been used to effectively reveal the time-frequency structure features of 98 how been non-stationary time series, and was utilized to explore the temporal and spatial variations of 99 diseases including influenza (Xiao H, et al., 2012; Liu XX, et al., various infectious 100 2017) Wavelet analyses can divide time series data into small time-frequency spaces to identify 101 fragments the key frequencies in different time periods. 102 Continuous wavelet transform 103 Continuous wavelet transform (CWT) which divides the time series into a family of wavelets, 104 translates and scales copies of a generally oscillating and decaying function known as the mother 105 wavelet, which is capable of building a time-frequency representation of a signal that offers very 106

good time and frequency localizations. In this study, a complex wavelet, the Morlet wavelet, was