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Background: Single cell omics technologies present unique opportunities for biomedical and life
sciences from lab to clinic, but the high dimensional nature of such data poses challenges for
computational analysis and interpretation. Furthermore, FAIR data management as well as data privacy
and security become crucial when working with clinical data, especially in cross-institutional and
translational settings. Existing solutions are either bound to the desktop of one researcher or come with
dependencies on vendor-specific technology for cloud storage or user authentication.

Results: To facilitate analysis and interpretation of single-cell data by users without bioinformatics
expertise, we present SCelVis, a flexible, interactive and user-friendly app for web-based visualization of
pre-processed single-cell data. Users can survey multiple interactive visualizations of their single cell
expression data and cell annotation, define cell groups by filtering or manual selection and perform
differential gene expression, and download raw or processed data for further offline analysis. SCelVis can
be run both on the desktop and cloud systems, accepts input from local and various remote sources
using standard and open protocols, and allows for hosting data in the cloud and locally. We test and
validate our visualization using publicly available scRNA-seq data.

Methods: SCelVis is implemented in Python using Dash by Plotly. It is available as a standalone
application as a Python package, via Conda/Bioconda and as a Docker image. All components are
available as open source under the permissive MIT license and are based on open standards and
interfaces, enabling further development and integration with third party pipelines and analysis
components. The GitHub repository is https://github.com/bihealth/scelvis.
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16 Abstract

17 Background: Single cell omics technologies present unique opportunities for biomedical and life 
18 sciences from lab to clinic, but the high dimensional nature of such data poses challenges for 
19 computational analysis and interpretation. Furthermore, FAIR data management as well as data privacy 
20 and security become crucial when working with clinical data, especially in cross-institutional and 
21 translational settings. Existing solutions are either bound to the desktop of one researcher or come with 
22 dependencies on vendor-specific technology for cloud storage or user authentication.

23 Results: To facilitate analysis and interpretation of single-cell data by users without bioinformatics 
24 expertise, we present SCelVis, a flexible, interactive and user-friendly app for web-based visualization of 
25 pre-processed single-cell data. Users can survey multiple interactive visualizations of their single cell 
26 expression data and cell annotation, define cell groups by filtering or manual selection and perform 
27 differential gene expression, and download raw or processed data for further offline analysis. SCelVis can 
28 be run both on the desktop and cloud systems, accepts input from local and various remote sources using 
29 standard and open protocols, and allows for hosting data in the cloud and locally. We test and validate our 
30 visualization using publicly available scRNA-seq data.

31 Methods: SCelVis is implemented in Python using Dash by Plotly. It is available as a standalone 
32 application as a Python package, via Conda/Bioconda and as a Docker image. All components are 
33 available as open source under the permissive MIT license and are based on open standards and 
34 interfaces, enabling further development and integration with third party pipelines and analysis 
35 components. The GitHub repository is https://github.com/bihealth/scelvis.
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36 Introduction

37 Single-cell omics technologies, in particular single-cell RNA sequencing (scRNA-seq), allow for the 
38 high-throughput profiling of gene expression in thousands to millions of cells with unprecedented 
39 resolution. Recent large-scale efforts are underway to catalogue and describe all human cell types (Regev 
40 et al., 2017) and to study cells and tissues in health and disease (https://lifetime-fetflagship.eu). Single-
41 cell sequencing could therefore become a routine tool in the clinic for comprehensive assessments of 
42 molecular and physiological alterations in diseased organs as well as systemic responses, e.g., of the 
43 immune system. The enormous scale and high-dimensional nature of the resulting data presents an 
44 ongoing challenge for computational analysis (Stegle, Teichmann & Marioni, 2015). Ever more 
45 sophisticated methods, e.g., deep learning frameworks (Eraslan et al., 2019), extract multiple layers of 
46 information  from cell types to lineages and differentiation programs. Many of these methods, their 
47 mathematical background, and the underlying assumptions will remain opaque to users without specific 
48 bioinformatics expertise. At the same time, an in-depth understanding of the relevant biology is often 
49 beyond the know-how of typical bioinformatics researchers. More than ever, single-cell omics requires 
50 close communication and collaboration from wet and dry lab experts. Due to the large amount of data, 
51 communication needs to be based on interactive channels (e.g., web-based apps) rather than static tables. 
52 Further, as single-cell omics moves towards the clinic, FAIR (Wilkinson et al., 2016) data management, 
53 data privacy, and data security issues need to be handled appropriately. All employed methods should be 
54 able to scale towards handling a large number of users and even larger numbers of samples.

55 State of the Art. Web apps have been used extensively in the single-cell literature and are most 
56 commonly built on Shiny (RStudio Inc., 2014). However, standalone and general-purpose tools are still 
57 quite rare. Pagoda (Fan et al., 2016) comes with a simple intuitive web app, which is limited to Pagoda 
58 output and requires manual preprocessing. Cerebro (Hillje, Pelicci & Luzi, 2019) is a Shiny web app and 
59 provides relatively rich functionality such as gene set enrichments and quality control statistics, but 
60 requires extensive manual preprocessing and is not (yet) ready for larger frameworks. The Single Cell 
61 Viewer (SCV; Wang et al., 2019) also relies on Shiny, but its input is limited to Seurat objects. 
62 CellexalVR (Legetth et al., 2018) provides an immersive virtual reality platform for the visualization and 
63 analysis of scRNA-seq data, but requires special hardware. Cellxgene 
64 (https://chanzuckerberg.github.io/cellxgene/) is very fast and user-friendly but restricted to visualizing 
65 two-dimensional embeddings. Finally, the Broad Single Cell Portal 
66 (https://portals.broadinstitute.org/single_cell) provides a large-scale web service for a large number of 
67 users and studies. It includes a 10X Genomics data processing pipeline and user authentication/account 
68 management. However, the underlying Docker image strongly depends on vendor-specific cloud systems 
69 such as Google cloud and Broad Firecloud services. Its implementation thus poses practical hurdles, in 
70 particular if it is to be integrated into existing clinical infrastructure.
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71 Materials & Methods

72 SCelVis is based on Dash by Plotly (Plotly Technologies Inc., 2015) and accepts data in HDF5 format as 
73 AnnData objects. These objects can be created using Scanpy (Wolf, Angerer & Theis, 2018), provide a 
74 scalable and memory-efficient data format for scRNA-seq data and integrate naturally into python 
75 environments. SCelVis also provides conversion functionality to AnnData from raw text, loom format or 
76 10X Genomics CellRanger output. The built-in converter is accessible from the command line and a web-
77 based user interface (Figure 1). One HDF5 file or a folder containing multiple such files can then be 
78 provided to SCelVis for visualization, and data sets can be selected for exploration on the graphical web 
79 interface. To enable both local and cloud access, data can be read from the file system or remote data 
80 sources via the standard internet protocols FTP, SFTP, and HTTP(S). SCelVis also provides data access 
81 through the open source iRODS protocol (Rajasekar et al., 2010) or the widely-used Amazon S3 object 
82 storage protocol. The data sources can be given on the command line and as environment variables as is 
83 best practice for cloud deployments (Adam Wiggins, 2011). The latter allows for easy “serverless” and 
84 cloud deployments.

85 SCelVis is built around two viewpoints on single-cell data (Figure 1). On the one hand, it provides a cell-
86 based view, where users can browse and investigate cell annotations (e.g., cell type) and cell-specific 
87 statistics (sequencing depth, cell type proportions, etc.) in multiple visualizations, e.g., on a t-SNE or 
88 UMAP embedding, as violin plots or bar charts. Cells to be displayed can be filtered by various criteria, 
89 and groups of cells can be defined manually on a scatter plot as input for on-the-fly differential gene 
90 expression analysis. On the other hand, SCelVis provides a gene-based view that lets users explore gene 
91 expression in multiple visualizations on embeddings or as violin or dot plots.  Relevant genes can be 
92 specified by hand or selected directly from lists of marker or differential genes. 

93 The source code is available under the permissive MIT license on the GitHub repository at 
94 https://github.com/bihealth/scelvis, which also contains a tutorial movie and a link to a public 
95 demonstration instance. The software can be run both in the cloud and on workstation desktops via 
96 Docker.

97 Usage Example

98 We provide three example datasets within our Github repository or via figshare. First, a small synthetic 
99 simulated dataset created for testing and illustration purposes, and secondly a publicly available processed 
100 scRNA-seq dataset from 10X Genomics containing ~1000 cells of a mix of human HEK293T and murine 
101 NIH3T3 cells. Finally, we reanalyzed a published data set of stimulated and control peripheral blood 
102 mononuclear cells (PBMSc; Kang et al., 2018) with the Seurat "data integration" workflow (Stuart et al., 
103 2019) and made it accessible via https on figshare (https://files.figshare.com/18037739/pbmc.h5ad; 
104 Figure 2).  With the species-mix dataset from 10X, the relevant plot to demonstrate a low doublet rate can 
105 be readily re-created (Fig. 2A left; compare to Fig. 2a in Zheng et al. (2017), which shows data obtained 
106 with a previous version of the 10X chemistry), and the species composition of the different clusters found 
107 by CellRanger can be easily interrogated (Fig. 2A right). For the PBMC dataset, it is straightforward to 
108 perform differential gene expression analysis, e.g., between stimulated and control monocytes by using 
109 the "filter" and "differential gene expression" buttons (Fig. 2B). Summarized gene expression for cell-
110 type marker genes as well as for general (e.g., IFI6) or cell-type specific (e.g., CXCL10) differential 
111 genes can be displayed in a split dot plot as in Fig. 2d of Stuart, Butler et al. 2019. Hence, our 
112 visualizations for the published datasets are equivalent to those obtained from other visualization tools, 
113 e.g., Seurat. 
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114

115 Conclusions
116 In this manuscript, we have presented SCelVis, a method for the interactive visualization of single-cell 
117 RNA-seq data. It provides easy-to-use yet flexible means of scRNA-seq data exploration for researchers 
118 without computational background. SCelVis takes processed data, e.g., provided by CellRanger or a 
119 bioinformatics collaboration partner, as input, and focuses solely on visualization and explorative 
120 analysis. Great care has been taken to make the method flexible in usage and deployment. It can be used 
121 both on a researcher’s desktop with minimal training yet its usage scales up to a cloud deployment. Data 
122 can be read from local file systems but also from a variety of remote data sources, e.g., via the widely 
123 deployed (S)FTP, S3, and HTTP(S) protocols. This allows for deploying it in a Docker container on 
124 “serverless” cloud systems. As both the application and data can be hosted on the network or cloud 
125 systems, the application facilitates cross-institutional research. For example, a sequencing or 
126 bioinformatics core unit can use it for giving access to non-computational collaboration partners over the 
127 internet. This is particularly relevant as it comes with no dependency on any vendor-specific technology 
128 such as the Google or Facebook authentication that appears to become pervasive in today’s life science.

129

130
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Figure 1
Overview of SCelVis Architecture and User Interface

A: Data can be converted from CellRanger output, loom format or raw text to an input HDF5
file with the SCelVis converter. These files can be uploaded into the web app or loaded
remotely via various protocols such as S3, HTTP, etc. SCelVis can then be run locally or on a
server/in the cloud and provides various views of the analysis results. B: screenshot of the
SCelVis interface for a mixture of human and mouse cells from 10X genomics. Users can
browse the "about" tab to obtain background information on the data (1), select the "cell
annotation" tab (2) to investigate cell meta data or the "gene expression" tab (3) to
interrogate gene expression. The cell annotation view provides scatter, violin and bar plots
(4). Displayed cells can be filtered (5) by a number of criteria. In typical cases, the scatter
plot would be configured with embedding variables on the x- and y-axis (6) and a categorical
or continuous variable for the coloring (7). Differential gene expression (8) can be performed
by manually selecting groups of cells on the scatter plot, using "box select" or "lasso select"
in hover bar on the top right-hand corner of the plot (9). Here, plot results can also be
downloaded in png format. The underlying data can be obtained from a link at the bottom
left (10). Other datasets can be selected, uploaded or converted from the menu on the top
right (11).
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Figure 2
Visualization of publicly available scRNA-seq data.

A+B: scRNA-seq data for a 1:1 mixture of 1k fresh frozen human (HEK293T) and mouse
(NIH3T3) cells (Chromium v3 chemistry) were taken from the 10X website (CellRanger
output) and visualized with SCelVis. A scatter plot shows human vs. mouse UMI counts per
cell and confirms a low doublet rate (A), while a bar plot visualizes the species composition
of the different clusters defined by CellRanger (B). C-F: scRNA-seq data for stimulated vs.
control PBMCs (Kang et al. 2018). The cluster annotation resulting from the Seurat sample
alignment workflow (https://satijalab.org/seurat/v2.4/immune_alignment.html) can be
interrogated and monocyte markers can be displayed by selecting from a table of marker
genes (C+D). Stimulated or control monocytes can then be isolated using "filter cells" and
defined as groups "A" or "B", respectively, for differential expression analysis (E).
Summarized gene expression can be displayed for marker genes as well as cell-type specific
or globally differential genes in a split dot plot (F).
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