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ABSTRACT
Stylommatophora is one of themost speciose orders ofGastropoda, including terrestrial
snails and slugs, some of which are economically important as human food, agricultural
pests, vectors of parasites or due to invasiveness. Despite their great diversity and
relevance, the internal phylogeny of Stylommatophora has been debated. To date, only
34 stylommatophoran mitogenomes were sequenced. Here, the complete mitogenome
of an invasive pest slug, Arion vulgaris Moquin-Tandon, 1855 (Stylommatophora:
Arionidae), was sequenced using next generation sequencing, analysed and compared
with other stylommatophorans. The mitogenome of A. vulgaris measures 14,547 bp
and contains 13 protein-coding, two rRNA, 22 tRNA genes, and one control region,
with an A + T content of 70.20%. All protein coding genes (PCGs) are initiated with
ATN codons except for COX1, ND5 and ATP8 and all are ended with TAR or T-
stop codons. All tRNAs were folded into a clover-leaf secondary structure except for
trnC and trnS1 (AGN). Phylogenetic analyses confirmed the position of A. vulgaris
within the superfamily Arionoidea, recovered a sister group relationship between
Arionoidea and Orthalicoidea, and supported monophyly of all currently recognized
superfamilies within Stylommatophora except for the superfamily Helicoidea. Initial
diversification time of the Stylommatophora was estimated as 138.55 million years
ago corresponding to Early Cretaceous. The divergence time of A. vulgaris and Arion
rufus (Linnaeus, 1758) was estimated as 15.24 million years ago corresponding to one
of Earth’s most recent, global warming events, the Mid-Miocene Climatic Optimum.
Furthermore, selection analyses were performed to investigate the role of different
selective forces shaping stylommatophoranmitogenomes. Although purifying selection
is the predominant selective force shaping stylommatophoran mitogenomes, six
genes (ATP8, COX1, COX3, ND3, ND4 and ND6) detected by the branch-specific
aBSREL approach and three genes (ATP8, CYTB and ND4L) detected by codon-
based BEB, FUBAR and MEME approaches were exposed to diversifying selection.
The positively selected substitutions at the mitochondrial PCGs of stylommatophoran
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species seems to be adaptive to environmental conditions and affecting mitochondrial
ATP production or protection from reactive oxygen species effects. Comparative
analysis of stylommatophoran mitogenome rearrangements using MLGO revealed
conservatism in Stylommatophora; exceptions refer to potential apomorphies for
several clades including rearranged orders of trnW-trnY and of trnE-trnQ-rrnS-trnM-
trnL2-ATP8-trnN-ATP6-trnR clusters for the genus Arion. Generally, tRNA genes tend
to be rearranged and tandem duplication random loss, transitions and inversions are
the most basic mechanisms shaping stylommatophoran mitogenomes.

Subjects Bioinformatics, Evolutionary Studies, Genomics, Zoology
Keywords Mollusca, Pulmonate phylogeny, Garden slug, Gene rearrangement, Next generation
sequencing, Positive selection

INTRODUCTION
Gastropoda is the most speciose class of Mollusca, including snails and slugs with very
diverse feeding habits and a wide range of habitats (Barker, 2009). The about 63,000
gastropod species represent 476 families (Bouchet et al., 2017) and radiated in marine,
freshwater and terrestrial ecosystems with detritivorous, herbivorous, carnivorous,
predatory or parasitic life styles (Ponder & Lindberg, 1997). Most of the terrestrial
gastropods are stylommatophoran pulmonates, with approximately 30,000 species
distributed from polar to tropical regions (Mordan &Wade, 2008). Stylommatophorans
are economically important as human food and because of their status of being major
agricultural pests and/or vectors of parasites and invasiveness (Barker, 2009). The
origin of Stylommatophora is within panpulmonate heterobranchs (Jörger et al., 2010)
and the monophyly of the order is undisputed. Internal phylogenetic relationships of
stylommatophorans were poorly resolved based on morphology but then investigated
molecularly in different sampling sets of taxa with various methods and basically relatively
short sequences. Tillier, Masselmot & Tillirt (1996) used the D2 region of 28S rRNA to
explore the phylogenetic relationships of pulmonates including a few stylommatophoran
species; however, they reported that these short sequences would not have sufficient
resolving power for investigating the relationships owing to the probable rapid radiation
of pulmonate species. Wade, Mordan & Clarke (2001) and Wade, Mordan & Naggs (2006)
presented more comprehensive molecular phylogenies based on relatively longer sequence
information of the rRNA gene-cluster using 104 species (Wade, Mordan & Clarke, 2001)
and 160 species (Wade, Mordan & Naggs, 2006) from Stylommatophora. Although these
phylogenetic reconstructions accurately supported the monophyly of achatinoid and
non-achatinoid clades, some clades of families that traditionally have been assumed to
be monophyletic and some of the morphological groups based on excretory system; in
particular, monophyly of some families and morphological groups were not supported.

The emergence and divergence time of Stylommatophora is also doubtful due to
the fragmentary fossil records. The earliest land snails identified as stylommatophoran
species are from upper Carboniferous and Permian but their classification has still
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been controversial (Solem & Yochelson, 1979; Hausdorf, 2000). Bandel (1991) and
Roth et al. (1996) suggested the oldest known fossil records from late Jurassic and
Early Cretaceous (Cheruscicola) and Early Cretaceous (Pupilloidea). Tillier, Masselmot
& Tillirt (1996) inferred that the Stylommatophora emerged in the transition between late
Cretaceous andPaleocene (65–55Ma) congruentwith fossil records, based on themolecular
data.However, all of the previousmolecular dating analyses on Stylommatophora have been
performed either with limited numbers of taxa or molecular markers (Tillier, Masselmot
& Tillirt, 1996; Jörger et al., 2010; Dinapoli & Klussmann-Kolb, 2010; Zapata et al., 2014),
therefore there is a need for further investigations in a more comprehensive sampling
using more markers for better understanding of the phylogeny and timing of evolution of
Stylommatophora.

In recent years, there has been a rapid increase in the number of sequencedmitochondrial
genomes (mitogenomes) in parallel to revolution on high throughput DNA sequencing
technology and data mining, providing a powerful tool for phylogenetic analysis (Moritz,
Dowling & Brown, 1987; Boore, 1999; Bernt et al., 2013a). Animal mitogenomes are double-
stranded circular molecules which are ∼16 kb in length and contain 13 protein coding
genes (PCGs) forming the respiratory chain complexes: Complex I or NADH: ubiquinone
oxidoreductase contains seven subunits of NADH dehydrogenase (ND1–6 and ND4L),
complex III or ubiquinol: cytochrome c oxidoreductase consists of cytochrome b (CYTB),
complex IV or cytochrome c oxidase comprises three subunits of cytochrome c oxidase
(COX1–COX3) and complex V or ATP synthase includes two subunits of the ATPase
(ATP6 and ATP8). The mitochondrial PCGs have generally been supposed to be evolving
under neutral or nearly neutral selection (Ballard & Kreitman, 1995). Although it has been
suggested that these genes are likely to be under strong purifying selection considering
their functional importance, the selective pressures might vary even among closely related
species and be influenced by environmental conditions (Meiklejohn, Montooth & Rand,
2007). The mitogenomes also encode the small and large subunit rRNAs (rrnL and rrnS)
and twenty-two tRNA genes for the translation process of PCGs. In general, they harbour
a single large non-coding region containing control elements necessary for replication
and transcription (Boore, 1999). Mitogenomes have become widely used tools in recent
phylogeny, phylogeography and molecular dating analyses in various taxa, because of
their (1) relatively small size, (2) the high copy number, (3) maternal inheritance type
and (4) relatively rapid rate of evolutionary change (Moritz, Dowling & Brown, 1987; Gray,
1989). The sequence information of mitogenomes has also been used in reconstructing
phylogenies of several taxonomic groups within/including Gastropoda (White et al.,
2011; Stöger & Schrödl, 2013; Sevigny et al., 2015; Uribe et al., 2016a; Uribe et al., 2016b;
Romero, Weigand & Pfenninger, 2016; Yang et al., 2019). Although there have been some
criticisms about the usage of mitogenomes in construction of gastropod phylogeny
because of long branch attraction, substitution saturation and strand-specific skew bias
(Stöger & Schrödl, 2013), within the recently diversified lineages of gastropods, the use
of mitogenomes resulted in highly resolved phylogenies (Williams, Foster & Littlewood,
2014; Osca, Templado & Zardoya, 2014). Besides the use of the mitogenome in sequence-
based phylogenies, mitogenome rearrangements can also provide phylogenetic signals
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(Grande, Templado & Zardoya, 2008; Stöger & Schrödl, 2013; Xie et al., 2019b). Although
the mitogenome is widely used in phylogeny of many gastropod groups (Arquez, Colgan
& Castro, 2014; Osca, Templado & Zardoya, 2014; Sevigny et al., 2015; Uribe, Zardoya &
Puillandre, 2018), there are limited numbers of reported stylommatophoran mitogenomes
and phylogenetic studies in Stylommatophora in terms of usage of mitogenome sequence
and rearrangement (Romero, Weigand & Pfenninger, 2016; Xie et al., 2019a; Yang et al.,
2019). To date, complete or nearly complete mitogenomes have been reported for only 34
stylommatophoran species (NCBI, September, 2019).

In this study, we sequenced and annotated the complete mitogenome of Arion
vulgaris Moquin-Tandon, 1855 (Gastropoda: Stylommatophora), which is considered
as a serious invasive pest both in agriculture and private gardens. We compared it with the
mitogenome of its congener Arion rufus (Linnaeus, 1758), and with all other previously
reported stylommatophoran mitogenomes. We also reconstructed a phylogeny from
stylommatophoran mitogenomes to estimate the phylogenetic position of A. vulgaris and
to test the informativeness of mitogenome data in the reconstruction of Stylommatophora
phylogeny. In addition, we obtained a dated phylogeny using this mitogenome dataset and
fossil calibrations to estimate divergence times within Stylommatophora. Furthermore,
selection analyses were performed to investigate the role of different selective forces shaping
stylommatophoran mitogenomes. Finally, we compared the mitogenome organisations of
stylommatophoran species using a comparative and phylogeny based method and tried to
uncover the evolutionary pathways of mitogenome rearrangements.

MATERIALS AND METHODS
Specimen collection and DNA extraction
The specimen of A. vulgaris was collected from the garden of the Zoologische
Staatssammlung München (ZSM), Germany. Total genomic DNA was extracted from
mantle tissue using CTAB method (Doyle & Doyle, 1987).

Mitogenome sequencing, annotation and analyses
The whole-genome sequencing was conducted with 150 bp pair-end reads on the Illumina
Hiseq4000 Platform (Illumina, San Diego, CA) using 350 bp insert size libraries. Raw
reads were processed by removing low quality reads, adapter sequences and possible
contaminated reads using Fastp v0.20.0 (Chen et al., 2018) and Lighter v1.0.7 (Song, Florea
& Langmead, 2014). In total, about 7.5G high quality base pairs of sequence data were
obtained and the mitogenome was assembled using the MitoZ software (Meng et al., 2019),
followed by manual curation using Geneious R9 (Kearse et al., 2012).

The annotation of tRNA genes of the A. vulgaris mitogenome was performed using
MITOS (http://mitos.bioinf.uni-leipzig.de/index.py) (Bernt et al., 2013b) and ARWEN
web servers (Laslett & Canbäck, 2008) based on their secondary structures and anticodon
sequences. The locations and boundaries of PCGs and rRNA genes were identifiedmanually
by comparing with the A. rufus (KT626607) homologous gene sequences. The visualization
of the secondary structure of tRNA genes was performed using VARNA v3-93 (Darty,
Denise & Ponty, 2009) and RNAviz 2.0.3 (De Rijk, Wuyts & De Wachter, 2003). Intergenic
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spacers and overlapping regions between genes were estimated manually. The largest
non-coding region was defined as control region and the Mfold server (Zuker, 2003) was
used to predict the secondary structure of this region. The ‘‘palindrome’’ tool within the
European Molecular Biology Open Software Suite (EMBOSS) (Rice, Longden & Bleasby,
2000) was used for searching the palindromic sequences in the control region. Finally, the
complete mitogenome of A. vulgaris was deposited in GenBank under accession number
MN607980. The mitogenome of A. vulgaris is visualized using OrganellarGenomeDRAW
(OGDRAW) (Greiner, Lehwark & Bock, 2019).

The nucleotide compositions, average nucleotide and amino acid sequence divergences
and the relative synonymous codon usages (RSCU) of PCGs were computed using MEGA
v7.0 (Kumar, Stecher & Tamura, 2016). The strand asymmetries were calculated according
to the following formulas: AT-skew = [A − T]/[A + T] and GC-skew = [G − C]/[G + C]
(Perna & Kocher, 1995).

Phylogenetic and comparative analyses
Alignment and model selection
Phylogenetic and comparative analyses were performed using the mitogenome dataset
of 35 stylommatophoran species representing 18 families, and using one species from
Systellommatophora, one species from Hygrophila, and one species from Ellobioidea as
outgroups (Table 1). Each tRNA and rRNA gene was aligned individually using MAFFT
(Katoh & Standley, 2013) algorithm in Geneious R9 (Kearse et al., 2012). The alignment
of nucleotide sequences of each PCG was performed using MAFFT algorithm and the
‘‘translation align’’ option implemented in Geneious R9. The final alignment files were
then concatenated using SequenceMatrix v.1.7.8 (Vaidya, Lohman & Meier, 2011). The
optimal partitioning scheme and substitution models were inferred by PartitionFinder
v1.1.1 (Lanfear et al., 2012) using the Bayesian Information Criterion (BIC) and the
‘‘greedy’’ algorithm with the option of ‘‘unlinked’’ branch lengths. The best-fit partitioning
scheme and nucleotide substitution models were used in phylogenetic analyses (Table S1).

Assessing the substitution saturation level
The substitution saturation levels in different genes and codon positions were estimated
comparing the uncorrected p-distances and the distances calculated by applying the GTR
+ G + I evolutionary model selected based on the BIC using jModelTest v2.1.7 (Darriba
et al., 2012). All genetic distances were computed with PAUP v4.0 b10 (Swofford, 2002).

Phylogenetic reconstruction
Two different datasets were created for phylogenetic analyses to test the influence of
saturated genes and codon positions: (1) 13 PCGs including all codon positions plus
the 22 tRNAs and two rRNAs (P123RNA) and (2) PCGs excluding the five saturated
genes and third codon positions, plus 22 tRNAs and two rRNAs (8P12RNA, Table S2).
Maximum likelihood (ML) trees were constructed with RAxML v8.0.9 (Stamatakis, 2014)
implemented in Geneious R9 applying the best-fit evolutionary model for each partition
under 1,000 bootstrap replicates. For Bayesian Inference (BI) analyses, MrBayes v3.2.2
(Ronquist et al., 2012) was employed with two independent runs of 10 million generations
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Table 1 List of stylommatophoranmitogenomes used in phylogenetic and comparative analyses.

Species Family Accession number References

Arion vulgaris Arionidae MN607980 This study
Arion rufus Arionidae KT626607 Romero, Weigand & Pfenninger (2016)
Achatinella fulgens Achatinellidae MG925058 Price et al. (2018)
Achatinella mustelina Achatinellidae NC030190 Price et al. (2016a)
Achatinella sowerbyana Achatinellidae KX356680 Price et al. (2016b)
Partulina redfieldi Achatinellidae MG925057 Price et al. (2018)
Achatina fulica Achatinidae KM114610 He et al. (2016)
Deroceras reticulatum Agriolimacidae NC035495 Ahn et al. (2017)
Aegista aubryana Bradybaenidae NC029419 Yang et al. (2016)
Aegista diversifamilia Bradybaenidae NC027584 Huang, Lin & Wu (2015)
Dolicheulota formosensis Bradybaenidae NC027493 Huang, Lin & Wu (2015)
Mastigeulota kiangsinensis Bradybaenidae NC024935 Deng et al. (2016)
Camaena cicatricosa Camaenidae NC025511 Wang et al. (2014)
Camaena poyuensis Camaenidae KT001074 Unpublished
Cerion incanum Cerionidae NC025645 González et al. (2016)
Cerion tridentatum costellata Cerionidae KY249249 Unpublished
Cerion uva Cerionidae KY124261 Harasewych et al. (2017)
Albinaria caerulea Clausiliidae NC001761 Hatzoglou, Rodakis & Lecanidou (1995)
Gastrocopta cristata Gastrocoptidae NC026043 Unpublished
Cernuella virgata Geomitridae NC030723 Lin et al. (2016)
Helicella itala Geomitridae KT696546 Romero, Weigand & Pfenninger (2016)
Cepaea nemoralis Helicidae NC001816 Yamazaki et al. (1997)
Cylindrus obtusus Helicidae NC017872 Groenenberg et al. (2012)
Cornu aspersum Helicidae NC021747 Gaitán-Espitia, Nespolo & Opazo (2013)
Helix pomatia Helicidae NC041247 Korábek, Petrusek & Rovatsos (2019)
Orcula dolium Orculidae NC034782 Groenenberg et al. (2017)
Naesiotus nux Orthalicidae NC028553 Hunter et al. (2016)
Meghimatium bilineatum Philomycidae NC035429 Xie et al. (2019a) and Xie et al. (2019b)
Philomycus bilineatus Philomycidae MG722906 Yang et al. (2019)
Polygyra cereolus Polygyridae NC032036 Unpublished
Praticolella mexicana Polygyridae KX240084 Minton et al. (2016)
Pupilla muscorum Pupillidae NC026044 Unpublished
Succinea putris Succineidae NC016190 White et al. (2011)
Microceramus pontificus Urocoptidae NC036381 Unpublished

STYLOMMATOPHORA

Vertigo pusilla Vertiginidae NC026045 Unpublished
Ellobioidea Carychium tridentatum Ellobiidae KT696545 Romero, Weigand & Pfenninger (2016)
Hygrophila Galba pervia Lymnaeidae NC018536 Liu et al. (2012)
Systellommatophora Platevindex mortoni Onchidiidae GU475132 Sun et al. (2016)

with four Markov chains (three cold, one heated), sampling every 1,000 generations and a
burn-in of 25% trees. The stationarity of the chains was assessed using the program Tracer
v1.7 (Rambaut et al., 2018). The consensus phylogenetic trees were visualized using FigTree
v1.4.0 (Rambaut, 2012).
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Divergence time estimation
MCMCTree program implemented in the Phylogenetic Analysis by Maximum Likelihood
(PAML) package v4.9 (Yang, 2007) was used for Bayesian estimation of divergence times
of each species. Substitution rate per site was estimated by BASEML and was used to
set the prior for the mean substitution rate in the Bayesian analysis. MCMC was run
by 50 × 10,000 iterations with the REV substitution model. The soft bounds of Helix
pomatia + Cornu aspersum [divergence time between 34 million years ago (Ma) and 42
Ma],Mastigeulota kiangsinensis+ (Dolicheulota formosensis+ (Aegista aubryana+ Aegista
diversifamilia)) (divergence time between 25 Ma and 51 Ma), and Camaena cicatricosa +
Camaena poyuensis (divergence time between 16 Ma and 39 Ma) were used as external
calibrations (Razkin et al., 2015) and the estimated nodal age of Tectipleura [244 Ma
(210–279 Ma)] was used for the calibration of the root (Kano et al., 2016).

Selection analyses
The CODEML implemented in PAML was used to estimate the ratio of nonsynony-
mous/synonymous substitution rate (ω = dN/dS) and to explore the role of different
selective constraints working on each PCG under the one-ratio model (Model A: model
= 0, NSsites = 0, fix_omega = 0, omega = 1). Gaps and ambiguous sites of sequence
alignments were included in the analyses. For each PCG, likelihood ratio tests (LRTs) were
used to compare the null neutral model (Model B: model = 2, NSsites = 2, fix_omega =
1, omega = 1) against alternative models of branch-specific positive selection (Model C:
model = 2, NSsites = 2, fix_omega = 0, omega = 1.5). The Bayes Empirical Bayes (BEB)
algorithm in CODEML was used to detect the positively selected sites. Furthermore, the
adaptive branch-site random effects likelihood (aBSREL) (Smith et al., 2015) implemented
in DATAMONKEY webserver (Weaver et al., 2018) was used to search the signatures
of episodic positive diversifying selection testing each branch. In addition, mixed effects
model of evolution (MEME) (Murrell et al., 2012)was used to detect episodic or diversifying
selection at individual sites and a fast, unconstrained Bayesian approximation for inferring
selection (FUBAR) (Murrell et al., 2013) was used for providing additional support to
the detection of sites evolving under positive or negative selection. Each PCG was also
evaluated in terms of properties and magnitude of amino acid changes using TreeSAAP
v3.2 (Woolley et al., 2003), which uses 31 properties of amino acids and categorizes the
degree of substitutions to eight categories (1–8).

Comparison of mitogenome organizations
Mitogenome organizations and gene rearrangements of stylommatophoran species were
analysed via the CREx web server (http://pacosy.informatik.uni-leipzig.de/crex) (Bernt
et al., 2007). The gene orders of ancestral nodes were reconstructed using the Maximum
Likelihood forGeneOrderAnalysis (MLGO, http://geneorder.org/) (Hu, Lin & Tang, 2014)
with the input tree obtained by phylogenetic approaches, and the orders of the protein
coding, rRNA and tRNA genes were compared with the inferred ancestral mitogenomes.
A distance matrix was calculated based on number of common intervals, and the output
diagram visually examined to identify shared and/or derived gene rearrangements as well
as mechanisms of rearrangements.
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RESULTS AND DISCUSSION
Mitogenome characteristics and nucleotide composition
The complete mitogenome sequence of A. vulgaris was obtained with a length of 14,547 bp
(Table 2) and its size was within the range of the those of other reported stylommatophoran
mitogenomes, varying between 13,797 bp in Camaena poyuensis and 16,879 bp in Partulina
redfieldi (Price et al., 2018). It includes the entire set of 37 mitochondrial genes: 13 PCGs,
22 tRNAs and two rRNAs. Twenty-four genes were located on the J strand, while the
remainings were encoded by the opposite N strand (Table 2, Fig. 1).

The nucleotide composition of A. vulgaris mitogenome was distinctly biased towards A
and T, with a 70.20% A+ T content, and comparable to other reported stylommatophoran
mitogenomes, varying between 59.79% A + T in Cepea nemoralis (Yamazaki et al., 1997)
and 80.07% A + T in Achatinella mustelina (Price et al., 2016a) (Table 3 and Table S3). A
bias towards A and T nucleotides was also observed in PCGs of the A. vulgarismitogenome
with a 69.34% A + T content (Table 3). The A + T content of the 3rd codon position
(79.64%) was higher than those of the 2nd (64.21%) and 1st codon positions (64.18%).
Similar to other reported stylommatophoran mitogenomes (Table S3), the AT- and
GC-skews were found slightly negative (−0.0756) and positive (0.0431) in the whole
mitogenome of A. vulgaris, respectively. A pronounced T and G skew was also observed
in all PCGs (−0.1508, 0.0472), PCGs on the majority strand (−0.1447, 0.0596), and
tRNA genes (−0.0010, 0.1582) (Table 3). The T- and G-skewed mitogenome of A. vulgaris
might be explained by the spontaneous deamination of cytosine during replication and
transcription processes (Reyes et al., 1998). The PCGs encoded on the minority strand
displayed a T- and C-skewed pattern (−0.1783 AT-skew, −0.0065 GC-skew), contrary to
the expected high rates of Ts and Gs on the minority strand for most of the metazoans
(Hassanin, Léger & Deutsch, 2005).

Protein coding genes and codon usage
In comparison, the lengths of the PCGs of A. vulgaris mitogenome were within the range
of those of other stylommatophoran mitochondrial PCGs. The ND4 gene was the most
variable gene in length and has a variability of 53 codons among stylommatophorans (419
codons inMicroceramus pontificus and 472 codons in Orcula dolium). The most conserved
gene in length was COX1 and it exhibits variability with only 16 codons between species
of Stylommatophora (501 codons in Achatinella mustelina and 517 codons in Achatina
fulica). Compared with the mitogenome of A. rufus, the lengths of PCGs of A. vulgaris
were distinct except for COX1, COX2, CYTB and ND1 genes. The ND6 gene was the most
variable gene in length and was longer in the A. vulgaris mitogenome by 11 codons. Based
on the amino acid identities, the most conserved PCG was COX1 (56.45%) whereas the
least conserved wasND6 (11.92%) among the stylommatophoran mitogenomes. The most
conserved PCG was COX1 (97.45%) whereas the least conserved was ATP8 (68.18%) based
on the amino acid identities between the two Arion mitogenomes (Table S4).

In the A. vulgaris mitogenome, most of the PCGs initiated with typical ATN start
codon, except for COX1, ND5 and ATP8 genes which use TTG, ACA and GTG triplets
as start codons, respectively (Table 2). The TTG and GTG start codons are also accepted
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Table 2 Mitogenome summary of Arion vulgaris.

Gene Strand From To Size Start codon Stop codon Anticodon IGN

COX1 J 1 1,530 1,530 TTG TAG 4
tRNA-Val J 1,535 1,600 66 UAC 0
16S rRNA J 1,601 2,613 1,013 0
tRNA-Leu J 2,614 2,675 62 UAG 11
tRNA-Pro J 2,687 2,752 66 UGG 13
tRNA-Ala J 2,766 2,831 66 UGC 7
ND6 J 2,839 3,312 474 ATG TAG −41
ND5 J 3,272 4,960 1,689 ACA TAA −10
ND1 J 4,951 5,853 903 ATG TAG 15
ND4L J 5,869 6,163 295 ATA T- −15
CYTB J 6,149 7,228 1,080 ATG TAA −2
tRNA-Asp J 7,227 7,296 70 GUC 10
tRNA-Cys J 7,307 7,363 57 GCA 0
tRNA-Phe J 7,364 7,425 62 GAA 0
COX2 J 7,426 8,094 669 ATG TAG 1
tRNA-Trp J 8,096 8,160 65 UCA 91
tRNA-Tyr J 8,252 8,315 67 GUA 0
Control region J 8,316 8,685 370 0
tRNA-Gly J 8,686 8,763 78 UCC −20
tRNA-His J 8,744 8,809 66 GUG −3
tRNA-Glu N 8,807 8,873 67 UUC 5
tRNA-Gln N 8,879 8,942 64 UUG 0
12S rRNA N 8,943 9,689 747 0
tRNA-Met N 9,690 9,754 65 CAU 0
tRNA-Leu N 9,755 9,820 66 UAA −32
ATP8 N 9,789 9,971 183 GTG TAA 0
tRNA-Asn N 9,972 10,033 62 GUU −8
ATP6 N 10,026 10,688 663 ATA TAA −9
tRNA-Arg N 10,680 10,746 67 UCG 3
ND3 N 10,750 11,094 345 ATG TAA 13
tRNA-Ser2 N 11,108 11,176 69 UGA 49
tRNA-Ser1 J 11,226 11,283 58 GCU 36
ND4 J 11,320 12,633 1,314 ATA TAG −18
tRNA-Thr N 12,616 12,681 66 UGU 0
COX3 N 12,682 13,462 781 ATG T- 41
tRNA-Ile J 13,504 13,567 64 GAU 1
ND2 J 13,569 144,86 918 ATG TAA 0
tRNA-Lys J 14,487 6 67 UUU −6

Notes.
J, major; N, minor; IGN, intergenic nucleotides.
Minus indicates overlapping sequences between adjacent genes.
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Figure 1 Mitogenome organization of Arion vulgaris. Genes transcribed from the J and N strands are
shown outside and inside of the circle, respectively. PCGs coding complex I, complex III, complex IV and
complex V components are marked with yellow, purple, pink and green, respectively. rRNA genes are
coloured with red and the putative control region is coloured with cyan, while tRNA genes are coloured
with dark blue and labelled by the single letter amino acid code.

Full-size DOI: 10.7717/peerj.8603/fig-1

as canonical start codons for invertebrate mitogenomes (Yang et al., 2019), however,
ACA as start codon for ND5 gene was reported for the first time for stylommatophoran
mitogenomes. Most of the PCGs were inferred to use TAR as termination codon, except
for ND4L and COX3 which have an abbreviated T-termination codon and their products
are probably completed via post-transcriptional polyadenylation (Anderson et al., 1981;
Ojala, Montoya & Attardi, 1981).

Themost frequently used amino acids by the PCGs of themitogenomes ofA. vulgaris and
A. rufus were leucine (16.71% and 15.91% respectively) and serine (10.33% and 10.18%
respectively), similar to PCGs of the mitogenome of other stylommatophoran species
(Leu 16,60%, Ser 10.21% on average). The codons rich in A and T, such as UUA-Leu,
AUU-Ile, UUU-Phe, AUA-Met, UAU-Tyr, were the most frequently used codons in all
stylommatophoran mitochondrial PCGs. The codons rich in terms of G and C content,

Doğan et al. (2020), PeerJ, DOI 10.7717/peerj.8603 10/30

https://peerj.com
https://doi.org/10.7717/peerj.8603/fig-1
http://dx.doi.org/10.7717/peerj.8603


Table 3 Nucleotide composition of the Arion vulgarismitogenome.

Feature T% C% A% G% A+ T% AT-skew GC-skew

Whole mitogenome 37.75 14.26 32.45 15.54 70.20 −0.076 0.043
Protein coding genes 39.90 14.61 29.44 16.05 69.34 −0.151 0.047
First codon position 33.54 14.01 30.64 21.81 64.18 −0.045 0.218
Second codon position 45.65 19.42 18.55 16.38 64.21 −0.422 −0.085
Third codon position 40.50 10.39 39.14 9.97 79.64 −0.017 −0.021
Protein coding genes-J 39.78 14.34 29.72 16.16 69.50 −0.145 0.060
First codon position-J 32.94 13.93 31.23 21.90 64.17 −0.027 0.222
Second codon position-J 45.91 19.07 18.53 16.49 64.44 −0.425 −0.073
Third codon position-J 40.50 10.01 39.41 10.08 79.90 −0.014 0.003
Protein coding genes-N 40.42 15.80 28.19 15.60 68.60 −0.178 −0.006
First codon position-N 36.24 14.37 27.98 21.41 64.22 −0.129 0.197
Second codon position-N 44.50 20.95 18.65 15.90 63.15 −0.409 −0.137
Third codon position-N 40.52 12.08 37.92 9.48 78.44 −0.033 −0.121
tRNA genes 36.40 11.48 36.33 15.80 72.72 −0.001 0.158
rRNA genes 33.24 13.58 38.18 15.00 71.42 0.069 0.050
Control region 38.92 18.65 30.81 11.62 69.73 −0.116 −0.232

CGC-CGG-Arg, CAG-Gln, UGC-Cys, CUC-Leu and UCG-Ser were rarely used in both
Arion mitogenomes (Table S5, Fig. 2). CGN-Arg, CCS-Pro, GCS, UCG and UGC codons
are seldom used or never used also in the stylommatophoran mitogenomes and reflected
a significant relationship between codon usage and nucleotide content (Table S5).

tRNA and rRNA genes
All of the tRNA genes could be folded into a usual clover-leaf secondary structure, except for
trnS1 (AGN) and trnC which lacked dihydrouridine (DHU) and T9C arms, respectively
and formed simple loops (Fig. S1). Their lengths ranged between 57 bp (trnC) and 78 bp
(trnG), with an average 72.72% A + T content. 26 mismatched positions were observed in
stem regions and all of the mismatches were G–U pairs (Fig. S1).

The exact boundaries of rRNA genes were determined as being bounded by the adjacent
tRNA genes. The rrnL gene was located between trnV and trnL1 genes, and the rrnS
gene was located between trnQ and trnM genes. The length of the rrnL gene was 1,013
bp, with a 71.17% A + T content, while that of rrnS gene was 747 bp, with a 71.75% A
+ T content. These were comparable in ranges to homologous genes in other reported
stylommatophoran species, ranging from 605 to 1215 bp in rrnL and from 564 to 857 bp
in rrnS.

Non-coding and overlapping regions
The total length of intergenic regions in the A. vulgaris mitogenome was 670 bp in 16
locations ranging between 1 and 370 bp (Table 2). In general, the largest non-coding
region in the animal mitogenomes is considered to contain the signals for replication
and transcription, and so called as the control region (Wolstenholme, 1992). The possible
candidate for the control region in A. vulgaris mitogenome was the largest non-coding
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Figure 2 Relative synonymous codon usage (RSCU) of the (A) A. vulgaris and (B) A. rufus
mitogenomes. Codon families are provided on the x axis. The stop codons are not given.

Full-size DOI: 10.7717/peerj.8603/fig-2

region located between trnY and trnG genes with 370 bp in length. This sequence did
not give BLAST hits with other putative CRs of other molluscan mitogenomes, however
a part of the sequence with 67 bp in length displayed 79.11% sequence similarity with
the mitochondrial control region of an amphibian species (Indotyphlus maharashtraensis,
KF540157). Nucleotide composition of this region was slightly biased towards A+ T with a
69.73%A+T content. The putative control region had a nine bp poly-T stretch and formed
a stable secondary structure comprising seven stems and loops (Fig. 3). Furthermore, this
sequence also contained a lot of palindromic sequences which are varying between 4 and
8 bp, but tandemly repeated sequences were not found.

The second largest non-coding region was found between trnW and trnY with a length
of 91 bp (Table 2). The A + T composition of the sequence was higher than that of whole
genome and putative control region with an 86.81% A + T. This non-coding region also
contained a seven bp poly-A stretch and was folded into a secondary structure with two
stem and loops. This secondary structure forming AT-rich sequence might function as the
origin of the second strand (Wolstenholme, 1992).

Eleven overlapping regions with a total length of 164 bp were found throughout the
mitogenome of A. vulgaris. The largest overlapping region was 41 bp in length and located
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Figure 3 Predicted secondary structure of putative control region of A. vulgarismitogenome. Nu-
cleotides are coloured as follows: Adenine is green, thymine is red, cytosine is blue and guanine is black.
The poly-T stretch is labelled with purple.

Full-size DOI: 10.7717/peerj.8603/fig-3

between ND6 and ND5 genes, while the second largest was 32 bp and located between
trnL2 and ATP8 (Table 2).

Phylogeny and divergence times of stylommatophoran species
Regression analyses of pairwise distances revealed that the 1st and 2nd codon positions of
ATP8, ND2, ND3, ND4L and ND6 genes, as well as the 3rd codon positions of all PCGs
were saturated (Table S2). Four phylogenetic reconstruction analyses were performed
with combination of inference methods and different data matrices to test the influence of
inferencemethods and saturation level of genes/codon positions on tree topology and nodal
support. Three different tree topologies were obtained as the results of these analyses, and
topologies were sensitive to both inferencemethods and exclusion of saturated genes/codon
positions (Fig. 4 and Figs. S2–S4). Nodal support values were always higher in BI trees
than ML trees of the corresponding dataset. The usage of all mitochondrial genes and
codon positions (P123RNA dataset) under both approaches resulted with identical tree
topology (Figs. S3 and S4), which were similar to the results of Yang et al. (2019) obtained
using only amino acid sequences of mitochondrial PCGs. The results of these analyses
supported the monophyly of all included superfamilies with high nodal supports except for
the superfamily Helicoidea which recovered with low nodal support [Bayesian Posterior
Probability (BPP) = 0.75, Bootstrap support (BS) = 58%] and recovered Arionoidea
superfamily as sister group to Urocoptoidea + (Polygyroidea + Helicoidea) clade (BPP =
1.00, BS = 100%), and Succineoidea + Orthalicoidea clade was recovered as sister group
to Arionoidea+ (Urocoptoidea+ (Polygyroidea+Helicoidea)) (BPP= 1.00, BS= 50%).
The ML and BI analyses performed using the dataset constructed with the removal of the
saturated PCGs and codon positions (8P12RNA) resulted in two different tree topologies
(Fig. 4 and Fig. S2). The phylogenetic tree obtained from ML analysis did not support the
monophyly of the superfamily of Helicoidea and the superfamily of Polygyroidea placed
within the superfamily of Helicoidea (BS= 61%, Fig. S2). A highly resolved tree with higher
nodal support values was obtained from the BI approach of the dataset 8P12RNA, and
hence considered as most reliable tree for discussion. The results confirmed the taxonomic
position of A. vulgaris as sister species to A. rufus and recovered the monophyly of the
Arionoidea superfamily (Arionidae + Philomycidae) with high support values (BPP =
1.00). Awell-supported sister group relationship betweenArionoidea andOrthalicoideawas
recovered (BPP= 0.98) for the first time. However, previous studies using different datasets
and sampling of taxa have proposed different sister groups with Arionoidea superfamily.
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Figure 4 Stylommatophoran phylogenetic tree constructed under BI using the dataset 8P12RNA.
Carychium tridentatum (Ellobioidea), Platevindex mortoni (Systellommatophora) and Galba pervia (Hy-
grophila) were used as outgroup. Nodes are labelled with numbers refer to hypothetical ancestral mi-
togenome organizations inferred by MLGO.

Full-size DOI: 10.7717/peerj.8603/fig-4

Wade, Mordan & Naggs (2006) have found the superfamily Limacoidea as sister group
to the superfamily Arionoidea using 160 stylommatophoran species, however they used
only 823 nucleotides from rRNA gene-cluster. Holznagel, Colgan & Lydeard (2010) have
proposed a sister group relationship between Arionoidea and Limacoidea + Zonitoidea
based on the 28S rRNA sequences using seven species from Stylommatophora. The sister
group relationships between Arionoidea and Urocoptoidea+ Enoidea+Helicoidea (Jörger
et al., 2010) or Limacoidea + (Succineoidea + Helicoidea) (Dayrat et al., 2011) have also
been suggested by previous studies using relatively longer DNA sequences, however in
both studies, only five stylommatophoran species were included for phylogenetic analyses.
Furthermore,Xie et al. (2019b)have proposed sister group relationship betweenArionoidea
and Succineoidea using only amino acid dataset of mitochondrial PCGs, and stated it might
be an artefact of poor taxon sampling.

In the phylogenetic tree obtained from 8P12RNA under BI approach, the monophyly of
all included families and superfamilies were also supported with high support values except
for the superfamily Helicoidea which supported with a low nodal support (BPP = 0.82)
(Fig. 4). Arionoidea+Orthalicoidea clade was recovered as sister group to Succineoidea+
(Urocoptoidea + (Polygyroidea + Helicoidea)). The tree (Fig. 4) also recovered Deroceras
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Figure 5 Dated phylogenetic tree. The axis on the bottom refers to million years. Letters in the boxes
refers to external calibration points. The split between A. vulgaris and A. rufus was shown with a red bar,
while the remainings were shown with blue bars.

Full-size DOI: 10.7717/peerj.8603/fig-5

reticulatum (Limacoidea: Agriolimacidae) at the most basal placement and did not support
the monophyly of the suborder Helicina similar to the tree in Yang et al. (2019).

A chronogram for Stylommatophora divergence times based on the obtained tree
topology is shown in Fig. 5. According to our divergence time analysis, the crown age of
stylommatophorans was estimated as 138.55Ma (95%CI [180.8–107.4Ma]) corresponding
to Early Cretaceous. Our estimated times for initial diversification of Stylommatophora are
slightly older but broadly congruent with the fossil records and previous studies (Tillier,
Masselmot & Tillirt, 1996; Jörger et al., 2010; Dinapoli & Klussmann-Kolb, 2010). Although
Solem & Yochelson (1979) suggested a Paleozoic origin for Stylommatophora, the widely
accepted fossil records with recognizable taxa began fromLate Cretaceous (Bandel & Riedel,
1994). The Cretaceous origin of stylommatophoran species was also suggested by sequence
studies of 28S rDNA fragments by Tillier, Masselmot & Tillirt (1996), of combined data
of 18S, 28S, 16S rDNA and COI by Dinapoli & Klussmann-Kolb (2010) and Jörger et al.
(2010). The diversification of the stylommatophoran species may have been influenced by
the explosive radiation of angiosperms and speciation by host-switching during Cretaceous
(Friis, Pedersen & Crane, 2010).

The split time of Achatina fulica from other stylommatophoran species was inferred
as 131.91 Ma in Early Cretaceous. The splits of the superfamilies Orthalicoidea and
Arionoidea, of Succineoidea from Urocoptoidea + (Polygyroidea + Helicoidea), and of
Clausilioidea+ (Pupilloidea+ Achatinelloidea) were dated to 114.18 Ma (95% CI [148.7–
87.2 Ma]), 113.30 Ma (95% CI [146.1–87.9 Ma]) and 111.88 Ma (95% CI [148.1–84.2
Ma]), respectively, coinciding to the beginning of the Albian (Early Cretaceous). The
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crown ages of the superfamilies Arionoidea, Urocoptoidea, Helicoidea and Pupilloidea
were estimated corresponding to Late Cretaceous (84.82, 75.23, 74.39 and 70.06 Ma,
respectively). The split of the two Arion species and the crown age of Achatinelloidea
species were dated to 15.24 Ma (95% CI [30.0–7.6 Ma]) and 13.01 Ma (95% CI [19.7–8.2
Ma]), respectively, corresponding to theMiocene. The divergence time ofA. vulgaris andA.
rufus corresponds to one of Earth’s most recent, global warming events, the Mid-Miocene
Climatic Optimum (MMCO, 17–14.75 Ma) (Böhme, 2003). The MMCO is thought to
have contributed to floristic and faunistic diversity across the world and so to animal-plant
interactions, correlating with the rise in temperature (Barnosky & Carrasco, 2002; Vicentini
et al., 2008; Tolley, Chase & Forest, 2008). The change of plant diversity, emergence of new
host plants and the relative warm period may have triggered the diversification of the two
Arion species. The divergence time of two polygyroid species was inferred as 0.45 Ma (95%
CI [1.1–0.1 Ma]), in the Pleistocene.

Selective pressures on stylommatophoran mitogenomes
The ω value for each of the 13 PCGs was inferred under one-ratio model using PAML
and presented in Table 4. All of the ω values were extremely low (ω < 1), ranging between
0.0129 for COX1 and 0.2198 for ATP8, reflecting that all genes were under strong purifying
selection consistent with the general mitogenome evolution pattern in animals (Rand, 2001;
Bazin, Glemin & Galtier, 2006). Although purifying selection is the predominant selective
force shaping stylommatophoran mitogenomes, the comparison of the null neutral model
and alternative branch-specific positive selection model revealed six of the PCGs (ATP6,
COX2, COX3, ND2, ND4 and ND5) have variation in ω values along different branches.
The variability in ω values indicated different selective forces acting on each gene as well
as each branch. A more sensitive branch-site method, aBSREL, providing three states for
each branch and allowing each site to evolve under any kind of the value (<1, 1 or >1)
(Smith et al., 2015), was used for evaluating and confirming the selective forces across
lineages determined by PAML analysis. All of the branches in the stylommatophoran
phylogeny were tested with aBSREL analysis for each PCG, and the genes detected as
under episodic diversifying selection were different from the results of branch-site model
of PAML (Table 5) except for COX3 and ND4. The aBSREL analyses discovered episodic
diversifying selection in ATP8 (at the branch leading toMicroceramus pontificus), COX1 (at
the branch leading to Achatinella mustelina), COX3 (at the branch leading to Arionoidea
and the branch leading to Philomycus bilineatus), ND3 (at the branch leading to Helicella
itala), ND4 (at the branch leading to Succinea putris) and ND6 (at the branch leading
to Vertigo pusilla). Due to their important function, mitochondrial genes might have a
few positively selected sites and the signatures of purifying selection likely mask those of
positive selection (Meiklejohn, Montooth & Rand, 2007;Da Fonseca et al., 2008). Therefore,
two different methods were used to detect positive selection in addition to BEB analysis:
FUBAR which estimates the rates of nonsynonymous and synonymous substitutions at
each codon in a phylogeny, and MEME which estimates the probability for a codon to
have experienced episodic positive selection and allows the ω ratio to vary across branches
and codons. BEB analysis identified eight positively selected codons in total in three genes
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Table 4 Likelihood ratios of PAML analysis showing different selective pressures on the mitochondrial PCGs in Stylommatophora.

Modelsa A B C A–B B–C

Gene ω lnLb Npc lnL Np lnL Np LRT P LRT Pd

ATP6 0.0509 −19658.6890 −19377.7446 −19374.7961 561.8887 0.000 −5.896982 0.015
ATP8 0.2198 −6460.1406 −6355.5745 −6355.5745 209.1322 0.000 −0.000006 1.000
COX1 0.0129 −26428.6827 −26169.9332 −26169.9332 517.4990 0.000 0.000000 1.000
COX2 0.0393 −16022.1910 −15851.6973 −15848.6152 340.9874 0.000 −6.164250 0.013
COX3 0.0317 −18617.4781 −18345.8456 −18341.7284 543.2650 0.000 −8.234404 0.004
CYTB 0.0416 −26893.7004 −26297.6496 −26297.6496 1192.1017 0.000 0.000082 0.992
ND1 0.0430 −24857.6972 −24528.7292 −24529.0150 657.9359 0.000 0.571480 0.450
ND2 0.0670 −31769.5279 −31502.5684 −31498.5036 533.9191 0.000 −8.129668 0.004
ND3 0.0607 −11403.3678 −11183.4729 −11183.4729 439.7899 0.000 0.000010 1.000
ND4 0.0511 −40498.0727 −40032.1913 −40026.0861 931.7628 0.000 −12.210500 0.000
ND4L 0.0727 −10118.1495 −10076.4001 −10075.2708 83.4989 0.000 −2.258408 0.133
ND5 0.0676 −51970.2413 −51088.0681 −51092.3346 1764.3464 0.000 8.533012 0.003
ND6 0.1009 −16916.1956

76

−16691.7006

78

−16691.7006

79

448.9899 0.000 0.000018 1.000

Notes.
Degrees of freedom= 1.

aA, All branches have one ω; B, All branches have same ω= 1; C, Each branch has its own ω.
bThe natural algorithm of the likelihood value.
cNumber of parameters.
dBold faced figure indicate the statistical significance (P < 0.05).

(ND2, ND4 and ND5), whereas FUBAR defined six positively selected codons in five genes
(ATP6, ATP8, COX2, CYTB and ND4L). The MEME analysis found the signals of episodic
positive selection at 22 codons in nine genes (ATP6, ATP8, CYTB, ND2-6, and ND4L).
There was not any shared codon determined by all of the three analyses (Table 6). Only
four codons in three genes were shared by the results of FUBAR and MEME analyses:
44th codon in ATP8 gene, 12th codon in CYTB gene, and 13th and 57th codons in ND4L
gene. Therefore, we focused only on these four codons in the TreeSAAP analyses. The
positively selected substitution at codon 44 in ATP8 gene was the change of TTA (Leu)
to ATT (Ile) at branches leading to M. kiangsinensis, Cerion incanum and Cerion uva. This
substitution was a radical chemical change with a magnitude category of 8 and had an
impact on the increment of the equilibrium constant (ionization of COOH). The change
at the codon 12 in CYTB gene was a conserved change with a magnitude category of 1 and
was a substitution of TTG (Leu) to ATG (Met). The positively selected substitutions in
ND4L gene were the change of ATT (Ile) to ATA (Met) at branch leading to H. pomatia,
to GTT (Val) at branch leading to C. nemoralis at codon 13, and the change of TTT (Phe)
to AAT (Asn) at branch leading to Arionidae family at codon 57. The substitution at the
13th codon was a radical change with a magnitude category of 8 altering the equilibrium
constant (ionization of COOH), while that at the 57th codon was a radical change with a
magnitude category of 7 and modifying the solvent accessibility of the protein.

Consequently, six positive selected genes (ATP8, COX1, COX3, ND3, ND4 and ND6)
detected by branch-specific aBSREL approach and three genes (ATP8, CYTB and ND4L)
detected by codon-based BEB, FUBAR andMEME approaches were exposed to diversifying
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Table 5 Genes and branches detected to be exposed episodic diversifying selection using the aBSREL
approach.

Gene Number of
selected branches
(P < 0.05)

Taxon ω Proportion of
codons under
selection

ATP8 1 Microceramus pontificus 288 0.460
COX1 1 Achatinella mustelina 2,180 0.086

Arionoidea 670 0.053
COX3 2

Philomycus bilineatus 119 0.092
ND3 1 Helicella itala 49.4 0.220
ND4 1 Succinea putris 4.18 0.370
ND6 1 Vertigo pusilla 15.6 0.370

Table 6 Genes/codons under diversifying or positive selection under codon-based models.

Gene BEB FUBAR MEME

ATP6 – 4 44
ATP8 – 44 44, 57, 64, 92, 109
COX1 – – –
COX2 – 32 –
COX3 – – –
CYTB – 12 12
ND1 – – –
ND2 188 – 14, 16, 174
ND3 – – 27
ND4 109, 170, 192, 301, 386, 427 – 9, 99
ND4L – 13, 57 13, 57, 109, 111
ND5 451 – 260, 501
ND6 – – 109, 179, 183

selection. Four of these genes (ND3, ND4, ND4L and ND6) play an important role in
oxidative phosphorylation and are subunits of NADH dehydrogenase (Complex I) which
is the most complicated and largest proton pump of the respiratory chain coupling
electron transfer from NADH to ubiquinone. In addition to its important role in energy
production, it has been shown that complex I is implicated in the regulation of reactive
oxygen species (ROS) (Sharma, Lu & Bai, 2009). Substitutions in this complex might have
been favoured for increasing the efficiency of proton pumping or regulating the response to
ROS depending varying amount of oxygen in the atmosphere and adaptation to conditions
in new habitats (temperature, humidity, altitude) and/or hosts. CYTB gene encodes only
mitogenome derived subunit of Complex III and catalyses reversible electron transfer
from ubiquinol to cytochrome c (Da Fonseca et al., 2008). The positively selected sites
in complexes I and III have been suggested to contribute to environmental adaptation
in different groups such as mammals, birds, fishes and insects (Da Fonseca et al., 2008;
Garvin, Bielawski & Gharrett, 2011; Garvin et al., 2014; Melo-Ferreira et al., 2014; Morales
et al., 2015; Li et al., 2018). In the cytochrome c oxidase complex (Complex IV), COX1
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protein catalyses electron transfer to the molecular oxygen; COX2 and COX3 belong to the
catalytic core of the complex may act as a regulator. ATP8 gene encodes the part of ATP
synthase (Complex V) regulating the assembly of complex (Da Fonseca et al., 2008). The
favoured substitutions in COX3 and ATP8 gene might have an impact on assembly of the
complexes IV and V. The positively selected substitutions and random accumulation of
variation in mitochondrial PCGs of stylommatophoran species thus seem to be adaptive
and affecting mitochondrial ATP production or protection from ROS effects, however
effects of substitutions should be examined in a larger sample by considering protein
folding and three-dimensional structure of complexes.

Gene rearrangements in stylommatophoran mitogenomes
The ancestral mitogenome organisation of each node in the phylogeny was inferred
using the maximum likelihood approach. The organisation of the hypothetical ancestral
Stylommatophora mitogenome (node: A34, Fig. 4) was identical with that of Deroceras
reticulatum as well as those of Albinaria caerulea, Cernuella virgata and Helicella itala.
The mitogenome of Achatina fulica has only experienced the transposition of trnP to the
downstream of trnA compared to its most recent ancestral mitogenome organisation. The
common ancestors of Clausilioidea+ (Pupilloidea + Achatinelloidea) (node: A31, Fig. 4),
Orthalicoidea + Arionoidea (node: A22, Fig. 4), and Succineoidea + (Urocoptoidea +
(Polygyroidea+Helicoidea)) (node: A18, Fig. 4)maintained the same order of hypothetical
ancestral stylommatophoran mitogenome. In the mitogenome of the most recent common
ancestor (MRCA) of Pupilloidea + Achatinelloidea (node: A30, Fig. 4), the reversal of
trnW, trnG and trnH genes occurred individually and were followed by the reversal of
the cluster trnW-trnG-trnH. In the superfamily Pupilloidea, rearrangements of several
tRNA genes were observed: the transposition of the cluster trnD-trnC to downstream
of trnW in Pupilla muscorum, transpositions of cluster trnH-trnG to downstream of
trnW and of trnT to upstream of COX3 in Orcula dolium, transposition of trnG to
downstream of trnW in Vertigo pusilla and the reversal of trnQ in Gastrocopta cristata. In
the mitogenome of the MRCA of the superfamily Achatinelloidea (node: A26, Fig. 4), trnF-
COX2-trnY -trnH -trnG- trnW -trnQ-ATP8-trnN -ATP6-trnR-trnE-rrnS-trnM gene cluster
rearranged as trnW -trnQ-ATP8-ATP6-trnR-trnE-rrnS-trnM -trnF-COX2-trnY-trnH-trnG-
trnN via tandem duplication random loss (TDRL) mechanism. The organisation of the
mitogenomes of achatinelloid species nearly matched with the putative ancestral order,
except for Achatinella sowerbyana which has a transposed position of trnK to downstream
of ATP8 and a second copy of trnL2, and for Partulina redfieldi which has the inversion of
trnE and trnN genes.

The mitogenome of Naesiotus nux has almost the same organisation with its MRCA
(node: A22, Fig. 4), except for the second inverted copy of ND4L located between trnL1
and trnP. The MRCA of the superfamily Arionoidea (node: A21, Fig. 4) had also identical
mitogenome organisation with the ancestor of Stylommatophora, and the MRCAs of the
families Arionidae (node: A19, Fig. 4) and of Philomycidae (node: A20, Fig. 4) were derived
from this ancestor. The mitogenome of node A19 had shuffled positions of trnY and trnW,
and also transpositions of trnE to downstream of trnQ and of rrnS-trnM to upstream

Doğan et al. (2020), PeerJ, DOI 10.7717/peerj.8603 19/30

https://peerj.com
http://dx.doi.org/10.7717/peerj.8603


of trnQ. Both Arion mitogenomes also shared this mitogenome organisation and the
rearranged orders of trnW-trnY and trnE-trnQ-rrnS-trnM-trnL2-ATP8-trnN-ATP6-trnR
clusters seem to be synapomorphies of this genus. The mitogenome organisation of the
node A20 was quite different from those of other stylommatophoran species, which had
rearranged positions of almost all genes between COX1 and trnI via two-steps TDRL, and
two Philomycidae species also had identical organisation except for Philomycus bilineatus
had a second copy of trnC located downstream of the original copy.

The mitogenome of Succinea putris has experienced the transpositions of trnF to
upstream of trnD and of trnW to upstream of trnY, and also reverse transposition of the
cluster trnW -trnY to the upstream ofND3. The MRCA of the all urocoptoid species (node:
A16, Fig. 4) only had the reversal of trnQ gene fromminor tomajor strand andM. pontificus
has also maintained the identical arrangement. The four step requiring rearranged gene
cluster was identified in the mitogenome of the MRCA of the genus Cerion (node: A15,
Fig. 4): (i) reversal of trnV-rrnL-trnL1, (ii) reversal of trnP, (iii) reversal of trnA, and (iv)
reversal of the cluster trnL1-rrnL-trnV -trnP-trnA. The mitogenome organisation remained
the same in all three Cerion species and the rearranged state of trnA-trnP-trnV-rrnL-trnL1
cluster might be a synapomorphy for this genus.

The MRCAs of the polygroid species (node: A12, Fig. 4) and Camaenidae +
Bradybaenidae (node: A5, Fig. 4), as well as the Polygyra cereolus and Praticolella mexicana,
had the transposed position of trnG-trnH to the upstream of trnY. The rearrangement of
this cluster as trnG-trnH-trnY could be suggested as a synapomorphy for Polygyroidea,
but more sampling is required to confirm its status at superfamily level. In the superfamily
Helicoidea, the MRCAs of Geomitridae (node: A9, Fig. 4) and Geomitridae + Helicidae
(node: A10, Fig. 4) shared the identical mitogenome organisation with the MRCA of
Stylommatophora. Both of theGeomitridae species had also samemitogenomeorganisation
except for ATP8 in Cernuella virgata, in which this gene was missing, however it seems
to be likely a misannotation. The mitogenome of MRCA of Helicidae species (node: A8,
Fig. 4) had experienced the transpositions of trnP and cluster trnT -COX3 to downstream
of ND6 and to upstream of trnS1, respectively. The mitogenome organisations of Helix
pomatia, Cornu aspersum and Cepaea nemoralis have not changed and trnA-ND6-trnP
and trnS2-trnT-COX3-trnS1 gene orders might be interpreted as synapomorphic for these
three species. However, the individual reversals of trnA, ND6 and trnP genes followed by
reversal of the cluster trnA-ND6-trnP, and reversal of trnS1 were observed in Cylindrus
obtusus mitogenome. In the mitogenomes of the species of the family Camaenidae, only
the transpositions of trnD and trnY to downstream of COX2 and to upstream of trnG
were found, respectively. The arrangement of the trnC-trnF-COX2-trnD-trnY-trnG cluster
could be considered as a synapomorphy for camaenid species, however the taxonomic
level of this synapomorphy need to be evaluated in a wider taxonomic range. In the family
of Bradybaenidae, the MRCA mitogenome had experienced only the reversal of trnW. In
addition to this rearrangement, Aegista species also have the transposition of ND3 gene to
the downstream of trnW and the rearranged position of ND3-trnW cluster appears to be
a synapomorphy for the genus.
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CONCLUSIONS
The sequencing and annotation of the mitogenome of A. vulgaris and its comparison
with other stylommatophoran mitogenomes allow us to denote several conclusions: (i)
the mitogenome characteristics of A. vulgaris are mostly consistent with the reported
stylommatophoran mitogenomes; (ii) rearrangement events are detected in the trnW-
trnY and trnE-trnQ-rrnS-trnM-trnL2-ATP8-trnN -ATP6-trnR gene clusters which may
be apomorphic for the genus Arion, but further investigations are necessary; (iii)
stylommatophoran mitogenome sequence information without the saturated positions
seems to be useful for reconstructing phylogeny and estimating divergence times, and the
taxon set used should be expanded; (iv) although purifying selection is the dominant force
in shaping the stylommatophoran mitogenomes, in the background, several codons or
different branches have experienced diversifying selection suggesting adaptation to new
environmental conditions.
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