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ABSTRACT
The burden of vector-borne diseases (Dengue, Zika virus, yellow fever, etc.) gradually
increased in the past decade across the globe. Mathematical modelling on infectious
diseases helps to study the transmission dynamics of the pathogens. Theoretically, the
diseases can be controlled and eventually eradicated by maintaining the effective repro-
ductionnumber, (Reff), strictly less than 1.We established a vector-host compartmental
model, and derived (Reff) for vector-borne diseases. The analytic form of the (Reff)
was found to be the product of the basic reproduction number and the geometric
average of the susceptibilities of the host and vector populations. The (Reff) formula
was demonstrated to be consistent with the estimates of the 2015–2016 yellow fever
outbreak in Luanda, and distinguished the second minor epidemic wave. For those
using the compartmental model to study the vector-borne infectious disease epidemics,
we further remark that it is important to be aware of whether one or two generations
is considered for the transition ‘‘from host to vector to host’’ in reproduction number
calculation.

Subjects Mathematical Biology, Epidemiology
Keywords Reproduction number, Vector-borne disease, Epidemic, Mathematical modelling,
Yellow fever, Angola, Luanda

INTRODUCTION
Vector-borne disease epidemics pose a serious threat to global health. Especially in tropical
and sub-tropical regions, most vector-borne diseases are treated as a part of neglected
tropical diseases (NTDs) (Fenwick, 2012), present endemic features, and are persistent
in the interface of host and vector communities. During 2014, the historical large-scale
dengue fever caused an extensive international epidemic in southern China as well as
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other regions in Southeastern Asia (Sang et al., 2015; Stanaway et al., 2016). The Zika
virus (ZIKV) emerged in the Pacific area in 2008 (Duffy et al., 2009; Besnard et al., 2014;
Cauchemez et al., 2016), then in South America since 2015, and caused more than 500,000
(confirmed or probable) cases, while the true number of cases remains unclear (He et al.,
2017;Gao et al., 2016; Johansson et al., 2016; Ferguson et al., 2016;He et al., 2019). TheWest
Nile virus (WNV) was widespread across tropical parts globally, and was introduced into
North America in 1999, which lead to an approximated 1.8 million infections from 1999
to 2010 (Kilpatrick, 2011). The chikungunya virus (CHIKV) hit the Americas and beyond,
where tens of millions of previously unexposed persons would be at risk (Fischer & Staples,
2014; Weaver & Lecuit, 2015). In 2015–2016, the largest yellow fever (YF) outbreak (since
the 1980s) occurred in Angola and the Democratic Republic of the Congo (DRC) (Zhao
et al., 2018b; Kraemer et al., 2017; Wu et al., 2016; Shearer et al., 2017). After Africa, the YF
continuously posed a serious threat to the unprotected population of southern Brazil,
which was believed to have eradicated YF after the middle of the last century (Barrett,
2018). Malaria epidemics occur from time to time in many under-developed places in
the tropical and sub-tropical regions (Caminade et al., 2014; Murray et al., 2012). The
increasing frequency of such outbreaks over the past decades urges disease control and
prevention studies (Johansson et al., 2012; Kraemer et al., 2019).

Mathematical modelling on infectious diseases are developed, and help to study the
transmission dynamics of the pathogens from a theoretical point of view (Earn et al.,
2008; Brauer & Castillo-Chavez, 2001; Keeling & Rohani, 2011; Grenfell, Dobson & Moffatt,
1995). Theoretically, the infectious diseases can be controlled and finally eradicated by
maintaining the effective reproduction number,Reff, strictly less than 1, i.e., Reff< 1. The
Reff is the expected number of secondary cases produced by one typical infection joining
in a population during its infectious period (Van den Driessche & Watmough, 2002). This
theoretical criterion is widely adopted as a threshold to characterise the transmission
dynamics and measure the disease control effectiveness (Earn et al., 2008; Keeling &
Rohani, 2011). For airborne communicable diseases, e.g., respiratory diseases and most
childhood infections, that transmit in the vector-free context, Reff is given as in Eq. (1).

Reff=R0Sh, (1)

where the R0 is the basic reproduction number, and the Sh is the susceptibility in the
human population. TheR0 is defined as the expected number of secondary cases produced
by one typical infection joining in a completely susceptible population during its infectious
period (Heffernan, Smith & Wahl, 2005). This formula in Eq. (1) has been well-studied and
wildly used to quantify the transmissibility of infectious diseases (Earn et al., 2008; Brauer
& Castillo-Chavez, 2001; Keeling & Rohani, 2011; Grenfell, Dobson & Moffatt, 1995).

We used the recent yellow fever outbreak in Luanda, Angola from 2015 to 2016 as an
example to implement theReff, and demonstrate the difference(s) between different forms
of the Reffs of airborne diseases and vector-borne diseases. The YF outbreak included 941
reported cases with 73 deaths in Luanda, the capital city of Angola from December 2015 to
June 2016 (Zhao et al., 2018b; WHO, 2017). The local authority had conducted large-scale
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mass vaccination campaign since February 2016, and the vaccine program immunised
approximated 55% of the local population within 6 months since started (Zhao et al.,
2018b; WHO, 2017). Owing to the timely and large-scale mass vaccination campaign, it
was estimated that over 5-fold of both cases and deaths were saved. The YF cases time series
in Luanda and the local vaccination coverage were obtained from the situation reports
released by the African Health Observatory (AHO) (WHO, 2017).

In this work, we establish a simple (and classic) host-vector compartmental model and
derive the effective reproduction number for the transmission dynamics of the vector-
borne diseases. We further explore the relationship between the disease control in terms
of Reff and the control efforts of the basic reproduction number (R0) and population
susceptibility. The yellow fever (YF) epidemic in Luanda, Angola from December 2015 to
June 2016 is studied as an illustrative example to compare the Reff estimates in different
formulations or approaches.

METHODS
Many vector-borne diseases, such as dengue fever, yellow fever, Zika fever, malaria,
etc., are transmitted from vector to host as well as from host to vector. Following
previous literature (Earn et al., 2008; Brauer & Castillo-Chavez, 2001; Keeling & Rohani,
2011;Grenfell, Dobson & Moffatt, 1995), thetransmissionmechanismcanbeexplainedbythe
vector-hostepidemicmodelsbasedonthedifferential equations, i.e., compartmentalmodels.

Epidemic model for vector-borne diseases
We adopted the classic ‘‘susceptible-infected-removed’’ (SIR) structural framework to
model both host and vector population dynamics (Gao et al., 2016; Tang et al., 2016;
Saad-Roy, Van den Driessche & Ma, 2016; Zhao et al., 2018b; Earn et al., 2008; Brauer et al.,
2016). We use Sh,Ih,Rh to denote the numbers of susceptible, infected and removed host
population respectively. The Sv ,Iv ,Rv denote the numbers of susceptible, infected and
removed vector population respectively. The susceptible host becomes infected by the
‘‘contact’’ with infectious vectors, eventually recovers, i.e., move to the recovered class, and
remains protected from secondary infection. A similar path is also modelled in the vectors’
population. For simplicity, we ignored the incubation period, commonly denoted by E , of
the infection in the epidemic model. Based on the above descriptions, the compartmental
model is formulated in Eqs. (2). Figure 1 shows the schematic diagram of model (2).

S′h=µhNh−βvh ·
Sh
Nh

Iv−µhSh,

I ′h=βvh ·
Sh
Nh

Iv− (γh+µh)Ih,

R′h= γhIh−µhRh,

S′v =Bv(t )−βhvSv ·
Ih
Nh
−µvSv ,

I ′v =βhvSv ·
Ih
Nh
− (γv+µv)Iv ,

R′v = γv Iv−µvRv .

(2)
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Figure 1 The schematic diagram of model (2). The Sh,Ih,Rh represent the numbers of susceptible, in-
fected and removed host population. The Sv ,Iv ,Rv represent the numbers of susceptible, infected and re-
moved vector population. The black arrows represent the infection status transition paths. The orange
dashed arrows represent disease transmission paths, and the light blue arrows represent the natural birth
or death of hosts or vectors. Square compartments represent the host classes (or compartments), and cir-
cular compartments represent the vector classes. The red compartments represent infected classes.

Full-size DOI: 10.7717/peerj.8601/fig-1

Table 1 Summary table of the parameters in model (2).

Parameter Notation Unit/Remark

Transmission rate from vector to host βvh Host per vector ·time
Transmission rate from host to vector βhv Per time
Host’s disease-induced removing rate γh Per time
Vector’s disease-induced removing rate γv Per time
Vector’s natural recruiting rate Bv(t ) Vector per time
Vector’s natural death rate µv Per time
Host’s natural birth/death rate µh Per time
Vector to host ratio m=Nv/Nh Vector per host
Host’s susceptibility Sh= Sh/Nh Unit-free
Vector’s susceptibility Sv= Sv/Nv Unit-free

The model parameters are summarised in Table 1, and all parameters are assumed non-
negative.

The Nh and Nv are the total numbers of the hosts and vectors respectively. We have

Nh= Sh(t )+ Ih(t )+Rh(t )= constant; and

Nv(t )= Sv(t )+ Iv(t )+Rv(t ) 6= constant.

In our model, Nv =Nv(t ) is time-dependent in a manner that is controlled by the
mosquito birth rate Bv(t ), namely N ′v =Bv(t )−µvNv , which may not be necessarily equal
to zero. To guarantee the biological reasonability, the values of all six classes should be
non-negative, i.e., > 0. Then, Sh,Ih,Rh 6Nh, and Sv ,Iv ,Rv 6Nv . Although the vector-
borne diseases could affect the vector’s lifespan in some occasions, e.g., tick-borne diseases
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(Niebylski, Peacock & Schwan, 1999), it is conventionally assumed the infected vectors can
neither recover nor cause direct mortality in modelling studies, which is true for most
of the mosquito-borne diseases, the most common group of vector-borne diseases. For
simplicity, the disease-caused vector mortality is neglected in this modelling study. The
inclusion of Rv in the model (2) seems unnatural, nevertheless letting γv = 0, thus Rv = 0,
can resolve this conflict straightforwardly.

Most of the pathogens of the vector-borne diseases merely transmit via two paths,
host-to-vector and vector-to-host, e.g., Dengue fever, yellow fever, Chikungunya fever
and malaria, etc. For those can be transmitted via host-to-host path, commonly by sexual
contact or blood transfusion, e.g., Zika fever, the host-to-host transmission is minor, and
dominated by the aforementioned two paths. Therefore, we remark that although the
model (2) takes a simple form, it is applicable to model the transmission dynamics of most
vector-borne diseases. Model (2) also can be easily extended into more complex form, for
instance the model system in Zhao et al. (2018b), Gao et al. (2016) and Tang et al. (2016).
As long as the transmission paths remain from-host-to-vector and from-vector-to-host,
the relationship betweenR0 andReff explored in this paper still holds.

Basic reproduction number
The basic reproduction number, R0, is the expected number of secondary cases produced
by one typical infection joining in a completely susceptible population during its infectious
period (Heffernan, Smith & Wahl, 2005). When R0< 1, the disease would die out in the
long run. While if R0> 1, the disease would spread among the population and may cause
a pandemic.

In epidemiology, the next generation matrix is a method used to derive the basic
reproduction number,R0, for a compartmental model of the spread of infectious diseases.
According to Van den Driessche & Watmough (2002), Diekmann, Heesterbeek & Roberts
(2009) and Diekmann, Heesterbeek & Metz (1990), a systematic procedure to calculate the
R0 by solving the dominant eigenvalue, i.e., the eigenvalue with the largest real part, of
the next generation matrix, G, at the disease-free equilibrium (DFE). Mathematically, it
can be shown easily that the DFE exists and is stable for our epidemic model (2). For the
next generation matrix G= FV−1, the F is the new infection (or transmission) matrix and
V is the infection transfer (or transition) matrix. The entry of ith row and jth column of
matrix F is denoted by Fi,j , and Fi,j = ∂Fi

∂xj
where Fi is the ith equation of F and xj is the

jth variable of the vector of infected classes. For instance, in Eqs. (2), the Ih and Iv are
the infected classes. Similarly, the entry of ith row and jth column of matrix V is denoted
by Vi,j , and Vi,j =

∂Vi
∂xj

where Vi is the ith equation of V and xj is the jth variable of the
vector of infected classes. The vector F is the transmission rates’ vector quantity, i.e., the
changing rates from infected to non-infected classes, and vector V is the transition rates’
vector quantity, i.e., the changing rates among infected classes. The F is the Jacobian matrix
of F , and V is the Jacobian matrix of V .

For the compartmental model in Eqs. (2), the Ih and Iv are the infected classes,
which should be included in the vectors (F and V) of infected classes. Then, we have
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F =
(
βvh ·

Sh
Nh

Iv

βhvSv ·
Ih
Nh

)
, and V =

(
(γh+µh)Ih
(γv +µv )Iv

)
. Hence, F=

(
0 βvh

βhv ·
Nv

Nh
0

)
, and V=

(
γh+µh 0

0 γv +µv

)
.

The next generation matrix, G, is given as follows.

G= FV−1=

 0
βvh

γv+µv

m ·
βhv

γh+µh
0

,
where the term m is the vector to host ratio, which is defined by m= Nv

Nh
. By solving the

dominant eigenvalue of G (Van den Driessche & Watmough, 2002; Diekmann, Heesterbeek
& Roberts, 2009; Cushing & Diekmann, 2016; Cushing & Diekmann, 2016), we derive the
R0 of the model (2) in Eq. (3).

R0=

√(
mβhv
γh+µh

)
·

(
βvh

γv+µv

)
=

√
m ·

βhvβvh

(γh+µh)(γv+µv)
. (3)

In Eq. (3), the first ratio under the square root, i.e., mβhv
γh+µh

, represents the number of vector

infections caused by one infected host, and the second, i.e., βvh
γv+µv

, represents the number
of host infections caused by one infected vector. The square root represents the geometric
mean that takes the average number of secondary host (or vector) infections produced by
a single infected host (or vector) (Van den Driessche, 2017).

Effective reproduction number
During an epidemic, the susceptible individuals (Sh or Sv) are gradually consumed,
become infected and finally removed from the disease transmission cycle. The effective
reproduction number, Reff, is the expected number of secondary cases produced by one
typical infection joining in a population during its infectious period (Van den Driessche &
Watmough, 2002). TheReff is time-varying, which is denoted byReff(t ) and sometimesRt

for the discretized situation (Ali, Kadi & Ferguson, 2013; Fraser, 2007; Cori et al., 2013), and
Reff quantifies the instantaneous transmissibility of the disease. By applying the approach
in ‘Basic Reproduction Number’, the next generation matrix, G, is given by

G= FV−1=

 0 βvh
Sh
Nh

βhv ·
Sv
Nh

0

×((γh+µh)−1 0
0 (γv+µv)−1

)

=

 0
Sh
Nh
·
βvh

γv+µv

m ·
Sv
Nv
·
βhv

γh+µh
0

.
Then, we deriveReff from G.

Reff=

√
m ·

βhvβvh

(γh+µh)(γv+µv)
·
Sh
Nh
·
Sv
Nv
=R0

√
Sh
Nh
·
Sv
Nv
,
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whereR0 is given in Eq. (3). We further define the susceptibilities of hosts (Sh) and vectors
(Sv) by

Sh=
Sh
Nh
,and Sv=

Sv
Nv
. (4)

In the epidemic model (2), we have Sh,Ih,Rh 6 Nh, and Sv ,Iv ,Rv 6 Nv . Therefore,
06Sh,Sv6 1. Henceforth, the effective reproduction number is in Eq. (5).

Reff=R0
√
ShSv. (5)

Since 06 Sh,Sv 6 1, we have Reff 6R0. Furthermore, (i) for most of the vector-borne
diseases, the vector’s lifespan is much shorter than host’s lifespan, e.g., mosquito’s lifespan
is around 7 to 60 days and tick’s lifespan is around 3 months to 3 years, and (ii) the infected
vectors do not recover. These two facts will lead to an outcome in model (2) that class
Rv = 0 and class Iv is extremely small and almost zero. Therefore, for simplicity, we set
Sv= 100% for the remaining parts of this study.

Importantly, the relationship between R0 and Reff in Eq. (5) holds whenever the
transmission path of the vector-borne pathogens is from a host to a host via a vector.

An example of the yellow fever epidemic in Luanda 2015–2016
To illustrate the relationship between R0 and Reff in Eq. (5), we compared different
calculations or estimations of the effective reproduction number. We adopted the recent
yellow fever (YF) outbreak in Luanda, Angola from 2015 to 2016 as a case study (Zhao
et al., 2018b). The YF cases time series in Luanda and the local vaccination coverage were
obtained from the situation reports released by the African Health Observatory (AHO)
(WHO, 2017). Similar to the WHO (WHO, 2017) and previous literature (Kraemer et al.,
2017; Zhao et al., 2018b), both probable and confirmed cases were grouped together, and
were considered as the ‘‘YF cases’’ for further analyses (Fig. 2A).

We intend to demonstrate that the relationship betweenR0 andReff in Eq. (5) is more
proper for pinpoint the epidemic control threshold of the vector-borne diseases than that
in Eq. (1). To do so, we treat the instantaneous reproduction number, Rt , calculated by
the serial interval (SI) approach as the true effective reproduction number. The calculation
of Rt is introduced in detail in ‘Instantaneously Reproduction Number Estimation by
Renewable Equation’. After we find Rt series, we compare the calculations of the Reffs by
using Eq. (1) or Eq. (5) to theReff. The focus of this part is to compare the two relationships
betweenR0 andReff described in Eqs. (1) and (5), and to identify which one is more proper
for pinpoint the epidemic control threshold of the vector-borne diseases.

Note that although the formulation of R0 in model (2) is different from that in the YF
epidemic model in Zhao et al. (2018b), the relationship between R0 and Reff explored in
Eq. (5) holds regardless of the complicity of the epidemic model.

The reproduction number, R0(t ) and Reff(t ), reconstruction approach proposed
in Zhao et al. (2018b) is concisely introduced in ‘Reconstruction of the Reproduction
Numbers from Compartmental Model’. The instantaneous (effective) reproduction
number, R(t ) or Rt estimation is described in details in ‘Instantaneously Reproduction
Number Estimation by Renewable Equation’. We compared the two forms of effective
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Figure 2 The yellow fever (YF) epidemic and reproduction number estimation in Luanda, Angola
from 2015 to 2016. (A) The weekly number of YF cases time series, the second (minor) epidemic wave is
shaded in grey. Panel (B) The reproduced time-varying basic reproduction number (purple curve),R0(t ),
by using the reconstruction framework in Zhao et al. (2018b), and the time-varying human hosts’ suscep-
tibility (green dashed line), Sh(t ). The second transmission wave is highlighted in light purple by shifting
one YF’s serial interval (SI), averagely 23 daysWu et al. (2016). The shedding area represent the 95% con-
fidence intervals (CI). Panel (C) shows the effective reproduction numbers calculated (or estimated) by
three different approaches, i.e., theR(t ) by renewable equation (blue dots and bars) in Eq. (7), the prod-
uct ofR0

√
ShSv (red bold curve) in Eq. (5), and the product ofR0Sh (green dashed curve) in Eq. (1). The

bars and the shedding areas represent the 95% CIs.
Full-size DOI: 10.7717/peerj.8601/fig-2

reproduction number, Reff(t ), as in Eqs. (1) and (5) with the estimation by using the
renewable equation in Eq. (7). To summary, Table 2 listed the relevant notations in this
section as well as the remains of this study.

Reconstruction of the reproduction numbers from compartmental model
We reproduce the time-varying basic reproduction number, R0(t ), by using the
compartmental model and reconstruction approach proposed in Zhao et al. (2018b).
Here, we introduce the major reconstruction framework concisely, detailed procedures
can be found in Zhao et al. (2018b). The same framework was also implemented to study
other infectious diseases (He, Ionides & King, 2009; Ionides, Bretó & King, 2006; Shaman &
Karspeck, 2012; Earn et al., 2012; Gao et al., 2016).
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Table 2 Summary table of the reproduction numbers’ and susceptibilities’ notations. All of the variables listed here are unit-free.

Notation Interpretation Formulation Remark

R0(t ) Basic reproduction number Eq. (3) Reconstructed, ‘Reconstruction of the Reproduction
Numbers from Compartmental Model’

Sh(t ) Susceptibility of hosts Eq. (4) Approximated, ‘Reconstruction of the Reproduction
Numbers from Compartmental Model’

Sv Susceptibility of vectors Eq. (4) Fixed to be 100%
Reff(t ) Effective reproduction number Eq. (1) or Eq. (5) Calculated, ‘Reconstruction of the Reproduction Numbers

from Compartmental Model’
R(t ) orRt Instantaneous (effective) reproduction number Eq. (7) Estimated, ‘Instantaneously Reproduction Number

Estimation by Renewable Equation’

The reconstructed R0(t ) is in the form of an exponential cubic spline function varying
over the YF epidemic period, i.e., fromDecember 2015 to June 2016. The shape of the cubic
spline function are controlled by the number of nodes and value of each node. We set the
nodes are evenly distributed over the YF epidemic period. TheR0(t ) cubic spline function
is estimated based on the maximal likelihood framework. We treat the compartmental
model simulated number of cases time series as the theoretical case numbers, denoted
by Zi for the ith week in the epidemic period. Note that the Zis are from the underlying
time-dependent version of model (2). By contrast, the number of observed YF cases time
series, denoted by Ci for the ith week, are regarded as random samples from a negative
binomial (NB) process determined by the theoretical case numbers. We assume the
observation noise follows an over-dispersed Poisson distribution (Bretó et al., 2009), and
in particular, the Cis follow a Poisson process determined by Zis. Furthermore, the rate of
the Poisson process is considered to be a Gamma random variable, and thus, this leads to
a NB process (Lin et al., 2018). The probability framework is described in Eq. (6).

Ci∼NB
(
size=

1
τ
,probability=

1
1+τZi

)
,

with mean=Zi & variance=Zi(1+τZi), (6)

where the term τ is an over-dispersion parameter of the NB process that needs to be
estimated. Thus, the overall log-likelihood value can be calculated by summing up to all
log-probabilities of all is during the entire YF epidemic period. Therefore, the reconstructed
R0(t ) can be estimated by finding the number of nodes and values of nodes (of the cubic
spline function) with the ‘‘best fitting performance’’. We evaluate the fitting performance
of the reconstructedR0(t ) by measuring the trade-off between the goodness-of-fit (in term
of the log-likelihood) and the complexity of the model structure (in term of the number of
parameters to be estimated). As in Zhao et al. (2018b), the Bayesian information criterion
(BIC) is employed to evaluate the fitting performance. By using the likelihood profile
approach (He, Ionides & King, 2009; He et al., 2017; Zhao et al., 2018a; Barndorff-Nielsen &
Cox, 1994; Ionides, Bretó & King, 2006), in which the profile of maximum log likelihood
was calculated as a function of the model parameter, we estimated the 95% confidence
interval (CI) of the reconstructed R0(t ). The simulation outcomes can be found in Fig. 3
of Zhao et al. (2018b).
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By using the local YF vaccination coverage, the data were publicly available via the
African Health Observatory (WHO, 2017) as well as adopted in Zhao et al. (2018b), we
approximated the time-varying population susceptibility, Sh(t ), as shown in Fig. 2B. The
approximation is difference between the pre-existed population susceptibility, calculated
by 1 minus the pre-existed YF-protection rate, and the time-varying local vaccination
coverage.

Given R0(t ) and Sh(t ), we calculated two different forms of the time-varying effective
reproduction number by using the Eqs. (1) and (5) with Sv= 1 fixed.

Instantaneously reproduction number estimation by renewable equation
The transmissibility of YF can be quantified by calculating the instantaneous (effective)
reproduction number,R(t ) andRt for discrete scenarios, defined as the expected number
of secondary cases generated by a single infectious individual during the infectious periods
at time t . We estimated the R(t ) from the YF cases time series by using the serial interval
(SI) approach proposed by Wallinga & Teunis (2004). The SI, in the epidemiology of
infectious diseases, is the period of time between successive cases in a chain of transmission
(Porta, 2014; Fine, 2003). If we know the distribution of the inter-arrival time of patients
arrived at a clinic, we may simulate the sequence of patients arrivals. Similarly, if we know
the distribution of SI, we may simulate the sequence of infections, adding that one primary
infection could lead to a number of, which is determined by the reproduction number,
secondary infections. Reversely, if we know the distribution of SI and the cases time series,
we can reconstruct the reproductive number backwardly. This SI approach was extended by
Forsberg White & Pagano (2008), Katriel et al. (2011), Ali, Kadi & Ferguson (2013), Fraser
(2007), Cori et al. (2013) and Wallinga & Lipsitch (2006), and also implemented to study
several vector-borne diseases (Ferguson et al., 2016; Zhao et al., 2019a;Wu et al., 2016; Zhao
et al., 2019b). Hence, the time-varying R(t ) is estimated from the renewal equation in Eq.
(7).

R(t )=
x(t )∫

∞

0 w(k)x(t−k)dk
, (7)

where x(t ) is the YF incidence rate at time t . The convolution term
∫
∞

0 w(k)x(t−k)dk is the
measurement of the total infectiousness at time t . The term w(k) is the YF SI distribution
that describes the distribution of the infectiousness during the period of infection. We
adopted the same approach, similar methods were also implemented in Zhao et al. (2019c),
Zhao et al. (2019d), Cowling et al. (2009) and Ferguson et al. (2016), to find SI, w(k), and
epidemiology parameter setting as in Wu et al. (2016) as well as the references mentioned
in it (Johansson et al., 2012; Johansson et al., 2010), and we had the numerical estimation of
w(k) with the mean SI of 23 days.

We estimated theR(t ) of YF between January and May of 2016. After this time period,
weeks of zero confirmed case appeared. The 95% confidence intervals (CI) were estimated
based on the Gamma priors of eachR(t ) (Ali, Kadi & Ferguson, 2013; Cori et al., 2013).
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(c) R0 = 10

Figure 3 The contour plot of the effective reproduction number,Reff, against the percentage reduc-
tions inSh andR0. (A –C) The scenarios of highestR0 = 2,R0 = 5, andR0 = 10, respectively. The la-
bels on the blue curves show the values ofReff. The horizontal axis is the percentage reduction in Sh. The
vertical axis is the percentage reduction inR0 that is 1 minus the ratio of the reducedR0 over its original
(or highest) value, i.e., the value in the panel label.

Full-size DOI: 10.7717/peerj.8601/fig-3

RESULTS
The analytic formula of Reff was given in Eq. (5). Since in many situations, the R0(t )
is time-varying, we defined the percentage reduction in R0 as 1 minus the ratio of the
reduced R0 over its original highest value, usually the basic reproduction number during
the initial outbreak. Similarly, the percentage reduction in Sh can be defined as 1 minus the
host susceptibility. We noted that both percentage reductions in Sh andR0 ranged from 0
to 1. The relationship of Reff against the percentage reductions in Sh and R0 was shown
in Fig. 3. Figs. 3(A)–3(C) were the scenarios of the highest R0= 2, R0= 5, and R0= 10
respectively. The range of R0 from 2 to 10 covers most of the vector-borne diseases’ basic
reproduction numbers during the initial outbreak.

Weused the 2015–2016YF outbreak in Luanda to demonstrate the effective reproduction
number formula in Eq. (5). The YF epidemic was shown in Fig. 2A. Subsequent to the (first)
major epidemic wave that peaked in the February of 2016, we observed a second minor
wave that followed the major wave, which peaked in May. We showed the reconstructed
R0(t ) and approximated Sh(t ) reproduced from Zhao et al. (2018b) in Fig. 2B. The local
human susceptibility, Sh(t ), was decreasing by the end of February and ended up less
than 7% due to the timely mass vaccination campaign (Shearer et al., 2017;Wu et al., 2016;
Zhao et al., 2018b; Kraemer et al., 2017). We found two peaks in the reconstructed R0(t ),
of which the highest value was found to be 7.1 during the first wave that peaked in January.
The second peak of R0(t ) occurred in the April of 2016 with the local maximal value of
5.6. We matched the second peak inR0(t ), highlighted in purple, and the minor epidemic
wave in the YF incidences, highlighted in grey, by one SI shift, i.e., 23 days averagely (Wu
et al., 2016).

Figure 2C shows the effective reproduction number calculated or estimated by Eq. (1)
or Eq. (5) or the renewable equation in Eq. (7). The (first) major transmission, i.e.,Reff(t ),
wave peaked in January of 2016 associated with the major epidemic wave that peaked in
February (Fig. 2A). We found the Reff(t ) series based on R0(t ) and Sh(t ) (in Fig. 2B)
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Figure 4 The trajectory of theReff(t ) from Eq. (5) against the percentage reductions inSh andR0 of
the yellow fever (YF) epidemic in Luanda, Angola from 2015 to 2016. The horizontal and vertical axes
have the same setting as in Fig. 3. Here, the original highestR0 = 7.1 as the same as in Fig. 2B. The black
dashed curve represents the level ofReff = 1. The area under theReff = 1 curve is forReff > 1, and those
above is forReff < 1. The red trajectory represents the changing dynamics of Sh andR0 during the first
major epidemic wave from December 2015 to February 2016. The purple trajectory represents the chang-
ing dynamics of Sh andR0 during the second minor epidemic wave from March to May 2016. TheReff >

1 part during the second transmission wave, highlighted in purple in Fig. 2C, are marked in the purple
rectangle.

Full-size DOI: 10.7717/peerj.8601/fig-4

were (almost) synchronised, i.e., in-phase, with the estimated Reff(t ) (or R(t )) series by
the renewable equation. The highest Reff(t ) estimate by renewable equation was 5.5, and
the same as the estimate by using Eq. (5) that was also 5.5, whereas the Eq. (1) version is
4.4. Similar to the trends of YF incidences and R0(t ), we also found a second minor wave
in Reff(t ) around April, highlighted in purple. During this minor wave, the local maximal
Reff(t ) estimate by renewable equation was 2.0 (95% CI [1.1–3.4]) that is larger than 1
significantly, the ‘‘R0

√
ShSv’’ version was 2.3, and the ‘‘R0Sh’’ version is 0.9 ( < 1).

Figure 4 showed the trajectory of the Reff(t ) from Eq. (5) against the percentage
reductions in Sh and R0 of the YF epidemic in Luanda. Consistent with the observations
in Fig. 2C, we found both of the two transmission waves of YF Reff(t ) moved across the
disease control threshold, i.e., Reff= 1. For the second transmission waves, marked in the
purple rectangle, it ‘‘broke’’ the Reff = 1 boundary and thus associated with the second
(minor) YF epidemic wave in May of 2016, highlighted in grey in Fig. 2A.

DISCUSSION
In this work, a simple epidemic model (2) is developed to study the transmission dynamics
of vector-borne diseases. We formulated the analytic form of the effective reproduction
number, Reff, with respect to the basic reproduction number, R0, and the susceptibilities
of the vector (Sv) and host (Sh) for vector-borne diseases in Eq. (5). The Reff from
Eq. (5) were compared with the Reff of the classic airborne infectious disease in Eq. (1)
as well as the estimation by the SI approach in Eq. (7). We re-visited the yellow fever
(YF) outbreak in Luanda, and used this epidemic as an example to compare the Reff
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calculation and estimation. Although there existed differences in the three Reff series
during the first transmission wave around January 2016 in Fig. 2, the Reff values were
roughly synchronised. However, for the second (minor) transmission wave around April
2016, the Reffs from Eq. (5) were consistent with the estimates from the renewable
equation that were significantly larger than 1, the ‘‘ R0Sh’’ appeared inconsistent with the
formers and lower than 1. According to theoretical epidemiology (Earn et al., 2008; Brauer
& Castillo-Chavez, 2001; Keeling & Rohani, 2011; Grenfell, Dobson & Moffatt, 1995), the
condition that Reff < 1 guarantees the disease under control. The R0Sh was calculated
lower than 1 since the mid-February 2016, and this contradicted with the occurrence of the
second YF epidemic wave in May. Therefore, the ‘‘ R0Sh’’ form of effective reproduction
number was demonstrated unqualified for measuring the transmissibility of a vector-borne
disease. On the other hand, our derivedReff=R0

√
ShSv, Eq. (5), matched the two waves

of both YF incidences time series and theR(t ) estimates by renewable equation well.
Different from the vector-free context, the Reff =R0

√
ShSv for the vector-borne

diseases indicates that the disease control effectiveness, i.e., Reff, non-linearly depends
on the control of the host’s susceptibility, Sh. Figure 3 shows that the reduction in Sh is
(relatively) less effective in reducingReff during the initial stage, i.e., from 0% onwards, and
becomes more effective when the cumulative reduction of Sh grows. This finding suggests
that directly reducing R0, via, e.g., vector elimination, avoiding exposure to vectors,
improving treatment, etc., could be a more efficient option to control the vector-borne
diseases, especially when the herd protection in the host population is difficult to build up.

Although the next generation matrix method in ‘Basic Reproduction Number’ is valid
around a disease-free equilibrium (DFE) of model (2) (Van den Driessche & Watmough,
2002; Van den Driessche, 2017), the (asymptotic) stability of the endemic equilibrium (EE)
will allow that the product of the R0 multiplying the susceptibility can be interpreted as
Reff. The Bv(t ) can be treated as a constant, 〈Bv〉, when we consider a sufficiently short
period of time.Hence, during this short period of time, the EE ofmodel (2) is asymptotically
stable, and the Eq. (5) holds. More precisely, Eq. (5) follows a more general version as
follows,

Reff(t )=R0(t )
√
Sh(t )Sv(t ).

The global asymptotic stability (GAS) of EE can be further guaranteed as N ′v =
Bv(t )−µvNv = 0 in model (2), and this leads to the condition that Bv(t )=〈Bv〉=µvNv .

This work used the serial interval (SI) approach, i.e., the renewable equation, to estimate
the instantaneous effective reproduction number, R(t ), for further comparison. The
estimates ofR(t ) depended on the choice of the distribution of SI, i.e., the w(k) in Eq. (7).
Accounting for the initial susceptibility of 63% of the YF epidemic (WHO, 2017),Wu et al.
(2016) estimated that the YF basic reproduction number of R0= 8.3 (95% CI [6.8–9.7])
with mean SI of 23 days, and R0 = 11.3 (95% CI [8.7–13.8]) with mean SI of 32 days.
Kraemer et al. (2017) estimated that R0= 7.6 (95% CI [6.3–8.9]) with mean SI 15 days.
We adopted the mean SI of 23 days as inWu et al. (2016) in this work to estimate theR(t )
series. Different (but reasonable) settings on SI will distinguish the second transmission
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wave (as highlighted in purple in Figs. 2C and 4) with Reff> 1 indifferently. In addition,
we note that slight changes in the choice of YF SI will not affect our main results.

This work intends to estimate and compare different forms of the time-varying effective
reproduction number. We have adopted two different but widely used approaches, i.e., the
maximal likelihood-based reconstruction and the SI, i.e., by the renewable equation, based
estimation, which includes three different formations in Eqs. (1), (5) and (7). Themaximum
likelihood-based reconstruction method and the SI based estimation method are different
in the calculation procedures and theoretical features. The maximum likelihood-based
reconstruction relies on the mechanistic disease transmission model, e.g., model (2), and
thus, it follows a biologically reasonable model structure. It is able to disentangle the
changing dynamics of susceptibility, Sh(t ), and the basic reproduction number, R0(t ),
based the number of cases time series and other reasonable epidemiological settings. Hence,
we adopted this approach to find both Sh(t ) and R0(t ), and further calculate the Reff(t )
in two difference forms. The SI based (renewable equation based) estimation method is to
calculate descriptive statistics by nature. By directly using the number of disease cases time
series and the knowledge (distribution) of SI, theR(t ) can be estimated straightforwardly.

To derive the Reff in Eq. (5), we used the next generation matrix approach in ‘Effective
Reproduction Number’ and considered the transition ‘‘from host to vector to host’’ as
two generations, which is consistent with (Gao et al., 2016; Tang et al., 2016; Zhao et al.,
2018b; Champagne et al., 2016; d Pinho et al., 2010; Musa et al., 2019; Wang et al., 2012).
As also remarked in Brauer et al. (2016) and Van den Driessche (2017), some other studies
treated the same transition ‘‘from host to vector to host’’ as a single combined generation
(Tennant & Recker, 2018; Chowell et al., 2007; Kucharski et al., 2016; Towers et al., 2016;
Mideo & Day, 2008). Although the two choices have the same threshold value and follow
the same mathematical criteria to judge the stability of compartmental models, to be aware
of their difference is crucial. We remark that if considering the aforementioned transition
as a single generation, the basic reproduction number would be the square of theR0 in Eq.
(3). In this case, the effective reproduction number is Reff=R0ShSv. In our YF epidemic
example, we demonstrated that the misuse of the Eq. (1) is likely to cause misleading or
contradictory outcomes in studying the vector-borne diseases outbreak. The two forms
of the reproduction numbers have different biological interpretations due to the different
definitions of generations, nevertheless one can be transformed to the other.

Our modelling study, specially the derived ‘‘ Reff =R0
√
ShSv’’ relationship, has

limitations mainly due to the model settings and structures. As stated in the analysis parts,
the relationship holds on the condition that the transmission paths remain from-host-
to-vector and from-vector-to-host. Hence, when direct transmission occurs, e.g., sexual
transmission between hosts in Zika virus (Gao et al., 2016), theReff 6=R0

√
ShSv. However,

since the sexual transmission merely contributes very minor infections, it can be ignored
in scale, and thus Reff≈R0

√
ShSv. The numerical results and estimates in this work are

calculated with Sv = 1 fixed. This Sv = 1 is based on two facts that the vector’s lifespan
is much shorter than host’s lifespan; and the infected vectors do not recover (for most
of the vector-borne diseases). These two facts will lead to an outcome in model (2) that
class Rv = 0 and class Iv is remarkably small and almost zero. As the matter of fact, Iv , i.e.,
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the prevalence of disease in vectors, is likely to increase when the pathogen is extremely
infectious and the vertical transmission accounts. Therefore, the surveillance on the disease
prevalence in vectors would be helpful for calculating theReff.

CONCLUSIONS
We formulate the analytic form of the Reff =R0

√
ShSv for the vector-borne diseases.

We demonstrate the Reff formulation is consistent with the estimates of the 2015–2016
yellow fever outbreak in Luanda, and distinguishes the second minor epidemic wave
significantly. We remark that it is important to be aware of whether one or two generations
is considered for the transition ‘‘from host to vector to host’’ in the infectious diseases
modelling studies.
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