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Background. Within the global endeavour of improving population health, one major challenge is the
identification and integration of medical knowledge spread through several information sources. The
creation of a comprehensive dataset of diseases and their clinical manifestations based on information
from public sources is an interesting approach that allows, not only to complement and merge medical
knowledge, but also to increase it and thereby to interconnect existing data and analyse and relate
diseases to each other. In this paper, we present DISNET (disnet.ctb.upm.es), a web-based system
designed to periodically extract the knowledge from signs and symptoms retrieved from medical
databases, and to enable the creation of customisable disease networks.

Methods. We here present the main features of the DISNET system. We describe how information on
diseases and their phenotypic manifestations is extracted from Wikipedia and PubMed websites;
specifically, texts from these sources are processed through a combination of text mining and natural
language processing techniques.

Results. We further present the validation of our system on Wikipedia and PubMed texts, obtaining the
relevant accuracy. The final output includes the creation of a comprehensive symptoms-disease dataset,
shared (free access) through the system's API. We finally describe, with some simple use cases, how a
user can interact with it and extract information that could be used for subsequent analyses.

Discussion. DISNET allows retrieving knowledge about the signs, symptoms and diagnostic tests
associated with a disease. It is not limited to a specific category (all the categories that the selected
sources of information offer us) and clinical diagnosis terms. It further allows to track the evolution of
those terms through time, being thus an opportunity to analyse and observe the progress of human
knowledge on diseases. We further discussed the validation of the system, suggesting that it is good
enough to be used to extract diseases and diagnostically-relevant terms. At the same time, the
evaluation also revealed that improvements could be introduced to enhance the system’s reliability.
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19 Abstract

20

21 Background. Within the global endeavour of improving population health, one major challenge 
22 is the identification and integration of medical knowledge spread through several information 
23 sources. The creation of a comprehensive dataset of diseases and their clinical manifestations 
24 based on information from public sources is an interesting approach that allows, not only to 
25 complement and merge medical knowledge, but also to increase it and thereby to interconnect 
26 existing data and analyse and relate diseases to each other. In this paper, we present DISNET 
27 (disnet.ctb.upm.es), a web-based system designed to periodically extract the knowledge from 
28 signs and symptoms retrieved from medical databases, and to enable the creation of customisable 
29 disease networks.
30 Methods. We here present the main features of the DISNET system. We describe how 
31 information on diseases and their phenotypic manifestations is extracted from Wikipedia and 
32 PubMed websites; specifically, texts from these sources are processed through a combination of 
33 text mining and natural language processing techniques.
34 Results. We further present the validation of our system on Wikipedia and PubMed texts, 
35 obtaining the relevant accuracy. The final output includes the creation of a comprehensive 
36 symptoms-disease dataset, shared (free access) through the system's API. We finally describe, 
37 with some simple use cases, how a user can interact with it and extract information that could be 
38 used for subsequent analyses.
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39 Discussion. DISNET allows retrieving knowledge about the signs, symptoms and diagnostic 
40 tests associated with a disease. It is not limited to a specific category (all the categories that the 
41 selected sources of information offer us) and clinical diagnosis terms. It further allows to track 
42 the evolution of those terms through time, being thus an opportunity to analyse and observe the 
43 progress of human knowledge on diseases. We further discussed the validation of the system, 
44 suggesting that it is good enough to be used to extract diseases and diagnostically-relevant terms. 
45 At the same time, the evaluation also revealed that improvements could be introduced to enhance 
46 the system’s reliability.
47

48 Introduction

49 In 1796, Edward Jenner found an important link between the variola virus, which affected only 
50 humans and was highly lethal, and the bovine smallpox virus, which attacked cows and was 
51 transmitted to humans by physical contact with infected animals, and which, despite its severity, 
52 rarely resulted in death. He found that people who became infected with the latter (also called 
53 cowpox) did not subsequently catch the former; and thus, that something in the bovine smallpox 
54 virus made humans immune to variola virus. This led him to thoroughly investigate the 
55 relationship between these diseases and understand their behaviour for more than twenty years; 
56 to be finally able to find a cure for the variola virus, saving thousands of humans lives 
57 worldwide.
58

59 This discovery illustrates the importance of the knowledge that we can get from diseases and, 
60 more specifically, from how they are related. Despite the fact that in the last 200 years our 
61 understanding of diseases has greatly increased, and valuable advances have been made in this 
62 area (Botstein & Risch, 2003), the number of those without treatment or cure is still extremely 
63 high (e.g. Alzheimer's disease, small cell lung cancer, HIV, etc.). It is thus imperative to explore 
64 new approaches and tools to tackle them and, therefore, improve the health of the world's 
65 population.
66

67 It is almost a truism that the search for new drugs requires a better understanding about diseases. 
68 This includes finding new insights on the relationship between diseases (which diseases are 
69 related and how), as well as the creation of public and easy-to-access large databases of diseases 
70 knowledge (Pérez-Rodríguez et al., 2019). During the last decade, such endeavour has been 
71 vastly facilitate by the World Wide Web. On one hand, it is possible to find free biomedical 
72 vocabularies like Unified Medical Language System (UMLS) (Bodenreider, 2004), Human 
73 Phenotype Ontology (HPO) (Robinson et al., 2008; Köhler et al., 2017), Disease Ontology (DO) 
74 (Schriml et al., 2012) or MeSH (Lipscomb, 2000), all of them offering disease classifications, 
75 disease coding standards and associated medical resources. On the other hand, one can find 
76 bioinformatic databases created by complex medical system, like DiseaseCard (Oliveira et al., 
77 2004; Dias et al., 2005; Lopes & Oliveira, 2013), MalaCards (Rappaport et al., 2013, 2014; Espe, 
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78 2018), GeneCard (Safran et al., 2002), Diseases Database (DD)1, DISEASES (Pletscher-Frankild 
79 et al., 2015), SIGnaling Network Open Resource (SIGNOR) (Perfetto et al., 2016), Kyoto 
80 Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000), MENTHA (Calderone, 
81 Castagnoli & Cesareni, 2013), PhosphositePlus (Hornbeck et al., 2015), PhosphoELM 
82 (Hornbeck et al., 2015), UniProtKB (UniProt Consortium, 2014), Human Gene Mutation 
83 Database (HGMD) (Stenson et al., 2014), Comparative Toxicogenomics Database (CTD) 
84 (Mattingly et al., 2006), and the database for Pediatric Disease Annotation and Medicine 
85 (PedAM) (Jia et al., 2018). These datasets have generally been created by processing the 
86 information from several sources, and they usually offer simple search engines; yet, not all of 
87 them have a systematic and structured form of sharing their knowledge. In this context, it is 
88 important to relate the quantity of available medical sources and systems on one hand, and the 
89 need of health professionals for quality information on the other, helping them performing their 
90 work with higher precision and lower time (Russell-Rose, Chamberlain & Azzopardi, 2018). 
91 Therefore, diagnostic systems (Chen et al., 2018) have become more relevant and researchers 
92 such as Xia et al. attempt to take on the challenge through the mining of information from 
93 sources such as DO, Symptom Ontology (SYMP) and MEDLINE/PubMed citation records (Xia 
94 et al., 2018). We can also observe in the literature a large volume of studies that use the mining 
95 of texts from different unstructured or semi-structured medical information sources (Frunza, 
96 Inkpen & Tran, 2011; Mazumder et al., 2016; Singhal, Simmons & Lu, 2016; Xu et al., 2016; 
97 Tsumoto et al., 2017; Sudeshna, Bhanumathi & Hamlin, 2017; Aich et al., 2017; Gupta et al., 
98 2018; Rao & Rao, 2018; Zhao et al., 2018; Bou Rjeily et al., 2019).
99

100 It goes without doubt that the large amount of available bioinformatic resources allows both to 
101 enhance the research in the biomedical field and to have a better understanding of how the 
102 diseases behave and how can we fight them. However, most of the already mentioned sources 
103 are mainly focused on retrieving and exposing the captured knowledge and are not primarily 
104 focused on the analysis of the interactions and relationships that exists between different diseases 
105 or different disease characteristics.
106

107 In this context, several works have attempted to understand these relationships by creating and 
108 analysing disease networks. The complexity of such endeavour was soon clear, as diseases may 
109 share not only symptoms and signs, but also genes, proteins, causes and, in many cases, cures 
110 (Goh et al., 2007; Zanzoni, Soler-López & Aloy, 2009; Barabási, Gulbahce & Loscalzo, 2010; 
111 Lee et al., 2011; Zhou et al., 2014; Chen et al., 2015; Quwaider & Alfaqeeh, 2016; Piñero et al., 
112 2017; Lo Surdo et al., 2018; Hwang et al., 2019; Szklarczyk et al., 2019; García del Valle et al., 
113 2019). One of the most important works on the subject was published in 2007 by K.-I. Goh et al. 
114 (Goh et al., 2007), in which the HDN (Human Disease Network) was developed, a network of 
115 human diseases and disorders that links diseases based on their genetic origins and biological 
116 interactions. Different diseases were then associated according to shared genes, proteins or 

1 http://www.diseasesdatabase.com
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117 protein interactions. The hypothesis that different diseases, with potentially different causes, may 
118 share characteristics allows the design of common strategies regarding how to deal with the 
119 diagnosis, treatment and prognosis of a disease.
120

121 Within this line of research it is worth mentioning the Human Symptoms-Disease Network 
122 (HSDN) (Zhou et al., 2014), an HDN network in which similarities between diseases were 
123 estimated through common symptoms. This is an important change in perspective with respect to 
124 previous works, in which the focus was centred on the genetic and biological origin of the 
125 diseases. In (Zhou et al., 2014), diseases are defined by their clinical phenotypic manifestations, 
126 i.e. signs and symptoms; this is not surprising, as these manifestations are basic medical 
127 elements, and crucial characteristics in the diagnosis, categorization and clinical treatment of the 
128 diseases. It was then proposed to use these as a starting point to understand the existing 
129 relationships between different diseases.
130

131 Building on top of these previous works and stemming from the necessity of having exhaustive 
132 and accurate sources of disease-based information, in this paper we present the DISNET 
133 (Diseases Networks) system. DISNET aims at going one step further in improving human 
134 knowledge about diseases, not only by seeking and analysing the relations between them, but 
135 most importantly, by finding real connections between diseases and drugs, thus potentially 
136 enabling novel drug repositioning strategies.
137

138 Therefore, the objectives of this research work are:
139

140  Present the first version of the web-based DISNET (phenotypic information) system.

141  Describe the characteristics of its recovery and generation process of phenotypic 
142 knowledge.

143  Provide an indicator of the accuracy of the information generated by DISNET, through a 
144 manual information validation process.

145  Provide free access to the DISNET dataset with structured information about diseases and 
146 symptoms through the system's API.
147

148 The current version of the DISNET system is focused on phenotypic information and allows to 
149 capture knowledge about diseases from heterogeneous textual sources. We have five main 
150 advantages with respect to the previously described research. Firstly, the use of Wikipedia as the 
151 main source of knowledge. While this encyclopaedia has been the object of study of numerous 
152 research works, to the best of our knowledge DISNET is the first system to mine texts that 
153 describe how the disease manifests itself, and to recover disease codes, leading to a more 
154 extensive mapping between several biomedical information sources. Secondly, DISNET offers a 
155 public API, that enables the free and structured sharing of the knowledge generated by the 
156 system; it is worth noting that having an appropriate method for information sharing, while being 
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157 a basic element, is not common among the previously reviewed systems. Thirdly, the proposed 
158 system allows to recover the temporal evolution of phenotypic information. This is especially 
159 relevant for sources like Wikipedia, which is constantly edited, and whose medical articles are 
160 frequently corrected and updated. This allows an analysis of the dynamics of diseases, in terms 
161 of how their description has been evolving through a collective effort. Fourthly, DISNET has 
162 been designed to be able to store and integrate information from heterogeneous sources; this 
163 allows to cross-validate and enrich medical knowledge of diseases and symptoms. Future content 
164 to be introduced includes genetic and drug information to create a complex multilayer network, 
165 where each layer represents the different type of information (phenotypical, biological, drugs). 
166 Finally, we also provide an evaluation of the DISNET extracted content, with examples on how 
167 diseases can be analysed and their relationships described through a network structure. 
168

169 Beyond this introduction, this paper is organised as follows: Section 2 explains the technologies 
170 used in the creation of DISNET phenotypical features repository. Section 3 presents the main 
171 results obtained in the validation of the system and discussion about them, describes several 
172 simple use cases. Finally, Section 4 draws some conclusions and discusses future work.

173

174 Materials & Methods 

175 This Section discusses the technical characteristics of the DISNET system, focusing on two 
176 aspects: the sources of information hitherto considered, and the DISNET workflow. More 
177 specifically, the last point describes how the system retrieves phenotypic information, in the 
178 form of raw texts, from the discussed sources; how these texts are processed to obtain diagnostic 
179 terms; and how these terms are validated to compile a final list of valid symptom-type terms2. 
180 The source code of the entire DISNET platform and their components is available online3.
181

182 Information Source

183 As it has previously been shown, it is customary for works aimed at unveiling relationships 
184 between diseases to focus on single source of information, in most cases just abstracts of 
185 Medline articles. On the other hand, the proposed system aims at obtaining inputs from as many 
186 sources as possible, to guarantee the recovery of as much knowledge as possible. By bringing 
187 together information from different sources, we expect them to complement each other, creating 
188 a network with a higher capacity of relating diseases. The rationale for this is that the different 
189 sources of textual knowledge, such as Wikipedia or PubMed, are written in different styles and 
190 by people with different backgrounds; the information they contain may therefore be 
191 complementary. In order to take advantage of such richness, the DISNET system allows the user 
192 to query the symptoms according to different rules: for instance, from one or multiple sources, 
193 by applying filters based on prevalence information, or on percentages of similarity among 
194 others. This clearly comes at a cost: the system should be flexible enough to be able to process 

2 Study approved by Ethics Committee of Universidad Politécnica de Madrid.
3 https://github.com/disnet-project/
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195 sources with different structures. In the remainder of this Section we discuss the patterns used to 
196 select data sources, how they have been mined, and finally the challenges involved in such tasks.
197

198 Source Selection

199 Traditionally, in order to obtain the whole body of knowledge that mankind has accumulated 
200 about a given disease, one would refer to medical books. Although books usually contain much 
201 of the information available, they also present some important limitations: they are not constantly 
202 updated; the automatic access to their content is difficult, especially when digital versions are not 
203 available; and they are usually written for study, thus the information they contain is not 
204 structured for data mining tasks. On the other hand, one has the World Wide Web, whose main 
205 characteristic is to be (mostly) free accessible to anyone with an internet connection. It mainly 
206 offers three sources of information. Firstly, the abstract, and in some cases, the full text, of 
207 medical papers, which can be accessed through platforms like PubMed. Secondly, specialized 
208 sources of information, such as MedlinePlus, MayoClinic, or CDC. Finally, good medical data 
209 can be obtained in sources of knowledge that are not specialized, such as Wikipedia or Freebase. 
210 Note that all of them have different characteristics, in terms of comprehensiveness, degree of 
211 structure of the information, and up-to-datedness. 
212

213 The criteria used for the selection of the sources of information in DISNET are: i) open access, 
214 ii) recognised quality and reliability, and iii) availability of substantial quantities of data 
215 (structured or not). This suggested to include the following three web sites in the system, which 
216 are described below: i) Wikipedia and ii) PubMed. It is important to note that the system is not 
217 closed; on the contrary, thanks to its flexibility, new sources could (and will) be incorporated in 
218 the future. 
219

220 Wikipedia

221 Wikipedia is an online, open and collaborative source of information. It was created by the 
222 Wikimedia Foundation and its English edition is the largest and most active one. The 
223 monumental and primary task of editing, revising and improving the quality of all articles is not 
224 performed by a core of administrators: it is instead the collaborative result of thousands of users. 
225 Consequently, this encyclopaedia is considered the greatest collective project in the history of 
226 humanity (Mehdi et al., 2017; Aibar, 2017). 
227

228 Wikipedia contains more than 155,000 articles in the field of medicine (Azzam et al., 2017) and 
229 is one of the most widely used medical sources (Friedlin & McDonald, 2010) by the general 
230 community (Aibar, 2017) and also by medical specialists (Azer, 2014; Shafee et al., 2017), the 
231 latter ones having deeply been involved in its enrichment (Azzam et al., 2017)(Cohen, 2013). 
232 One of the initiatives is the Cochrane/Wikipedia, which aims at increasing reliability in articles 
233 with medical content (Matheson & Matheson, 2017). In 2014 Wikipedia was referred to as "the 

234 single leading source of medical information for patients and health care professionals" by the 
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235 Institute of Medical Science (IMS) (Heilman & West, 2015). This stems from the fact that an 
236 increasing number of people in the medical field are becoming aware of the importance of 
237 collaborating and generating quality content in the world's largest online encyclopaedia. 
238 We have focused on Wikipedia in its English edition, and specifically on those articles 
239 categorized as diseases. In order to obtain a list of such articles we resort to conventional 
240 DBpedia and DBpedia-Live (DBpedia), an open and free Web repository that stores structured 
241 information from Wikipedia and other Wikimedia projects. By containing structured 
242 information, this source allows complex questions to be asked through SPARQL queries 
243 (“SPARQL Query Language for RDF,” 2017). We developed a query4 that is able to get all the 
244 articles of Wikipedia in English referring to human diseases and run it in the Virtuous 

245 environment SPARQL Query Editor of DBpedia5. This first approach to detecting and 
246 extracting Wikipedia's web links can be addressed in different ways and in the Error! Reference 

247 source not found. section we will talk about them.
248

249 Even though disease articles have a standard structure, due to the very nature of Wikipedia, 
250 articles can be edited by anyone; consequently, it is possible to find articles that do not comply 
251 with the standard form that the creators of the encyclopaedia propose (“Wikipedia,” 2018). The 
252 structure is organized in sections, of which we have selected those whose content is related to the 
253 phenotypic manifestations of the disease. The essential sections mined by DISNET are: “Signs 

254 and symptoms”, “signs and symptoms”, “Symptoms and causes”, “Signs”, “Symptoms”, 
255 “Causes”, “Cause”, “Diagnosis”, “Diagnostic”, “Causes of injury”, “Diagnostic approach”, 
256 “Presentation”, “Symptoms of …“, “Causes of …” , and infobox.

257

258 The data retrieved from these sections are: i) the texts (paragraphs, lists and tables) contained in 
259 the previously described sections; ii) the links contained in these texts; and iii) the disease codes 
260 of vocabularies external to Wikipedia, which can be found in the infoboxes of the article. Note 
261 there are two types of infobox. Figure 1 shows an example of the external vocabulary codes 
262 retrieved in a vertical infobox, usually located at the beginning of the document; Figure 2 shows 
263 an example of a horizontal infobox, generally located at the foot of the document. These disease 
264 codes in different vocabulary are relevant elements when searching for diseases in the system’s 
265 database. The list of external vocabularies to DISNET can be found at 6.
266

267 PubMed

268 PubMed7 comprises more than 28 million biomedical literature citations from MEDLINE, life 
269 science journals and online books. Quotations may include links to full text content from 

4 https://midas.ctb.upm.es/gitlab/disnet/paperdisnet/blob/master/get_diseases_query.sparql 
5 https://dbpedia.org/sparql
6 https://midas.ctb.upm.es/gitlab/disnet/paperdisnet/blob/master/wikipedia_medical_vocabularies.txt
7 https://www.ncbi.nlm.nih.gov/pubmed/
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270 PubMed Central8 and editorial websites (pubmeddev). As in other studies, we here only 
271 considered the abstracts of the articles, as, firstly, it is not always possible to access the full text, 
272 and secondly, the full text of articles does not follow a standard format. However, we are aware 
273 of the limitations of the extraction of information only for abstracts (Westergaard et al., 2018), 
274 and future versions of DISNET platform will focus in extracting the content from the full paper 
275 when possible.  Note that in PubMed the information about one single disease is spread among 
276 multiple documents – as opposed to Wikipedia, in which there is a bijective relationship between 
277 articles and diseases.
278

279 Obtaining the list of diseases in PubMed involves two main steps. Firstly, one should extract the 
280 list of MeSH terms (DMTL) relating to human diseases C, which are categorized from C01 to 
281 C20 (excluding those categories such as "Animal Diseases" or "Wounds and Injuries") as shown 
282 in the classification tree in Fig. 39; and map each disease with Human Disease Ontology10 to 
283 obtain disease codes of the vocabulary ICD-10, OMIM, MeSH, SNOMED_CT and UMLS. Note 
284 that the use of multiple vocabularies aims at obtaining the greatest amount of means (identified 
285 codes) to identify diseases in different sources of information. As a second step, it is necessary to 
286 extract all PubMed articles whose terms are associated with each of the elements of the 
287 previously extracted disease list DMTL, through PubMed's Entrez API (AEPM) it is possible to 
288 carry out this task, because this allows access to all Entrez databases including PubMed, PMC, 
289 Gene, Nuccore and Protein. An important feature to mention of the AEPM, and also used in our 
290 work, has been the sorting of articles by their relevance (Information et al., 2019), managing to 
291 focus the efforts on those articles with better quality. Thus, this configuration has given us the 
292 possibility to obtain, if they exist, the 100 most relevant articles of each MeSH term consulted. 
293 Specifically, for each article we retrieve: 1) abstract, 2) authors' names, 3) unique identifier in 
294 PubMed and PubMed Central, 4) doi (digital object identifier), 5) title, 6) associated MeSH 
295 terms and 7) keywords. The workflow for extracting texts from PubMed documents is shown in 
296 Fig. 4.
297

298 Challenges

299 Mining information from the sources previously described entails several computational 
300 challenges, which may be boiled down to one requirement for the DISNET system: the need of a 
301 high versatility in data acquisition. We here review such challenges, as these partly explain the 
302 adopted software solution.
303

304 First of all, the mapping disease-webpage may take different forms. Specifically, it is one to one 
305 for Wikipedia, as all the information of a disease is included in a single page; but it becomes one 
306 to many for PubMed, in which multiple articles are available for each single concept. Consulting 
307 the latter thus requires a more complex procedure.

8 https://www.ncbi.nlm.nih.gov/pmc/
9 https://b.nlm.nih.gov/treeView
10 http://www.obofoundry.org/ontology/doid.html
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308

309 Secondly, and as one may expect, the specific structure of each source of information is different 
310 – i.e. a page of Wikipedia has not the same structure of a PubMed article. This requires further 
311 flexibility, in terms of the development of a modular structure with specific crawlers for each 
312 source.
313

314 Finally, it is worth noting that, while here we have only considered texts, much information is 
315 available in different medias, like images, videos and others binary files. While not implemented 
316 at this stage, the system should be flexible enough to accommodate such sources in the future.
317

318 Data Retrieval and Knowledge Extraction

319 This section describes the general architecture of the DISNET system, including the data 
320 extraction and the subsequent knowledge extraction. In the sake of clarity, such architecture is 
321 further depicted in Fig. 5. 
322

323 The Extraction Process

324 The first step of the DISNET pipeline is in charge of retrieving the information from the sources 
325 previously identified and described. For each one of this, and before running the actual web 
326 crawler, the “Get Disease List Procedure” (GDLP) component is responsible for obtaining the 
327 list of diseases to be mined, thus providing links to all available disease related documents. For 
328 example, the GLDP associated to Wikipedia articles makes use of the SPARQL query1; 
329 similarly, the links for the PubMed’s articles are retrieved through a list of MeSH terms.
330

331 Once the URL list has been collected, the "Web Crawler" (WC) module is in charge of 
332 connecting to each of the hyperlinks and extracting the specific text that describes the 
333 phenotypical manifestations, as well as the links (references) contained within the texts11. In 
334 addition, and whenever possible, it attempts to extract information related to the coding of 
335 diseases, i.e. the codes used to identify the disease in different databases or existing data 
336 vocabularies. Currently it is able to retrieve information from more than 6,692 articles in 
337 Wikipedia and from 229,160 article abstracts in PubMed. The information mined by WC is 
338 stored in an intermediate database called "Raw DB", which contains the raw unprocessed text. 
339 The next step within the pipeline is called "NLP Process" (NLPP). This component is 
340 responsible for: i) reading all the texts of a snapshot, and ii) obtaining for each text a list of 
341 relevant clinical concepts/terms, discarding any unrelated paragraphs or words. At the moment 
342 NLPP uses Metamap (Aronson, 2001)(Rodríguez González et al., 2018) as a Natural Medical 
343 Language Processing tool to extract clinical terms of interest – see online NLP Tools and 
344 Configuration section12. Semantic types (SM) are important elements created by UMLS to define 

11 https://jsoup.org/
12 http://disnet.ctb.upm.es/apis/disnet#NLP_Tools_and_Configuration
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345 categories of concepts. Metamap uses SM to find medical elements, and a full list of them is 
346 available online13.
347

348 The output of the NLP process is stored in the "DISNET Medical DB" (DMDB) database. It 
349 stores, in a structured way, the medical concepts that have been obtained by the NLPP, as well as 
350 any information required to track the origin of such concepts – in order to track any error that 
351 may later be detected. Therefore, and to summarize, the information stored in a structured way in 
352 DMDB is: i) the medical concepts with their location, information and semantic types, ii) the 
353 texts from which they were extracted and the links by them contained, iii) the sections which the 
354 texts belong to, iv) the document or documents describing the disease (Web link) and v) the 
355 disease identifiers codes in different vocabulary or databases. Additional information, as the day 
356 of the extraction and the source, is further saved.
357

358 Before reaching the last step of the process, it is important to highlight the nature of the 
359 information hitherto stored. Specifically, the system has not extracted only signs or symptoms of 
360 a disease, but instead medical terms that we believe may be phenotypic manifestations of 
361 disease. It is thus necessary to filter those that are not relevant for the objective initially 
362 described. 
363

364 Having clarified this, the next component of the pipeline, the "TVP Process" TVPP, reads all the 
365 concepts of a snapshot - source pair and filters them. This process is responsible for determining 
366 whether these UMLS medical terms are really phenotypic manifestations, and for storing the 
367 results back in the DMDB. TVPP is based on the Validation Terms Extraction Procedure that 
368 was developed, implemented and tested by Rodriguez-Gonzalez et al (Rodríguez-González et al., 
369 2015). The results of this component (a purification of concepts) are thus those validated terms 
370 that we will consider as true phenotypic manifestations of diseases.
371

372 The DISNET extraction process (IEPD), i.e. the process of retrieving and storing information 
373 about diseases, basically ends here. Nevertheless, for the sake of providing an accessible and 
374 user-friendly way of retrieving and manipulating this information, DISNET also offers a REST-
375 based interface. This is described in detail in the system website 
376 (http://disnet.ctb.upm.es/apis/disnet); also refer to Section 4 for an application example.

377

378 Results

379 This section describes how the medical concepts data set is built, for then validating and 
380 analysing its content.
381

382 Construction of the DB

13 https://metamap.nlm.nih.gov/SemanticTypesAndGroups.shtml
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383 The database in the DISNET system contains information recovered from three sources of 
384 information: Wikipedia and PubMed. From Wikipedia we have 26 snapshots, from February 1st, 
385 2018 to February 15th, 2019, for PubMed we have one snapshot, that of April 3rd, 2018. Within 
386 the system it is possible to consult, for each snapshot and source, the total number of articles 
387 with medical terms, the total number of medical terms found, the number of processed texts, the 
388 total number of retrieved codes, and the total number of semantic types found14.
389 When summing that sources, the system counts with 6,545 diseases, 2,212 medical terms from 
390 UMLS (SNOMED-CT) and 19 semantic types, which can be consulted online15.
391 Wikipedia snapshots are built using the configurations that are available online16. We have 
392 obtained a list of 11,074 articles catalogued as diseases in Wikipedia according to DBpedia17, 
393 from which we obtained 6,692 articles with at least one text referring to phenotypic knowledge 
394 of the disease, or at least one code to an external information source, 4,798 of which were found 
395 to be relevant medical concepts18.
396

397 The snapshot for PubMed has been built using the configuration described online19. This 
398 snapshot has been built on top of a list of 2,354 MeSH terms19 referring to human diseases, but 
399 only for 2,213 MeSH terms did we obtain information (199,013 scientific articles in total, i.e. 
400 about 0.71% of the 28 million articles existing in PubMed20) and of each of these PubMed 
401 articles obtained, only in 174,900 were abstracts found and only in 125,515 were relevant 
402 medical terms found. Figure 6 and Figure 7 presents some basic database statistics at an 
403 aggregated level as well as by source (for Wikipedia and PubMed). Some notable differences can 
404 be observed; for instance, the five most common terms for Wikipedia are Pain, Lesion, 
405 Neoplasms, Magnetic resonance imaging, Inflammation and Malnutrition, while for PubMed 
406 these are Neoplasms, Lesion, Magnetic resonance imaging, Malnutrition and Inflammation. 
407 Similarly, the three diseases with the greatest number of concepts in Wikipedia are Kawasaki 

408 disease, Cerebral palsy and Hypoglycemia, while for PubMed these are Hypercalcemia, Cranial 

409 nerve palsy and Beriberi.
410

411 Data evaluation of the DB

412 In this section, we discuss the results of the validation process we executed on the system, to 
413 ensure the relevance of the diagnostic knowledge (valid medical diagnostic terms) generated 
414 through our NLP process (Metamap and TVP). The evaluation has been made on both Wikipedia 
415 and PubMed mined.
416

14 https://midas.ctb.upm.es/gitlab/disnet/paperdisnet/blob/master/knowledge_sources
15 https://midas.ctb.upm.es/gitlab/disnet/paperdisnet/blob/master/DISNET_summing_source_counts
16 https://midas.ctb.upm.es/gitlab/disnet/paperdisnet/blob/master/snapshot_settings.txt
17 https://midas.ctb.upm.es/gitlab/disnet/paperdisnet/blob/master/wikipedia_diseases_articles_by_dbpedia.txt
18 https://midas.ctb.upm.es/gitlab/disnet/paperdisnet/blob/master/wikipedia_articles_with_relevant_terms.txt
19 https://midas.ctb.upm.es/gitlab/disnet/paperdisnet/blob/master/mesh_terms_human_diseases.txt
20 https://midas.ctb.upm.es/gitlab/disnet/paperdisnet/blob/master/list_pubmed_papers.txt
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417 The validation for Wikipedia was carried out on the February 1st, 2018 snapshot, selecting 100 
418 diseases at random with the only condition of having at least 20 valid medical terms in order to 
419 ensure that our validation procedure analyses articles with a high concentration of medical 
420 knowledge. Similarly, the validation for PubMed has been done on the April 3rd, 2018 snapshot, 
421 selecting a random sample of 100 article abstracts. It is necessary to highlight that the validation 
422 procedure was designed to carry out on articles and due to the nature of each of the sources it is 
423 necessary to remember that Wikipedia articles are composed by one or more texts, while 
424 PubMed articles are composed by only one text, the abstract. And for this reason for Wikipedia, 
425 to validate an article means to validate a disease, for PubMed to validate an article means to 
426 validate a part of a disease. These snapshots were performed at different times, and therefore 
427 with different configurations – the latter ones can be viewed online19. During the validation of 
428 Wikipedia, we detected that the initial configuration of Metamap did not find all the necessary 
429 medical concepts: for instance, Anxiety, Stress, Amnesia, Bulimia and other psychological 
430 concepts were missing. We therefore decided to update the initial list of semantic types to be 
431 detected (see online NLP Tools and Configuration section16) by adding the following elements: 
432 Intellectual Product, Mental Process, Mental or Behavioral Dysfunction, Pathologic 

433 Function, Congenital Abnormality.
434

435 The evaluation was conducted through a thorough manual analysis of the basic data. For each 
436 disease obtained from Wikipedia or PubMed we compared: (1) the list of medical terms 
437 extracted manually from the texts describing the disease; (2) the list of medical terms extracted 
438 by Metamap from the same texts; (3) the value (TRUE=valid or FALSE=invalid) resulting from 
439 the TVP process for each term found by Metamap; (4) the value of diagnostic relevance for a 
440 disease for each term. An example of the format of the Acute decompensated heart failure 
441 validation sheet for Wikipedia is shown in Fig. 8.
442

443 It is possible to note that an additional column was also present, called RELEVANT, and which 
444 synthesises all the information available about the relevance of a term to a disease. The possible 
445 values of this column are defined as:
446

447 (1) RELEVANT = YES. If (WIKIPEDIA = YES) & (METAMAP = YES) & (TVP = (YES 
448 or NO)), that is, it is considered to be a valid medical concept for the diagnosis of a 
449 disease. 
450 (2) RELEVANT = NO. If (WIKIPEDIA = YES) & (METAMAP = YES) & (TVP = NO), 
451 that is, it is considered to be a medical concept that is nonspecific, and thus too general to 
452 be helpful in the diagnosis of a disease.
453 (3) RELEVANT = FPREAL. If (WIKIPEDIA = YES) & (METAMAP = YES) & (TVP = 
454 YES). The term is not relevant because it is considered to be a nonspecific, general 
455 concept that does not make sense for diagnosis, even though Metamap has detected it and 
456 the TVP process has evaluated it as a diagnostic term. For example, in an excerpt from 
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457 Acute decompensated heart disease on Wikipedia: “Other cardiac symptoms of heart 

458 failure include chest pain/pressure and palpitations…”, Metamap has detected Chest 

459 pain and Pain from "chest pain", both were marked as TRUE by TVP but the concept 
460 dismissed by nonspecific and general was Pain. 
461 (4) RELEVANT = FPCONTEXT. If (WIKIPEDIA = YES) & (METAMAP = YES) & 
462 (TVP = YES). The term is not relevant because it is outside the diagnostic context, even 
463 though Metamap has detected it and the TVP process has evaluated it as a diagnostic 
464 term. In other words, this term has been obtained from texts whose content is outside the 
465 diagnostic context. For example, in an excerpt from Acute decompensated heart failure 
466 disease on Wikipedia: “Other well recognized precipitating factors include anemia and 

467 hyperthyroidism…”, Metamap has detect Anemia and Hyperthyroidism which are 
468 medical terms but in context we dismiss them because they are risk factors for that 
469 disease. 
470 (5) RELEVANT = FN. If (WIKIPEDIA = YES) & (METAMAP = NO) & (TVP = NO). 
471 These terms were manually detected in the texts, but Metamap failed in recognising 
472 them.
473

474 The cases (3) and (4) above define situations in which the detected term is esteemed to be of no 
475 relevance, and as such represent cases of false positives. It is nevertheless necessary to 
476 discriminate the reason behind such error, which can be because: i) the term is a very general, 
477 nonspecific concept whose definition does not represent and contributes nothing to the diagnosis 
478 (FP_REAL), or ii) because the term is a medical term that is out of place with respect to the 
479 context that is narrated in the text – in other words, it could be a valid diagnostic term but not for 
480 the disease that is under validation or in the context in which have been described and therefore 
481 should be discarded (FP_CONTEXT).
482

483 Using this information for all diseases and terms, true positive (TP), false positive (FP), true 
484 negative (TN) and false negative (FN) rates were computed in order to calculate precision, recall 
485 and F1 score values as metrics to measure the performance of DISNET system. The mean values 
486 for these parameters are depicted in Error! Reference source not found.. The TP is all terms 
487 with (WIKIPEDIA = YES) & (METAMAP = YES) & (TVP = YES) & (RELEVANT = YES). 
488 As previously explained, the FP is composed of two parts, being the total FP the sum of 
489 FP_REAL + FP_CONTEXT: 
490

491  FP_REAL = (WIKIPEDIA = YES) & (METAMAP = YES) & (TVP = YES) & 
492 (RELEVANT = FPREAL).

493  FP_CONTEXT = (WIKIPEDIA = YES) & (METAMAP = YES) & (TVP = YES) & 
494 (RELEVANT = FPCONTEXT).
495

496 FN is also composed of two parts, i.e. FN_METAMAP + FN_TVP.
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497

498  FN_METAMAP = (WIKIPEDIA = YES) & (METAMAP = NO) & (TVP = NO) & 
499 (RELEVANT = FN). These are terms that Metamap has not found.

500  FN_TVP = (WIKIPEDIA = YES) & (METAMAP = YES) & (TVP = NO) & 
501 (RELEVANT = YES). These are terms that TVP has validated as false while being 
502 relevant.
503

504 Finally, the TN measures the TVP process (WIKIPEDIA = YES) & (METAMAP = YES) & 
505 (TVP = NO) & (RELEVANT = NO).  In the Table 1 are reported the values obtained for 
506 Wikipedia and PubMed. 
507

508 Detailed results for each disease are available online, for Wikipedia21 and for PubMed22, 
509 including the list of terms manually extracted from the relevant texts of the articles, the matching 
510 with the list of terms provided by Metamap, the result of the TVP process for each term and the 
511 value of relevance as annotated by our researchers.
512

513 Results indicate that our NLP (Metamap + TVP) process is sufficiently reliable, with an accuracy 
514 of 0.731 (confidence interval of [0.710, 0.753], calculated through a Wilson's score interval with 
515 continuity correction and a confidence level of 99%) for Wikipedia and of 0.640 (confidence 
516 interval of: [0.606, 0.680]) for PubMed (Error! Reference source not found.). The results of 
517 the calculations of these parameters for each disease can be viewed online for Wikipedia23 and 
518 for each abstract in PubMed24.
519

520 About the results for FP presented in Table 1, we can say that they are mainly due to the 
521 configuration used for Metamap for the extraction of terms, extended in successive extractions to 
522 avoid leaving out terms that are relevant for the detection of diseases.
523

524 Thus, one of the last extensions in the search terms added the semantic types Mental or 
525 Behavioral Dysfunction and Intellectual Product; thanks to this extension, important symptoms 
526 have been detected for certain diseases, which were not detected before, such as: Anxiety, 
527 Bulimia, Anorexy, Stress, etc. We believe that it is better to discard those terms that are not 
528 relevant than to omit those that are relevant to a disease.
529

530 It is further interesting to observe the large difference in the false positive rates between 
531 Wikipedia (11.41%) and PubMed (17.54%). We speculate that this is due to the concretion of 
532 articles. Accordingly, in Wikipedia, articles referring to one disease refer almost exclusively to 
533 that particular disease, and thus include no irrelevant terms – with a few exceptions related to 

21 https://midas.ctb.upm.es/gitlab/disnet/paperdisnet/tree/master/wikipedia_validation_sheets
22 https://midas.ctb.upm.es/gitlab/disnet/paperdisnet/tree/master/pubmed_validation_sheets
23 https://midas.ctb.upm.es/gitlab/disnet/paperdisnet/blob/master/wikipedia_individual_validation_results.csv
24 https://midas.ctb.upm.es/gitlab/disnet/paperdisnet/blob/master/pubmed_individual_validation_results.csv
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534 differential diagnoses. Nevertheless, this is not the case of PubMed articles as a significant part 
535 of them are not so specific. Many are the articles describing real medical cases, where the 
536 symptoms are those displayed by a given patient, plus others referring to congenital diseases of 
537 the patient, or even diseases that he/she previously possessed. Consequently, the same PubMed 
538 article includes symptoms of many different diseases that, although being true medical terms and 
539 thus being recognized by Metamap, are not relevant to the disease under analysis.
540

541 For TN, we must also take into account that most of the terms extracted by Metamap as relevant 
542 have been purged by TVP, which has been in charge of determining which terms are relevant 
543 and which are not, so that the vast majority of terms extracted by Metamap that are not relevant 
544 to the disease have been classified in this way by TVP (35.78% for Wikipedia and 32.84% for 
545 PubMed).
546

547 In addition, we have observed that most of the true negative terms in both Wikipedia and 
548 PubMed are constant, and include: indicated, syndrome, disease, illness, infected, sing, 
549 symptoms, used to, etc.
550

551 Finally, FN are those terms that are relevant to the disease in question, but that have not been 
552 detected by Metamap; note that these have been manually extracted for the validation process. 
553 The vast majority of FN are formed by complex expressions of the language, so their detection is 
554 challenging for any NLP tool. We can further observe that the difference in the ratio of false 
555 negative between Wikipedia (21.68%) and PubMed (18.40%) is 3.28%. We believe that this 
556 difference is mainly due to the forms of expression used in both sources, with Wikipedia being 
557 more discursive, as opposed to the scientific style of PubMed.
558

559 In synthesis, we can conclude that a clear relationship can be observed between the performance 
560 of the system and the nature of the underlying data source. Specifically, while PubMed is an 
561 exclusively medical source, created, written and edited by specialists in the field, Wikipedia is a 
562 source of public information, written by anyone who has access to the web, so that the articles in 
563 it contained can be written by medical students or just users with some knowledge in the field, 
564 whose expressions cannot be assimilated to those of specialists who write PubMed. Considering 
565 that the tool used by DISNET for the extraction of medical terms (Metamap) is a medical tool, it 
566 is not surprising that it displays a greater capacity for the recognition of medical terms, as 
567 opposed to more colloquial terms formed by more complex phrases; thus, there are terms such as 
568 "Swollen lymph glads under the jaw", or "sensation of swelling in the area of the larynx", that 
569 Metamap cannot recognize.
570

571 It is true that the validation percentages do not seem very high, but we must take into account the 
572 following facts, firstly, that there is no other system that extracts and generates phenotypic 
573 information using an approach as proposed in this document and secondly, the objective of the 
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574 document is not clinical, but purely research, and thus allows all the knowledge generated to be 
575 put within the reach of other researchers and for the scientific community in general. Therefore, 
576 the use of DISNET medical information is in the hands of all types of people and they are 
577 therefore responsible for the use they give to such data. It is also important to mention that 
578 despite the complex and inherent nature of the texts from different sources, the percentages 
579 reflect good research work.
580

581 A use case

582 To illustrate the possible use of the DISNET system, we here present a simple use case, which 
583 consists of the creation of several basic DISNET queries, and the visualization of the 
584 corresponding results.
585

586 The DISNET API has the capacity to create a variety of queries and in this section only a couple 
587 of queries have been created in order to provide a small example of the capacity to support 
588 research into the proposed system.
589

590 Creation of DISNET queries

591 For the sake of simplicity, we will here focus on two of the most important characteristics of 
592 DISNET: i) the ability to create relationships between diseases according to their phenotypic 
593 similarity (C1) and ii) the ability to increase/improve the phenotypic information of diseases by 
594 means of periodic extractions of knowledge (C2). 
595

596 The scenario C1 implies obtaining data for two diseases, which we suspect may share symptoms; 
597 we will here use "Influenza" and "Gastroenteritis". The resulting DISNET queries are:
598

599 (1) disnet.ctb.upm.es/api/disnet/query/disnetConceptList?source=wikipedia&version=20

600 18-08-15&diseaseName=Influenza&matchExactName=true

601 (2) disnet.ctb.upm.es/api/disnet/query/disnetConceptList?source=pubmed&version=2018

602 -04-03&diseaseName=Influenza&matchExactName=true

603 (3) disnet.ctb.upm.es/api/disnet/query/disnetConceptList?source=wikipedia&version=20

604 18-08-15&diseaseName=Gastroenteritis&matchExactName=true

605 (4) disnet.ctb.upm.es/api/disnet/query/disnetConceptList?source=pubmed&version=2018

606 -04-03&diseaseName=Gastroenteritis&matchExactName=true

607

608 We have here used the DISNET query "disnetConcepList", which allows retrieving the list of 
609 "DISNET Concepts" associated with a given disease. The parameters of this query include: 
610 "diseaseName", with the name of the disease; "matchExactName", to indicate that the search 
611 by disease name is exact; and "source" and "snapshot", to respectively indicate the source and 
612 snapshot we want to consult. In this case, we selected to consult the two sources Wikipedia and 
613 PubMed, and respectively the snapshots of August 15th, 2018 and April 3rd, 2018. Note that the 
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614 result will consists of four total lists, two for each disease. To illustrate, Fig. 11 shows an extract 
615 of the response from the query (3).
616

617 As for the scenario C2, it requires retrieving data for a disease whose list of symptoms may have 
618 changed with time, i.e. either increased or decreased. As an example, we considered the disease 
619 "Acrodynia", and executed the following DISNET queries:
620

621 (1) disnet.ctb.upm.es/api/disnet/query/disnetConceptList?source=wikipedia&version=20

622 18-02-01&diseaseName=Acrodynia&matchExactName=true

623 (2) disnet.ctb.upm.es/api/disnet/query/disnetConceptList?source=wikipedia&version=20

624 18-02-15&diseaseName=Acrodynia&matchExactName=true

625

626 Note that, as in C1, we have here used the query "disnetConceptList"; nevertheless, we have 
627 here executed it twice, on the same disease (Acrodynia) and two different snapshots: February 
628 1st, 2018 and February 15th, 2018.
629

630 Visualization of the result of the DISNET queries

631 Once the results of the query have been retrieved, the next natural step is their visualization; 
632 while the actual output format may vary according to the needs of each specific project, for the 
633 sake of clarity we here created a graph representation by using the external tool Cytoscape25. In 
634 both scenarios (i.e. C1 and C2) we generated relationships between diseases and their symptoms, 
635 with the aim of visualizing the value and scope of the medical data stored and processed by 
636 DISNET. In Figure 10(b) we see the relationship between the Influenza and Gastroenteritis 
637 diseases on one hand (highlighted in white rectangles), and the set of symptoms on the other. 
638 Symptoms were obtained from two different sources, specifically Wikipedia and PubMed: 
639 relationships are then respectively represented by red and blue edges. Common symptoms are 
640 merged by the layout algorithm in the center of the graph; the medical terms that are not 
641 common among the two diseases, on the contrary, form a peripheral shell. Note that "Influenza" 
642 has 59 DISNET Concepts and "Gastroenteritis" has 47, 19 of which are in common.
643

644 In Figure 10(a) we observe the network representation of the disease "Acrodynia" and of its 18 
645 medical terms, 15 of which were found in the snapshot of February 1st, 2018 and three new ones 
646 in that of February 15th, 2018. This is thus an example of an increase in phenotypic knowledge.
647

648 This simple use case illustrates how the DISNET system allows generating a network of diseases 
649 and their symptoms on a large scale, and that it provides the right environment to know how 
650 diseases are related according to their phenotypic manifestations. By applying similarity 
651 algorithms, such as Cosine (Zhou et al., 2014)(Li et al., 2014)(van Driel et al., 2006) or the 
652 Jaccard index (Hoehndorf, Schofield & Gkoutos, 2015), it is possible to estimate the similarity 

25 http://www.cytoscape.org
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653 between two diseases, and thus to focus further medical analyses on those pairs showing a large 
654 overlap. These features will be also implemented as native features in next DISNET release. 
655

656 Discussion

657 This work presented the DISNET system, starting from its underlying conception, up to its 
658 technical structure and data workflow. DISNET allows retrieving knowledge about the signs, 
659 symptoms and diagnostic tests associated with a disease. It is not limited to a specific category 
660 (all the categories that the selected sources of information offer us) and clinical diagnosis terms. 
661 It further allows to track the evolution of those terms through time, being thus an opportunity to 
662 analyse and observe the progress of human knowledge on diseases. We also presented the 
663 DISNET REST API, which aims at sharing the retrieved information with the wide scientific 
664 community. We further discussed the validation of the system, suggesting that it is good enough 
665 to be used to extract diseases and diagnostically-relevant terms. At the same time, the evaluation 
666 also revealed that improvements could be introduced to enhance the system’s reliability.
667

668 Conclusions

669 Among the potential lines of future works, priority will be given to increasing the number of 
670 information sources, by including other websites like Medline Plus or CDC. Secondly, we are 
671 considering the possibility of extending the TVP procedure, by adding new data sources, with the 
672 aim of increasing the number of validation terms and hence of reducing the number of false 
673 negatives. Note that this could also partly be achieved by resorting to a different NLP tool to 
674 process the input texts, as for example to Apache cTakes (Savova et al., 2010). Other potential 
675 options for future work are the improvement of the ambiguity of medical terms and the 
676 implementation of tools that allow the representation of the knowledge extracted and generated. 
677 Also, future implementations of DISNET also aim to provide ways to automatically compute the 
678 similarity between diseases (by using already mentioned and well-known similarity metrics), 
679 extending the DISNET platform to include biological and drug information and developing new 
680 visualization strategies, among others.
681

682 Acknowledgements

683 This paper is supported by European Union’s Horizon 2020 research and innovation programme 
684 under grant agreement No. 727658, project IASIS (Integration and analysis of heterogeneous big 
685 data for precision medicine and suggested treatments for different types of patients). The paper is 
686 also a result of the project “DISNET (Creation and analysis of disease networks for drug 
687 repurposing from heterogeneous data sources applied to rare diseases)”, that is being developed 
688 under grant “RTI2018-094576-A-I00” from the Spanish Ministerio de Ciencia, Innovación y 
689 Universidades. Gerardo Lagunes-Garcia work is supported by Mexican Consejo Nacional de 
690 Ciencia y Tecnología (CONACYT) (CVU: 340523) under the programme "291114 - BECAS 
691 CONACYT AL EXTRANJERO".

692

PeerJ reviewing PDF | (2019:10:42022:0:1:NEW 11 Oct 2019)

Manuscript to be reviewed



693 References

694 Aibar E. 2017.La ciencia de la Wikipedia. Available at https://metode.es/revistas-metode/article-

695 revistes/la-ciencia-de-la-wikipedia.html (accessed February 18, 2018).
696 Aich S, Sain M, Park J, Choi K, Kim H. 2017. A text mining approach to identify the 
697 relationship between gait-Parkinson’s disease (PD) from PD based research articles. In: 
698 2017 International Conference on Inventive Computing and Informatics (ICICI). 
699 Coimbatore, India: IEEE Computer Society, 481–485. DOI: 
700 10.1109/ICICI.2017.8365398.
701 Aronson AR. 2001. Effective mapping of biomedical text to the UMLS Metathesaurus: the 
702 MetaMap program. Proceedings. AMIA Symposium:17–21.
703 Azer SA. 2014. Evaluation of gastroenterology and hepatology articles on Wikipedia: Are they 
704 suitable as learning resources for medical students? European Journal of 

705 Gastroenterology & Hepatology 26:155. DOI: 10.1097/MEG.0000000000000003.
706 Azzam A, Bresler D, Leon A, Maggio L, Whitaker E, Heilman J, Orlowitz J, Swisher V, 
707 Rasberry L, Otoide K, Trotter F, Ross W, McCue JD. 2017. Why Medical Schools 
708 Should Embrace Wikipedia: Final-Year Medical Student Contributions to Wikipedia 
709 Articles for Academic Credit at One School. Academic Medicine 92:194–200. DOI: 
710 10.1097/ACM.0000000000001381.
711 Barabási A-L, Gulbahce N, Loscalzo J. 2010. Network medicine: a network-based approach to 
712 human disease. Nature Reviews Genetics 12:nrg2918. DOI: 10.1038/nrg2918.
713 Bodenreider O. 2004. The Unified Medical Language System (UMLS): integrating biomedical 
714 terminology. Nucleic Acids Research 32:D267–D270. DOI: 10.1093/nar/gkh061.
715 Botstein D, Risch N. 2003. Discovering genotypes underlying human phenotypes: past successes 
716 for mendelian disease, future approaches for complex disease. Nature Genetics 33:228–
717 237. DOI: 10.1038/ng1090.
718 Bou Rjeily C, Badr G, Hajjarm El Hassani A, Andres E. 2019. Medical Data Mining for Heart 
719 Diseases and the Future of Sequential Mining in Medical Field. In: Tsihrintzis GA, 
720 Sotiropoulos DN, Jain LC eds. Machine Learning Paradigms: Advances in Data 

721 Analytics. Intelligent Systems Reference Library. Cham: Springer International 
722 Publishing, 71–99. DOI: 10.1007/978-3-319-94030-4_4.
723 Calderone A, Castagnoli L, Cesareni G. 2013. mentha: a resource for browsing integrated 
724 protein-interaction networks. Nature Methods 10:690–691. DOI: 10.1038/nmeth.2561.
725 Chen J, Li K, Rong H, Bilal K, Yang N, Li K. 2018. A disease diagnosis and treatment 
726 recommendation system based on big data mining and cloud computing. Information 

727 Sciences 435:124–149. DOI: 10.1016/j.ins.2018.01.001.
728 Chen Y, Zhang X, Zhang G, Xu R. 2015. Comparative analysis of a novel disease phenotype 
729 network based on clinical manifestations. Journal of Biomedical Informatics 53:113–120. 
730 DOI: 10.1016/j.jbi.2014.09.007.
731 Cohen N. 2013. Editing Wikipedia Pages for Med School Credit. The New York Times.
732 Dias G, Oliveira JL, Vicente F-J, Martín-Sánchez F. 2005. Integration of Genetic and Medical 
733 Information Through a Web Crawler System. In: Biological and Medical Data Analysis. 
734 Lecture Notes in Computer Science. Springer Berlin Heidelberg, 78–88. DOI: 
735 https://doi.org/10.1007/11573067_9.
736 van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JAM. 2006. A text-mining 
737 analysis of the human phenome. European journal of human genetics: EJHG 14:535–
738 542. DOI: 10.1038/sj.ejhg.5201585.

PeerJ reviewing PDF | (2019:10:42022:0:1:NEW 11 Oct 2019)

Manuscript to be reviewed



739 Espe S. 2018. Malacards: The Human Disease Database. Journal of the Medical Library 

740 Association : JMLA 106:140–141. DOI: 10.5195/jmla.2018.253.
741 Friedlin J, McDonald CJ. 2010. An evaluation of medical knowledge contained in Wikipedia and 
742 its use in the LOINC database. Journal of the American Medical Informatics Association: 

743 JAMIA 17:283–287. DOI: 10.1136/jamia.2009.001180.
744 Frunza O, Inkpen D, Tran T. 2011. A Machine Learning Approach for Identifying Disease-
745 Treatment Relations in Short Texts. IEEE Transactions on Knowledge and Data 

746 Engineering 23:801–814. DOI: 10.1109/TKDE.2010.152.
747 García del Valle EP, Lagunes García G, Prieto Santamaría L, Zanin M, Menasalvas Ruiz E, 
748 Rodríguez-González A. 2019. Disease networks and their contribution to disease 
749 understanding: A review of their evolution, techniques and data sources. Journal of 

750 Biomedical Informatics 94:103206. DOI: 10.1016/j.jbi.2019.103206.
751 Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L. 2007. The human disease 
752 network. Proceedings of the National Academy of Sciences 104:8685–8690. DOI: 
753 10.1073/pnas.0701361104.
754 Gupta S, Dingerdissen H, Ross KE, Hu Y, Wu CH, Mazumder R, Vijay-Shanker K. 2018. 
755 DEXTER: Disease-Expression Relation Extraction from Text. Database 2018. DOI: 
756 10.1093/database/bay045.
757 Heilman JM, West AG. 2015. Wikipedia and Medicine: Quantifying Readership, Editors, and 
758 the Significance of Natural Language. Journal of Medical Internet Research 17. DOI: 
759 10.2196/jmir.4069.
760 Hoehndorf R, Schofield PN, Gkoutos GV. 2015. Analysis of the human diseasome using 
761 phenotype similarity between common, genetic, and infectious diseases. Scientific 

762 Reports 5:srep10888. DOI: 10.1038/srep10888.
763 Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. 2015. 
764 PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Research 
765 43:D512–D520. DOI: 10.1093/nar/gku1267.
766 Hwang S, Kim CY, Yang S, Kim E, Hart T, Marcotte EM, Lee I. 2019. HumanNet v2: human 
767 gene networks for disease research. Nucleic Acids Research 47:D573–D580. DOI: 
768 10.1093/nar/gky1126.
769 Information NC for B, Pike USNL of M 8600 R, MD B, Usa 20894. 2019. PubMed Help. 
770 National Center for Biotechnology Information (US).
771 Jia J, An Z, Ming Y, Guo Y, Li W, Li X, Liang Y, Guo D, Tai J, Chen G, Jin Y, Liu Z, Ni X, Shi 
772 T. 2018. PedAM: a database for Pediatric Disease Annotation and Medicine. Nucleic 

773 Acids Research 46:D977–D983. DOI: 10.1093/nar/gkx1049.
774 Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids 

775 Research 28:27–30. DOI: 10.1093/nar/28.1.27.
776 Köhler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Aymé S, Baynam G, Bello SM, 
777 Boerkoel CF, Boycott KM, Brudno M, Buske OJ, Chinnery PF, Cipriani V, Connell LE, 
778 Dawkins HJS, DeMare LE, Devereau AD, de Vries BBA, Firth HV, Freson K, Greene D, 
779 Hamosh A, Helbig I, Hum C, Jähn JA, James R, Krause R, F. Laulederkind SJ, 
780 Lochmüller H, Lyon GJ, Ogishima S, Olry A, Ouwehand WH, Pontikos N, Rath A, 
781 Schaefer F, Scott RH, Segal M, Sergouniotis PI, Sever R, Smith CL, Straub V, 
782 Thompson R, Turner C, Turro E, Veltman MWM, Vulliamy T, Yu J, von Ziegenweidt J, 
783 Zankl A, Züchner S, Zemojtel T, Jacobsen JOB, Groza T, Smedley D, Mungall CJ, 

PeerJ reviewing PDF | (2019:10:42022:0:1:NEW 11 Oct 2019)

Manuscript to be reviewed



784 Haendel M, Robinson PN. 2017. The Human Phenotype Ontology in 2017. Nucleic Acids 

785 Research 45:D865–D876. DOI: 10.1093/nar/gkw1039.
786 Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM. 2011. Prioritizing candidate disease genes by 
787 network-based boosting of genome-wide association data. Genome Research 21:1109–
788 1121. DOI: 10.1101/gr.118992.110.
789 Li X, Zhou X, Peng Y, Liu B, Zhang R, Hu J, Yu J, Jia C, Sun C. 2014. Network Based 
790 Integrated Analysis of Phenotype-Genotype Data for Prioritization of Candidate 
791 Symptom Genes. BioMed Research International 2014:435853. DOI: 
792 10.1155/2014/435853.
793 Lipscomb CE. 2000. Medical Subject Headings (MeSH). Bulletin of the Medical Library 

794 Association 88:265–266.
795 Lo Surdo P, Calderone A, Iannuccelli M, Licata L, Peluso D, Castagnoli L, Cesareni G, Perfetto 
796 L. 2018. DISNOR: a disease network open resource. Nucleic Acids Research 46:D527–
797 D534. DOI: 10.1093/nar/gkx876.
798 Lopes P, Oliveira JL. 2013. An innovative portal for rare genetic diseases research: The semantic 
799 Diseasecard. Journal of Biomedical Informatics 46:1108–1115. DOI: 
800 10.1016/j.jbi.2013.08.006.
801 Matheson D, Matheson C. 2017. Open Medicine Journal Wikipedia as Informal Self-Education 
802 for Clinical Decision-Making in Medical Practice. Open Medicine Journal 4:1–25. DOI: 
803 10.2174/1874220301704010015.
804 Mattingly CJ, Rosenstein MC, Davis AP, Colby GT, Forrest JN, Boyer JL. 2006. The 
805 Comparative Toxicogenomics Database: A Cross-Species Resource for Building 
806 Chemical-Gene Interaction Networks. Toxicological Sciences 92:587–595. DOI: 
807 10.1093/toxsci/kfl008.
808 Mazumder R, Mahmood ASMA, Vijay-Shanker K, Wu T-J. 2016. DiMeX: A Text Mining 
809 System for Mutation- Disease Association Extraction. PLOS One 11:e0152725. DOI: 
810 10.1371/journal. pone.0152725.
811 Mehdi M, Okoli C, Mesgari M, Nielsen FÅ, Lanamäki A. 2017. Excavating the mother lode of 
812 human-generated text: A systematic review of research that uses the wikipedia corpus. 
813 Information Processing & Management 53:505–529. DOI: 10.1016/j.ipm.2016.07.003.
814 Oliveira JL, Dias G, Oliveira I, Rocha P, Hermosilla I, Vicente J, Spiteri I, Martin-Sánchez F, 
815 Pereira AS. 2004. DiseaseCard: A Web-Based Tool for the Collaborative Integration of 
816 Genetic and Medical Information. In: Biological and Medical Data Analysis. Lecture 
817 Notes in Computer Science. Springer Berlin Heidelberg, 409–417. DOI: 
818 https://doi.org/10.1007/978-3-540-30547-7_41.
819 Pérez-Rodríguez G, Pérez-Pérez M, Fdez-Riverola F, Lourenço A. 2019. Online visibility of 
820 software-related web sites: The case of biomedical text mining tools. Information 

821 Processing & Management 56:565–583. DOI: 10.1016/j.ipm.2018.11.011.
822 Perfetto L, Briganti L, Calderone A, Perpetuini AC, Iannuccelli M, Langone F, Licata L, 
823 Marinkovic M, Mattioni A, Pavlidou T, Peluso D, Petrilli LL, Pirrò S, Posca D, 
824 Santonico E, Silvestri A, Spada F, Castagnoli L, Cesareni G. 2016. SIGNOR: a database 
825 of causal relationships between biological entities. Nucleic Acids Research 44:D548–
826 D554. DOI: 10.1093/nar/gkv1048.
827 Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-
828 García J, Sanz F, Furlong LI. 2017. DisGeNET: a comprehensive platform integrating 

PeerJ reviewing PDF | (2019:10:42022:0:1:NEW 11 Oct 2019)

Manuscript to be reviewed



829 information on human disease-associated genes and variants. Nucleic Acids Research 
830 45:D833–D839. DOI: 10.1093/nar/gkw943.
831 Pletscher-Frankild S, Pallejà A, Tsafou K, Binder JX, Jensen LJ. 2015. DISEASES: Text mining 
832 and data integration of disease–gene associations. Methods 74:83–89. DOI: 
833 10.1016/j.ymeth.2014.11.020.
834 pubmeddev.Home - PubMed - NCBI. Available at https://www.ncbi.nlm.nih.gov/pubmed/ 
835 (accessed February 16, 2018).
836 Quwaider M, Alfaqeeh M. 2016. Social Networks Benchmark Dataset for Diseases 
837 Classification. In: 2016 IEEE 4th International Conference on Future Internet of Things 

838 and Cloud Workshops (FiCloudW). 234–239. DOI: 10.1109/W-FiCloud.2016.56.
839 Rao AJ, Rao RS. 2018. Review On Machine Learning Approach for Detecting Disease-
840 Treatment Relations in Short Texts. International Journal of Scientific Research in 

841 Computer Science, Engineering and Information Technology 4:122–129. DOI: 
842 10.32628/CSEIT1833616.
843 Rappaport N, Nativ N, Stelzer G, Twik M, Guan-Golan Y, Iny Stein T, Bahir I, Belinky F, 
844 Morrey CP, Safran M, Lancet D. 2013. MalaCards: an integrated compendium for 
845 diseases and their annotation. Database 2013. DOI: 10.1093/database/bat018.
846 Rappaport N, Twik M, Nativ N, Stelzer G, Bahir I, Stein TI, Safran M, Lancet D. 2014. 
847 MalaCards: A Comprehensive Automatically-Mined Database of Human Diseases. 
848 Current Protocols in Bioinformatics 47:1.24.1-1.24.19. DOI: 
849 10.1002/0471250953.bi0124s47.
850 Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. 2008. The Human Phenotype 
851 Ontology: A Tool for Annotating and Analyzing Human Hereditary Disease. American 

852 Journal of Human Genetics 83:610–615. DOI: 10.1016/j.ajhg.2008.09.017.
853 Rodríguez González A, Costumero Moreno R, Martínez Romero M, Wilkinson MD, Menasalvas 
854 Ruiz E. 2018. Extracting diagnostic knowledge from MedLine Plus: a comparison 
855 between MetaMap and cTAKES Approaches. Current Bioinformatics 13:573–582. DOI: 
856 10.2174/1574893612666170727094502.
857 Rodríguez-González A, Martínez-Romero M, Costumero R, Wilkinson MD, Menasalvas-Ruiz E. 
858 2015. Diagnostic Knowledge Extraction from MedlinePlus: An Application for Infectious 
859 Diseases. In: 9th International Conference on Practical Applications of Computational 

860 Biology and Bioinformatics. Advances in Intelligent Systems and Computing. Springer, 
861 Cham, 79–87. DOI: 10.1007/978-3-319-19776-0_9.
862 Russell-Rose T, Chamberlain J, Azzopardi L. 2018. Information retrieval in the workplace: A 
863 comparison of professional search practices. Information Processing & Management 
864 54:1042–1057. DOI: 10.1016/j.ipm.2018.07.003.
865 Safran M, Solomon I, Shmueli O, Lapidot M, Shen-Orr S, Adato A, Ben-Dor U, Esterman N, 
866 Rosen N, Peter I, Olender T, Chalifa-Caspi V, Lancet D. 2002. GeneCardsTM 2002: 
867 towards a complete, object-oriented, human gene compendium. Bioinformatics 18:1542–
868 1543. DOI: 10.1093/bioinformatics/18.11.1542.
869 Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, Chute CG. 2010. 
870 Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, 
871 component evaluation and applications. Journal of the American Medical Informatics 

872 Association : JAMIA 17:507–513. DOI: 10.1136/jamia.2009.001560.

PeerJ reviewing PDF | (2019:10:42022:0:1:NEW 11 Oct 2019)

Manuscript to be reviewed



873 Schriml LM, Arze C, Nadendla S, Chang Y-WW, Mazaitis M, Felix V, Feng G, Kibbe WA. 
874 2012. Disease Ontology: a backbone for disease semantic integration. Nucleic Acids 

875 Research 40:D940–D946. DOI: 10.1093/nar/gkr972.
876 Shafee T, Masukume G, Kipersztok L, Das D, Häggström M, Heilman J. 2017. Evolution of 
877 Wikipedia’s medical content: past, present and future. J Epidemiol Community Health 
878 71:1122–1129. DOI: 10.1136/jech-2016-208601.
879 Singhal A, Simmons M, Lu Z. 2016. Text mining for precision medicine: automating disease-
880 mutation relationship extraction from biomedical literature. Journal of the American 

881 Medical Informatics Association 23:766–772. DOI: 10.1093/jamia/ocw041.
882 SPARQL Query Language for RDF. 2017. Available at https://www.w3.org/TR/rdf-sparql-

883 query/ (accessed November 18, 2017).
884 Stenson PD, Mort M, Ball EV, Shaw K, Phillips AD, Cooper DN. 2014. The Human Gene 
885 Mutation Database: building a comprehensive mutation repository for clinical and 
886 molecular genetics, diagnostic testing and personalized genomic medicine. Human 

887 Genetics 133:1–9. DOI: 10.1007/s00439-013-1358-4.
888 Sudeshna P, Bhanumathi S, Hamlin MRA. 2017. Identifying symptoms and treatment for heart 
889 disease from biomedical literature using text data mining. In: 2017 International 

890 Conference on Computation of Power, Energy Information and Commuincation 

891 (ICCPEIC). 170–174. DOI: 10.1109/ICCPEIC.2017.8290359.
892 Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva 
893 NT, Morris JH, Bork P, Jensen LJ, Mering C von. 2019. STRING v11: protein–protein 
894 association networks with increased coverage, supporting functional discovery in 
895 genome-wide experimental datasets. Nucleic Acids Research 47:D607–D613. DOI: 
896 10.1093/nar/gky1131.
897 Tsumoto S, Kimura T, Iwata H, Hirano S. 2017. Mining Text for Disease Diagnosis. Procedia 

898 Computer Science 122:1133–1140. DOI: 10.1016/j.procs.2017.11.483.
899 UniProt Consortium. 2014. Activities at the Universal Protein Resource (UniProt). Nucleic Acids 

900 Research 42:D191-198. DOI: 10.1093/nar/gkt1140.
901 Westergaard D, Stærfeldt H-H, Tønsberg C, Jensen LJ, Brunak S. 2018. A comprehensive and 
902 quantitative comparison of text-mining in 15 million full-text articles versus their 
903 corresponding abstracts. PLOS Computational Biology 14:e1005962. DOI: 
904 10.1371/journal.pcbi.1005962.
905 Wikipedia:Manual of Style/Medicine-related articles. 2018. Wikipedia.
906 Xia E, Sun W, Mei J, Xu E, Wang K, Qin Y. 2018. Mining Disease-Symptom Relation from 
907 Massive Biomedical Literature and Its Application in Severe Disease Diagnosis. AMIA 

908 Annual Symposium Proceedings 2018:1118–1126.
909 Xu D, Zhang M, Xie Y, Wang F, Chen M, Zhu KQ, Wei J. 2016. DTMiner: identification of 
910 potential disease targets through biomedical literature mining. Bioinformatics 32:3619–
911 3626. DOI: 10.1093/bioinformatics/btw503.
912 Zanzoni A, Soler-López M, Aloy P. 2009. A network medicine approach to human disease. 
913 FEBS Letters 583:1759–1765. DOI: 10.1016/j.febslet.2009.03.001.
914 Zhao N, Zheng G, Li J, Zhao H, Lu C, Jiang M, Zhang C, Guo H, Lu A. 2018. Text Mining of 
915 Rheumatoid Arthritis and Diabetes Mellitus to Understand the Mechanisms of Chinese 
916 Medicine in Different Diseases with Same Treatment. Chinese Journal of Integrative 

917 Medicine 24:777–784. DOI: 10.1007/s11655-018-2825-x.

PeerJ reviewing PDF | (2019:10:42022:0:1:NEW 11 Oct 2019)

Manuscript to be reviewed



918 Zhou X, Menche J, Barabási A-L, Sharma A. 2014. Human symptoms-disease network. Nature 

919 Communications 5:4212. DOI: 10.1038/ncomms5212.
920

921

PeerJ reviewing PDF | (2019:10:42022:0:1:NEW 11 Oct 2019)

Manuscript to be reviewed



Table 1(on next page)

Total values from the February 1st, 2018 snapshot of Wikipedia and the April 3rd, 2018
snapshot of PubMed
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1 Table 1. Total values from the February 1st, 2018 snapshot of Wikipedia and the April 3rd, 2018 snapshot of PubMed

Parameter Wikipedia PubMed

TP   (31.11%) 2,075 (31.20%) 724

FP (11.41%) 761 (17.54%) 407

FPREAL 279 107

FPCONTEXT 482 300

TN (35.78%) 2,386 (32.84%) 762

FN (21.68%) 1,446 (18.40%) 427

FN_METAMAP 709 201

FN_TVP 737 226

TOTAL (100%) 6,668 (100%) 2,320

PRECISION 0.731 0.640

2

3
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Figure 1
External vocabularies in a vertical infobox in Wikipedia article on Ebstein's anomaly and
Cholestasis
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Figure 2
External vocabularies in a horizontal infobox in Wikipedia article on Influenza and
Cancer
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Figure 3
Disease MeSH Term tree clasification
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Figure 4
PubMed Text Extraction Procedure workflow
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Figure 5
DISNET Architecture/Workflow
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Figure 6
Basic database statistics (most common medical terms)
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Figure 7
Basic database statistics (diseases with more validated medical terms. Comparison of
PubMed and Wikipedia)
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Figure 8
Disease Acute decompensated heart failure sheet validation from the Wikipedia
snapshot of February 1st, 2018
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Figure 9
Validation metrics comparative
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Figure 10
a) Network of graphs representing the evolution of phenotypic knowledge in Wikipedia
and b) Network of graphs representing similar medical terms between two diseases
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Figure 11
Answer to the DISNET query "disnetConcepList" C1.(1)
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