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ABSTRACT
In biological research the analysis of gene expression levels in cells and tissues can be a
powerful tool to gain insights into biological processes. For this, quantitative RT-PCR
(RT-qPCR) is a popular method that often involve the use of constitutively expressed
endogenous reference (or ‘housekeeping’) gene for normalization of data. Thus, it is
essential to use reference genes that have been verified to be stably expressed within
the specific experimental setting. Here, we have analysed the expression stability of
12 commonly used reference genes (Actb, B2m, Gapdh, Hprt, Pgk1, Rn18s, Rpl13a,
Rps18, Rps29, Sdha, Tbp and Ubc) across several juvenile and adult rat tissues (liver,
adrenal, prostate, fat pad, testis and ovaries), both under normal conditions and
following exposure to various chemicals during development. Employing
NormFinder and BestKeeper softwares, we found Hprt and Sdha to be amongst
the most stable genes across normal and manipulated tissues, with several others
also being suitable for most tissues. Tbp and B2m displayed highest variability in
transcript levels between tissues and developmental stages. It was also observed that
the reference genes were most unstable in liver and testis following toxicological
exposure. For future studies, we propose the use of more than one verified reference
gene and the continuous monitoring of their suitability under various experimen-
tal conditions, including toxicological studies, based on changes in threshold (Ct)
values from cDNA samples having been reverse-transcribed from a constant input
concentration of RNA.
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INTRODUCTION
Despite the advent of high-throughput methods such as RNA-sequencing to measure

transcript abundance in cells and tissues, quantitative RT-PCR (RT-qPCR) remains the

method of choice for many, particularly when only a selected number of genes are to

be analysed. The RT-qPCR methodology has itself improved greatly over the past two

decades with advances to most parameters, including reaction chemistries and platform
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technologies. However, it remains critically dependent upon a number of technical

parameters that can significantly impact on the end results (Nolan, Hands & Bustin, 2006).

Among the most critical aspects is correct normalisation, both to control for experimental

errors and adjust for inter-sample variations.

There are many strategies for normalising RT-qPCR data (Huggett et al., 2005) and the

most frequently used is normalisation with an endogenous reference gene that is stably

expressed across all the samples. This approach using the comparative Ct (or 2−ΔCt)

method (Schmittgen & Livak, 2008) is sound, but rests on the assumption that transcript

abundance of the reference gene is the same in all cells, under all conditions. A growing

body of evidence has clearly shown this not to be the case and that ‘stably expressed’

reference genes must be determined for each cell/tissue type during different stages of

development and under all experimental conditions (reviewed by Huggett et al., 2005;

Kozera & Rapacz, 2013). This can quickly become a Herculean task and likely a major

reason why it remains so frequently overlooked. In a recent report, Piller and co-workers

scrutinized recent publications in their field of research—rat spared nerve injury model of

neuropathic pain—for evidence-based use of reference genes in RT-qPCR experiments and

found that only 2 out of 26 peer-reviewed articles referred to proper validation for their

reference genes (Piller, Decosterd & Sutler, 2013).

Over the years, there has been a steady increase in studies reporting on the suitability

of various reference genes in rat tissues under specific experimental conditions. The liver

has perhaps received most attention, but also include tissues such as the intestine, brain

and other neuronal tissues, muscle, spleen, mammary gland, lung, and ovary (Cabiati et

al., 2012; Das, Banerjee & Shapiro, 2013; DuBois et al., 2013; Hvid et al., 2011; Langnaese et

al., 2008; Lardizábal et al., 2012; Mart́ınez-Beamonte et al., 2011; Pohjanvirta et al., 2006;

Taki, Abdel-Rahman & Zhang, 2014; Verma & Shapiro, 2006). What is striking about these

studies, and others, is the large overlap in genes that have been analysed, but relatively small

overlap in what genes are deemed expressed stable enough to be used for normalization

purposes. The most commonly used genes are Actb, Gapdh, Rn18s (18S rRNA), Hprt1

and B2m, perhaps because they are historical carry-overs from other semi-quantitative

methods and not because they have been empirically tested. In fact, these genes have

often been shown not to be particularly stable under various experimental conditions, but

nevertheless continue to be the most frequently used.

In animal-based toxicological studies, the rat has become a tractable model and gene

expression profiling is often performed. Studies also often include an array of different

tissues, perhaps from various stages of development. Thus, these tissues vary not only in

cell composition, but also by experimental manipulations, and the variability of tissues

may potentially extend to expression levels of endogenous reference genes. It is now clear

that commonly used reference genes such as Actb, Gapdh, Ubc and Rn18s can vary consid-

erably depending on tissue types, developmental stage, sex, pathology, and experimental

conditions (Das, Banerjee & Shapiro, 2013; Kim et al., 2011; Mart́ınez-Beamonte et al., 2011;

Pohjanvirta et al., 2006; Ruedrich et al., 2013; Swijsen et al., 2012). Thus, more emphasis

should be given to proper validation of suitable reference genes to ensure accurate,
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reproducible and biologically relevant gene expression data. Here, we have addressed

this issue by analysing the expression stability of 12 putative endogenous reference genes in

rat tissues, both from unexposed controls and from rats having been exposed to chemicals

during development.

MATERIALS AND METHODS
Animals
Experimental protocols and use of animals were approved by the Danish Animal

Experiments Inspectorate (Permit No. 2012-15-2934-00089 C4) and overseen by the

Animal Welfare Committee of the National Food Institute, Technical University of

Denmark. All tissue samples used in this study were from Wistar rats, either control rats, or

rats having been exposed to a mixture of chemicals as described previously (Christiansen et

al., 2012; Hadrup et al., 2015). In short, one group was exposed perinatally to a mixture of

13 known endocrine disrupting compounds at a dose estimated at 450-times higher than

that of human exposure, designated Mix450 (Christiansen et al., 2012), with juvenile tissue

samples collected on postnatal days (P): livers on P13; testis, prostate and adrenal on P16;

ovaries on P17; and adult tissues after P55. A second and third group of juvenile male rats

was exposed to 5 mg/kg perfluoronanoic acid (PFNA) and 5 mg/kg PFNA in addition to a

mixture of 14 chemicals (PFNA/mix), respectively (Hadrup et al., 2015), and tissues were

collected from adult rats.

RNA extraction, cDNA synthesis and quantitative RT-PCR
(RT-qPCR)
Total RNA was extracted from homogenized rat tissues using the RNeasy Mini kit (Qiagen,

HIlden, Germany) including on-column DNaseI treatment. RNA purity and quantity

were measured by nano-drop spectrophotometry, and 500 ng total RNA (A260/280 ratio

of 1.95 ± 0.1) used to synthesise cDNA in the presence of 6 µM Random Primer mix

(New England Biolabs, Ipswitch, Massachusetts USA) using the Omniscript kit (Qiagen,

HIlden, Germany) in 20 µl reactions as per manufacturer’s instructions. cDNA samples

were diluted 1:20 and 3 µl used in 11 µl RT-qPCR reactions together with 5 µl TaqMan Fast

Universal Master mix (Life Technologies, Carlsbad, California, USA), 0.5 µl TaqMan Gene

Expression Assay (Life Technologies, Carlsbad, California, USA) and 2.5 µl sterile water.

RT-qPCR assays were run in duplicates on a 7900HT Fast Real-Time PCR System (Applied

Biosystems, Carlsbad, California, USA) in 384-well plates over 45 cycles of 95 ◦C for 1 s

and 60 ◦C for 20 s in a two-step thermal cycle preceded by an initiation step of 95 ◦C for

20 s. Accompanying software was used for the acquisition of threshold cycle (Ct) values.

Individual TaqMan Gene Assays with verified amplification efficiencies were purchased

from Life Technologies and their corresponding product numbers are listed in Table 1. The

Rn18s assay was designed previously (Laier et al., 2006), with forward and reverse primers

run at 900 nM and TaqMan probe at 250 nM final concentrations. Amplification efficiency

of the Rn18s assay was calculated to 97% by standard curve analysis on 6 serial 10-fold

dilutions in triplicates.
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Table 1 List of putative rat reference genes and corresponding TaqMan assays.

Gene RefSeq Name TaqMan assay

Actb NM 031144 Beta actin Rn00667869 m1

B2m NM 012512 Beta-2 microglobulin Rn00560865 m1

Gapdh NM 017008 Glyceraldehyde-3-phosphate dehydrogenase Rn01775763 g1

Hprt1 NM 012583 Hypoxanthine guanine phosphoribosyl transferase Rn01527840 m1

Pgk1 NM 053291 Phosphoglycerate kinase 1 Rn01474008 gH

Rn18s NR 046237 18S ribosomal RNA (Laier et al., 2006)

Rpl13a NM 173340 Ribosomal protein L13A Rn00821946 g1

Rps18 NM 213557 Ribosomal protein S18 Rn01428913 gH

Rps29 NM 012876 Ribosomal protein S29 Rn00820645 g1

Sdha NM 130428 Succinate dehydrogenase complex, subunit A,
flavoprotein (Fp)

Rn00590475 m1

Tbp NM 001004198 TATA box binding protein Rn01455646 m1

Ubc NM 017314 Ubiquitin C Rn01789812 g1

Analytical methods
RT-qPCR Ct values were acquired using the Applied Biosystems 7900HT Fast Real-Time

PCR System software and relative gene expression calculated by the 2(−ΔCt) method

(Applied Biosystems Research Bulletin No. 2 P/N 4303859). Expression stability of putative

reference genes was estimated using the BestKeeper (Technical University of Munich,

Germany) and NormFinder (Aarhus University Hospital, Denmark) softwares.

BestKeeper make use of unconverted Ct values to perform parametric tests on normally

distributed expression levels. It estimates the geometric mean of Ct values, determines

the coefficient of variance (CV) for each gene, and calculates a Pearson’s coefficient of

correlation (r). Standard deviation (SD) calculations are performed to create a weighted

index of most suitable normalizing genes across selected biological samples and exclude

genes that are not stably expressed (Pfaffl et al., 2004). NormFinder uses Ct values

transformed to a linear scale to estimate expression stability (S), combining intra- and

inter-group variations for each reference gene. The algorithm takes into account biological

heterogeneity and avoids selection bias caused by co-regulation of genes (Andersen, Jensen

& Ørntoft, 2004).

RESULTS
Before testing the expression stability of the 12 endogenous reference genes, all cDNA

samples were normalised at the RNA level. Following RT-qPCR cycling, the raw mean Ct

values of duplicate reactions were acquired, representing raw expression data. Ct values

were used for statistical analyses.

From juvenile control rats, four biological replicates each of liver, fat pad, adrenal,

prostate, testis and ovary tissues were analysed and the mean Ct values determined

(Table 2). There was low inter-assay variation within the tissue types, with most standard

deviation (SD) values being <0.5 and the highest 0.76. A larger variation was evident
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Figure 1 Box plot representation of RT-qPCR threshold (Ct) values of 12 reference genes in rat
tissues. The reference genes were assayed across rat tissue cDNA samples, with each box plot representing
the biological replicates. (A) Box plot of 24 juvenile rat tissues; 4 each of liver, fat pad, adrenal, prostate,
testis and ovary. (B) Box plot of 16 adult rat tissues; 4 each of liver, fat pad, prostate and testis. Boxes
denote median values with upper and lower quartiles, and whiskers minimum and maximum outliers.

Table 2 Mean RT-qPCR threshold (Ct) values of 12 references genes in juvenile (13-17 days post natal) rat tissues. Mean ± standard deviation
(SD) was calculated from 4 biological replicates (n = 4).

Gene Liver
(Mean ± SD)

Fat pad
(Mean ± SD)

Adrenal
(Mean ± SD)

Prostate
(Mean ± SD)

Testis
(Mean ± SD)

Ovary
(Mean ± SD)

All
(Mean ± SD)

Actb 23.0 ± 0.23 22.0 ± 0.31 20.5 ± 0.31 20.0 ± 0.30 19.7 ± 0.69 20.4 ± 0.32 20.9 ± 1.25

B2m 23.6 ± 0.21 22.7 ± 0.19 22.1 ± 0.32 23.9 ± 0.26 23.9 ± 0.60 22.6 ± 0.51 23.2 ± 0.80

Gapdh 24.1 ± 0.19 24.2 ± 0.74 22.7 ± 0.52 23.9 ± 0.17 23.2 ± 0.32 23.2 ± 0.18 23.6 ± 0.69

Hprt 28.0 ± 0.37 27.1 ± 0.16 26.2 ± 0.35 26.7 ± 0.24 25.7 ± 0.26 26.0 ± 0.26 26.6 ± 0.81

Pgk1 27.9 ± 0.32 26.4 ± 0.57 24.7 ± 0.35 27.3 ± 0.39 27.3 ± 0.09 25.5 ± 0.21 26.5 ± 1.18

Rn18s 13.8 ± 0.45 12.5 ± 0.19 13.9 ± 0.33 14.2 ± 0.27 13.9 ± 0.65 14.3 ± 0.38 13.8 ± 0.69

Rpl13a 25.4 ± 0.17 23.8 ± 0.12 23.2 ± 0.18 23.1 ± 0.26 22.9 ± 0.06 22.3 ± 0.06 23.5 ± 1.02

Rps18 22.3 ± 0.33 21.4 ± 0.18 20.8 ± 0.11 20.5 ± 0.33 20.5 ± 0.24 19.6 ± 0.22 20.9 ± 0.88

Rps29 21.6 ± 0.24 21.5 ± 0.12 21.9 ± 0.12 21.3 ± 0.18 21.2 ± 0.76 19.3 ± 0.11 21.1 ± 0.91

Sdha 26.5 ± 0.26 25.6 ± 0.19 24.3 ± 0.36 26.0 ± 0.21 25.1 ± 0.11 25.1 ± 0.38 25.4 ± 0.76

Tbp 32.7 ± 0.31 29.8 ± 0.23 30.2 ± 0.37 30.1 ± 0.31 28.2 ± 0.23 28.9 ± 0.13 30.0 ± 1.43

Ubc 23.9 ± 0.26 23.0 ± 0.26 22.3 ± 0.29 21.7 ± 0.16 22.0 ± 0.18 22.0 ± 0.14 22.5 ± 0.78

between tissue types, with SD values across all the 24 tissue samples being >0.5 and that of

Actb, Pgk1, Rpl13a, and Tbp exceeding 1.0. The expression range of the individual reference

genes are represented as box plots in Fig. 1A.

From adult control rats, four biological replicates each of liver, fat pad, prostate and

testis tissues were analysed and the mean Ct values determined (Table 3). Again, there was

low inter-assay variation within tissue types for most of the reference genes, with most SD

values being <0.5. One exception was Rn18s where SD values were >1.5 in liver and testis,

and 0.94 in prostate. Between different tissues, the variation in Ct values was larger. Across

all the 16 tissue samples (4 tissue types) the SD was >0.5 for all reference genes, with B2m,

Gapdh, Rn18s, Rps18 and Tbp exceeding 1.0. Notably, Tbp displayed a significantly lower Ct
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Table 3 Mean RT-qPCR threshold (Ct) values of 12 reference genes in adult rat tissues. Mean ± stan-
dard deviation (SD) was calculated from 4 biological replicates (n = 4).

Gene Liver
(Mean ± SD)

Fat pad
(Mean ± SD)

Prostate
(Mean ± SD)

Testis
(Mean ± SD)

All
(Mean ± SD)

Actb 23.1 ± 0.16 21.3 ± 0.16 21.1 ± 0.49 21.0 ± 0.30 21.6 ± 0.92

B2m 21.4 ± 0.38 21.1 ± 0.27 23.9 ± 0.81 23.3 ± 0.26 22.4 ± 1.33

Gapdh 20.7 ± 0.12 23.0 ± 0.25 24.6 ± 0.25 23.7 ± 0.31 23.0 ± 1.48

Hprt 27.7 ± 0.39 27.1 ± 0.11 26.8 ± 0.26 27.0 ± 0.17 27.1 ± 0.43

Pgk1 25.8 ± 0.35 25.2 ± 0.18 26.9 ± 0.47 26.9 ± 0.32 26.2 ± 0.81

Rn18s 14.8 ± 1.55 12.7 ± 0.28 14.7 ± 0.94 14.4 ± 1.56 14.1 ± 1.38

Rpl13a 25.6 ± 0.35 24.3 ± 0.40 23.6 ± 0.16 24.5 ± 0.23 24.5 ± 0.79

Rps18 23.1 ± 0.82 22.3 ± 0.75 21.0 ± 0.27 19.8 ± 0.21 21.5 ± 1.38

Rps29 23.2 ± 0.25 22.0 ± 0.38 21.1 ± 0.68 21.5 ± 0.29 22.0 ± 0.90

Sdha 25.0 ± 0.42 24.7 ± 0.19 26.4 ± 0.22 25.2 ± 0.20 25.3 ± 0.69

Tbp 31.6 ± 0.61 30.2 ± 0.25 30.3 ± 0.25 24.8 ± 0.40 29.2 ± 2.73

Ubc 22.1 ± 0.42 21.8 ± 0.17 21.5 ± 0.16 20.1 ± 0.30 21.4 ± 0.84

value in adult testis (Ct = 24.8) than in any other adult or juvenile tissues (Ct = 28.2-32.7).

The expression range of the individual reference genes across adult tissues are given as box

plots in Fig. 1B.

Reference genes would be expected to display most stable transcript abundance between

samples of the same tissues and organs and within similar developmental stages. The

greatest variations to expression levels would be expected between different tissue types,

at different developmental stages, but also if they have been affected by external factors.

Here, we included RT-qPCR analyses of tissues from rats having been exposed to mixtures

of chemical compounds. These tissue samples correlated with the control tissues above.

The first group comprised juvenile ovaries and prostate, as well as adult prostate tissues

obtained from rats having been exposed peri- and postnatally to Mix450 (Table 4). Some

smaller variations in Ct values were observed between tissues from those of the control

animals (Tables 2 and 3), but did not exceed 0.5 cycles. The second group comprised adult

liver, fat pad and testis tissues obtained from male rats having been exposed postnatally

to either PFNA or PFNA/mix (Table 5). Here, greater variability of Ct values compared

to tissues from control animals (Table 3) was evident. In the liver, the Ct values from

several genes varied by more than 1.0 cycle, including Gapdh, Hprt, Pgk1, Rps29, Rpl13a

and Rps18, the latter two with as much as 2.6 and 3.1 cycles, respectively. In the fat pad

the difference in expression was far less, with only Gapdh in PFNA-exposed rats exceeding

1.0 cycle difference relative to control. In the testis, most changes to Ct values in exposed

animals versus control was less than 1.0 cycle, but with Gapdh varying by 1.5 cycles in

PFNA/mix and Rn18s as much as 2.2 cycles in the PFNA group.

To assess relative expression stability across different biological samples, we analysed

the Ct outputs with NormFinder (Andersen, Jensen & Ørntoft, 2004). First, raw Ct values

were converted to linear scale by the 2(−ΔCt) method using the geometric mean of Hprt,

Pgk1, Rpl13a, Rps18, Rps29, Sdha and Ubc based on initial determination of coefficient
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Table 4 Mean RT-qPCR threshold (Ct) values of 12 reference genes in juvenile (J) and adult (A)
tissues from rats exposed to Mix450. Mean ± standard deviation (SD) was calculated from 4 biological
replicates (n = 4).

Gene Ovary (J) + Mix450
(Mean ± SD)

Prostate (J) + Mix450
(Mean ± SD)

Prostate (A) + Mix450
(Mean ± SD)

Actb 20.6 ± 0.45 20.1 ± 0.19 21.4 ± 0.12

B2m 23.0 ± 0.47 23.8 ± 0.15 24.4 ± 0.29

Gapdh 23.2 ± 0.10 24.1 ± 0.36 24.2 ± 0.19

Hprt 26.2 ± 0.15 26.6 ± 0.15 26.9 ± 0.06

Pgk1 25.6 ± 0.28 27.1 ± 0.15 26.5 ± 0.07

Rn18s 14.1 ± 0.16 14.5 ± 0.56 14.8 ± 0.12

Rpl13a 22.7 ± 0.11 22.8 ± 0.26 23.7 ± 0.04

Rps18 19.8 ± 0.19 20.1 ± 0.31 21.0 ± 0.09

Rps29 19.5 ± 0.04 21.2 ± 0.25 21.6 ± 0.05

Sdha 25.1 ± 0.28 25.8 ± 0.25 26.3 ± 0.16

Tbp 29.2 ± 0.35 29.8 ± 0.19 30.4 ± 0.08

Ubc 22.4 ± 0.22 21.6 ± 0.29 21.3 ± 0.06

Table 5 Mean RT-qPCR threshold (Ct) values of 12 reference genes in adult tissues from rats exposed to hPFNA or hPFNA/Mix. Mean ± standard
deviation (SD) was calculated from 4 biological replicates (n = 4.)

Gene Liver + hPFNA
(Mean ± SD)

Liver + hPFNA/mix
(Mean ± SD)

Fat pad + hPFNA
(Mean ± SD)

Fat pad + hPFNA/mix
(Mean ± SD)

Testis + hPFNA
(Mean ± SD)

Testis + hPFNA/mix
(Mean ± SD)

Actb 22.8 ± 0.06 22.5 ± 0.37 21.6 ± 0.30 21.6 ± 0.34 20.3 ± 0.25 20.7 ± 0.29

B2m 21.4 ± 0.12 21.5 ± 0.27 20.8 ± 0.15 21.2 ± 0.53 23.6 ± 0.47 23.8 ± 0.44

Gapdh 19.8 ± 0.18 19.7 ± 0.16 24.1 ± 0.53 23.5 ± 0.72 23.9 ± 0.30 22.2 ± 1.34

Hprt 26.5 ± 0.27 26.4 ± 0.17 26.9 ± 0.18 26.7 ± 0.81 26.9 ± 0.30 27.2 ± 0.24

Pgk1 24.3 ± 0.24 24.1 ± 0.26 25.6 ± 0.34 25.4 ± 0.33 27.3 ± 0.45 27.8 ± 0.42

Rn18s 15.1 ± 1.27 14.1 ± 0.17 12.6 ± 0.27 13.4 ± 1.10 12.2 ± 0.04 14.1 ± 0.89

Rpl13a 23.1 ± 0.19 23.0 ± 0.33 23.8 ± 0.29 23.8 ± 0.31 24.4 ± 0.33 24.5 ± 0.21

Rps18 20.2 ± 0.21 20.0 ± 0.37 21.4 ± 0.33 21.5 ± 0.25 19.7 ± 0.26 19.9 ± 0.25

Rps29 21.6 ± 0.18 21.5 ± 0.28 21.8 ± 0.32 21.8 ± 0.23 21.3 ± 0.28 21.5 ± 0.22

Sdha 24.3 ± 0.28 24.1 ± 0.21 24.8 ± 0.33 24.6 ± 0.53 24.9 ± 0.25 25.0 ± 0.31

Tbp 30.5 ± 0.41 30.2 ± 0.23 29.8 ± 0.14 29.9 ± 0.09 24.3 ± 0.33 24.5 ± 0.33

Ubc 21.0 ± 0.21 20.8 ± 0.24 21.8 ± 0.08 21.4 ± 0.54 19.8 ± 0.39 20.0 ± 0.51

of variance (CV) across the biological replicates (data not shown). Based on converted

Ct values, the software calculates a stability value (S) for each gene across the selected

biological replicates. First we assessed expression stability across control tissues, which

included the 40 biological replicates listed in Tables 2 and 3 (Fig. 2A). Here, Hprt and

Sdha were ranked as the most stable, whereas Tbp and B2m were deemed least stable.

NormFinder recommends an upper S-value of 0.5 for genes to be assessed as relatively

stable. Only Hprt and Sdha had an S-value <0.5, but Ubc, Actb, Rpl13a and Rps18 were all

close to 0.5. A further 36 samples were included in the NormFinder assessment, which
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Figure 2 Relative expression stability (S) of 12 reference genes across rat tissues as determined by
NormFinder. The 12 reference genes were assayed across (A) control tissues (n = 40) from juvenile
and adult rats and (B) the control tissues plus adult tissues from rats subjected to chemical exposures
(n = 76). The tissues included prostate, testis, adrenal, liver, fat, and ovary. Higher S-values represent
lower expression stability, with S < 0.5 typically indicating relative stability suitable for use as endogenous
normalization. The data show a shift towards higher S-values (B vs. A) for the most unstable gene
transcripts following chemical exposure.

Table 6 Expression stability between juvenile tissue types according to relative NormFinder stability values. Shaded boxes indicate a stability
value (S) > 0.5, thus deemed unstable within the specific comparisons.

Liver vs fat pad Liver vs testis Adrenal vs prostate Prostate vs fat pad Adrenal vs ovary Ovary vs testis

Most stable B2m Sdha Hprt Rps29 Hprt Rpl13a

Sdha Rps18 Rn18s Hprt Ubc Gapdh

Actb Ubc Rpl13a Tbp Actb Ubc

Rps18 Hprt Tbp Sdha Rpl13a Sdha

Hprt Gapdh Rps18 Gapdh Rn18s Rps18

Rn18s Rpl13a Gapdh Rpl13a Rps18 Hprt

Ubc Pgk1 Actb Rps18 Gapdh Tbp

Rpl13a Rps29 Rps29 Pgk1 B2m Rn18s

Pgk1 B2m Sdha Ubc Tbp B2m

Rps29 Actb Ubc B2m Pgk1 Actb

Least stable Gapdh Rn18s B2m Rn18s Sdha Pgk1

Tbp Tbp Pgk1 Actb Rps29 Rps29

included tissues from adult rats that had been exposed to chemical mixtures during

development (Fig. 2B). The most stably expressed genes Hprt and Sdha (as determined

above) appeared relatively unchanged in these tissues, whereas more unstably expressed

genes shifted to a significantly higher S-value. This was particularly evident for Tbp, B2m,

Gapdh and Rn18s. NormFinder was also used to assess pairwise expression stabilities of the

12 reference genes between juvenile rat tissues. Although it represents only a selection of

possible pairing of tissues, it illustrates that optimal reference genes can vary significantly

between tissue types (Table 6).

Next, relative expression stability was assessed by the BestKeeper software (Pfaffl et al.,

2004), which defined genes that display a SD >1.0 as unstable. Based on the NormFinder
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Table 7 BestKeeper correlation analysis of 10 reference genes in rat tissues. Shaded boxes indicate
genes deemed unsuitable as reference genes based on too high SD or P values.

Control tissues; n = 40. All tissues; n = 76.

Gene SD CV r P Gene SD CV r P

Rn18s 0.5438 3.9513 −0.222 0.296 Hprt 0.4612 1.7226 0.747 0.001

Gapdh 0.5597 2.3766 0.634 0.001 Rps29 0.5647 2.6401 0.483 0.001

Sdha 0.6169 2.4245 0.778 0.001 Sdha 0.6027 2.3911 0.679 0.001

Ubc 0.6408 2.8510 0.797 0.001 Rpl13a 0.7404 3.1224 0.674 0.001

Hprt 0.6792 2.5506 0.927 0.001 Ubc 0.7584 3.5106 0.501 0.001

Rps18 0.6827 3.2732 0.911 0.001 Rps18 0.8150 3.9201 0.747 0.001

Rps29 0.7000 3.3100 0.467 0.021 Rn18s 0.8260 5.9426 0.230 0.046

Rpl13a 0.7822 3.3351 0.960 0.001 Actb 0.8794 4.1409 0.467 0.001

Pgk1 1.0420 3.9300 0.666 0.001 Pgk1 1.0071 3.8459 0.476 0.001

Actb 1.0472 5.0032 0.841 0.001 Gapdh 1.1385 4.9379 0.310 0.007

Notes.
Control, tissues from unexposed animals; All, tissues from unexposed and exposed animals.

output, we excluded Tbp and B2m from these analyses, only assessing the remaining 10

reference genes. The analyses were first performed with the 40 control samples listed in

Tables 2 and 3. Eight of the genes displayed a SD <1.0, with the remaining two, Pgk1 and

Actb, SD >1.0 (Table 7). Rn18s displayed the lowest SD, but with P = 0.296 it is not possible

to conclude on stability. When including an additional 36 tissue samples from rats exposed

to chemical mixtures (Tables 4 and 5), the stability ranking of the genes altered. Again,

eight genes had an SD <1.0, but Pgk1 and Gapdh had an SD >1.0, thus excluding them as

suitable reference genes for these tissue samples (Table 7).

DISCUSSION
The use of a suitable reference when normalizing RT-qPCR data is essential to obtain data

that truthfully represents relative transcript abundance of genes within cells and tissues.

The most common strategy is to use endogenous reference genes, but unfortunately the

chosen reference genes have often not been properly verified as being stably expressed

across the samples being analysed. Here, we have analysed a panel of 12 commonly used

reference genes across various tissues from juvenile and adult rats and recommend what

reference genes to use for these tissues based on empirical data. Further guidance on

how to monitor and select suitable reference genes for future rat studies with variable

experimental parameters is given.

When looking at specific tissues, the relative expression levels of reference genes are

normally quite stable between biological samples. Significant variability in RNA transcript

abundance is often first encountered when comparing the same tissue type from different

developmental stages, when comparing different types of tissues, or when severe adverse

effects are induced (Cabiati et al., 2012; DuBois et al., 2013; Hvid et al., 2011; Kim et al.,

2011; Mart́ınez-Beamonte et al., 2011; Svingen et al., 2009). Here, we found several reference

genes to be relatively stable across juvenile and adult rat tissues; however, none of the 12
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genes showed variations Ct <1.0 when assessed across all 10 different biological groups.

For example, Hprt, which generally showed the greatest stability across tissues, displayed

lower expression levels (higher Ct) in liver than in any other tissue. Also Actb, Rpl13a,

Rps18 and Tbp showed a similar trend of being expressed at a lower level in liver than in

other tissues. Rn18s was generally stable across tissues with the exception of the fat pad

where relative expression typically was higher (lower Ct by approx. 2.0) than for other

tissues, which could suggests that the rRNA/mRNA ration is skewed between these tissues.

Another example is the higher expression of Tbp in juvenile testis and ovary, compared to

other tissues and an even higher expression in adult testis (Ct >5.0 difference). Tbp has

previously been shown to be a suitable reference gene in fetal mouse gonads, as well as

human fetal testis (O’Shaughnessy, Monteiro & Fowler, 2011; Svingen et al., 2009), which

highlights the importance of not simply relying on data from one species (e.g., mouse)

when selecting suitable reference genes for another (e.g., rat).

An additional problem is encountered when normalizing gene expression in experi-

mentally manipulated tissues; in the context of this study, animals that had been exposed

to a variety of chemicals, often at toxicological dose levels. Experimental manipulations

can adversely affect gene expression levels in various tissues, including genes normally

regarded as ‘stable housekeeping genes’ (Das, Banerjee & Shapiro, 2013; DuBois et al.,

2013; Mart́ınez-Beamonte et al., 2011; Nair et al., 2014; Pohjanvirta et al., 2006; Santin

et al., 2013; Silver et al., 2008; Taki, Abdel-Rahman & Zhang, 2014). Here, we have also

shown that the expression of endogenous reference genes such as Tbp, B2m and Gapdh

are affected in tissues having been exposed to chemicals during development. Although

most changes in relative transcript abundance were less than one cycle (Ct <1.0), some

tissues displayed higher variability following chemical exposure. Not surprisingly the liver

was most affected, with for instance Pgk1, Rpl13a and Rps18 shifting as much as Ct >1.5,

>2.5 and >3.0, respectively in animals having been exposed to high PFNA levels with or

without a background mix of chemicals (Table 3 versus Table 5). In numerical terms, this

could translate into a nearly 10-fold difference in reported change in relative fold gene

expression. As reported previously (Hadrup et al., 2015), the PFNA exposure was modelled

on high-end human relevant exposure and animals were affected to variable degree. For

instance, the livers from exposed rats displayed some hypertrophy and steatosis. Other

organs did not show significant effects at a macroscopic or histological level, but high doses

resulted in decreased levels of systemic androgens (testosterone) and increased aromatase

expression in fatty tissues. There was also an observable downregulation of steroidogenic

genes in the testes from high-dosed rats, including StAR, Cyp11a1, Cyp17a1 and Hsd17b1,

suggestive of a decreased steroidogenic output.

Previous studies have reported on the potential to generate flawed data by selecting

inappropriate reference genes (Dheda et al., 2005; Svingen, Jørgensen & Rajpert-De Meyts,

2014). Therefore, the suitability of employed reference genes must be empirically verified

for all individual experiments. This is further exemplified by these tissue samples, where

animals having been exposed to chemicals show altered expression of constitutively

expressed ‘housekeeping’ genes, both in tissues with obvious pathology, but also tissues
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where no histopathological effects are discernible. But an additional aspect to consider

in toxicological studies is also the potential induction of widespread necrosis that could

compromise the overall quality of the RNA pool.

In terms of our data set, several of the analysed reference genes can be successfully

employed for RT-qPCR analysis. NormFinder suggests that both Hprt and Sdha are

relatively stable across all the tissues examined, including after chemical exposure. Other

genes were scored as borderline suitable and included Rps18, Rpl13a and Ubc, but with

Tbp, B2m, Gapdh and Rn18s not suitable. Contradictorily the BestKeeper software

suggested all genes except Pgk1 and Actb to be stable enough for normalization in the

control tissues. A discrepancy in stability rankings and outcomes between different

analytical methods such as NormFinder and BestKeeper has been reported before and

are attributed to the different theoretical algorithms that are employed (Andersen, Jensen

& Ørntoft, 2004; Mart́ınez-Beamonte et al., 2011; Pfaffl et al., 2004). Nevertheless, they are

often in overall agreement, which was also the case with our data with the exception of

Gapdh and Rn18s in control tissues. For Rn18s, a p-value of 0.3 excludes the possibility of

determining with certainty if it is stably expressed. But more importantly, the NormFinder

algorithm shows a bias towards a variant gene if several other genes display a systematic

variation across samples, which is likely the case for Rn18s in these tissues. Finally, a gene

does not have to rank on top of the list to be suitable for normalization purposes as long

as they perform better than the exclusion criteria. Further, it is recommended to use the

geometric mean of two or more reference genes rather than relying on a single gene.

Although screening all tissues under all experimental conditions when selecting suitable

reference genes is recommended, it is not always practically feasible. Therefore, we suggest

a monitoring protocol after initial screening of selected tissues, then re-screen when

appropriate. Firstly, we reiterate the importance of always normalising tissue samples

at the RNA level; that is, using a stable input amount of RNA for all cDNA synthesis

reaction, as variation in reverse transcription protocols can significantly affect downstream

RT-qPCR assays (Ståhlberg et al., 2004; Bustin et al., 2015). Secondly, after selecting 2

or more reference genes that are deemed stable in the tissues to be examined, monitor

for any significant changes in Ct values. If Ct values change by more than 2 cycles

between biological replicates, selection of other reference genes should be considered; after

additional screening tests if necessary. Thirdly, to adjust for smaller changes in expression

of the reference genes, the use of a geometric mean from at least three reference genes

to normalize data has been recommended (Vandesompele et al., 2002). In this manner,

significant changes to the expression of reference genes following experimental conditions

can be detected, ultimately avoiding reporting of significantly flawed data.
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