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ABSTRACT
Background: Angelica sinensis seedlings are grown in alpine uncultivated meadow
soil with rainfed agroecosystems to ensure the quality of A. sinensis after seedling
transplantation. The aim was to investigate the rhizosphere bacterial and fungal
communities during the growth stages of A. sinensis seedlings.
Methods: The bacterial and fungal communities were investigated by HiSeq
sequencing of 16S and 18S rDNA, respectively.
Results: Proteobacteria and Bacteroidetes were bacterial dominant phyla
throughout growth stages. Fungal dominant phyla varied with growth stages,
dominant phyla Ascomycota and Chytridiomycota in AM5, dominant phyla
Basidiomycota, Ascomycota and Zygomycota in BM5, and dominant phyla
Basidiomycota and Ascomycota in CM5. There was no significant variation in the
alpha-diversity of the bacterial and fungal communities, but significant variation
was in the beta-diversity. We found that the variation of microbial community
composition was accompanied by the changes in community function. The relative
abundance of fungal pathogens increased with plant growth. We also identified
the core microbes, significant-changing microbes, stage-specific microbes,
and host-specific microbes. Plant weight, root length, root diameter, soil pH,
rainfall, and climate temperature were the key divers to microbial community
composition.
Conclusions: Our findings reported the variation and environmental drivers of
rhizosphere bacterial and fungal communities during the growth of A. sinensis
seedlings, which enhance the understanding of the rhizosphere microbial community
in this habitat.
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INTRODUCTION
Angelica sinensis (Oliv.), Diels (Umbelliferae), is an herbaceous perennial plant, widely
used in natural medicines in China. In cultivation, it has a three-year growth cycle,
fostering the seedlings in the first year, transplanting the seedlings and harvesting the
fleshy roots in the second year, and collecting the seeds in the third year. Dingxi is the
major producing area for A. sinensis in China, accounting for 70% of the country’s
production each year.

Rhizosphere microbes are closely related to plant growth. They are considered the
second genome of the plant and have pivotal functions in plant health and productivity,
such as in nutrient cycling, pathogen suppression, growth promotion, and abiotic stress
tolerance (Berendsen, Pieterse & Bakker, 2012; Strecker et al., 2016). Yet, the formation of
rhizosphere microbe communities is affected by environmental factors such as soil pH
(Hardoim et al., 2011), soil temperature (Lareen, Burton & Schafer, 2016) and plant
development (Chaparro, Badri & Vivanco, 2014).

Much research has focused on rhizosphere microbial communities during the plant
development, including microbial composition, community diversity, and core microbes
(Tkacz et al., 2015; Vimal et al., 2017). Generally, the microbial communities around the
roots of different plants are dominated by different microbial phyla, for example, the
bacterial phyla Acidobacteria and Proteobacteria for black peppers (Xiong et al., 2015), and
the bacterial phyla Proteobacteria, Actinobacteria and Acidobacteria as well as the fungal
phyla Ascomycota, Zygomycota and Basidiomycota for apples (Franke-Whittle et al.,
2015). Additionally, the alpha- and beta-diversities of the rhizosphere bacteria of potato
plants are influenced differently by plant growth stage (Pfeiffer et al., 2017). In the
rhizosphere fungal community of potato plants, alpha-diversity is stable but beta-diversity
differs with growth stage (Zimudzi et al., 2018). Moreover, the core rhizosphere bacteria
have been identified in potatoes (Pfeiffer et al., 2017), blueberries (Jiang et al., 2017),
and Arabidopsis (Schlaeppi et al., 2014).

Rhizosphere communities are functionally diverse, which may be closely related to
community composition (Zimudzi et al., 2018). Many microbes usually inhabit the
rhizospheres of different plants and play a role in ecological functions, such as C, N and
S cycling (Li et al., 2014; Fierer et al., 2012), indole acetic acid production (Kuffner et al.,
2010), and biocontrol against plant-pathogenic fungi (Adrangi et al., 2010). However,
many other microbes comprising bacteria and fungi are plant pathogens and they are not
conducive to plant health (Peix, Ramirez-Bahena & Velazquez, 2018; McGovern et al.,
2006).

Traditionally, A. sinensis seedlings are grown in alpine uncultivated meadow soil with
rainfed agroecosystems to ensure seedling quality. Many studies have focused on the
rhizosphere microbial communities of different plants, but currently, little is known about
the rhizosphere microbial communities of A.sinensis seedling cultivated in this habitat.
Thus, this study focused on bacterial and fungal communities during the growth stages
and had three objectives: (1) to investigate global microbial diversity and potential
microbial functions, (2) to find core microbes, significant-changing microbes, and specific
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microbes, and (3) to identify environmental factors driving the microbial community
variation.

MATERIALS AND METHODS
Study site and sample preparation
Seedling samples in the first year were collected from a study site near Dingxi (N 34�25′
27″, E 104�28′24″, elevation 2,783 m). The study site is mountainous with a meadow
soil and a rainfed agroecosystem. It has a cool and semi-humid climate with an annual
average temperature of 5–6 �C, approximately 2,219 h annual sunshine, 90–120 frost-free
days per year, and an annual rainfall of 451.4–817.8 mm which falls mainly from June to
September.

In 2016 from June to October, the experiment was carried out. Rhizosphere samples
were collected during the plant growth stage 56 days (AM5), 98 days (BM5), and 129 days
(CM5) after planting. Three samples for each tested stage were randomly selected,
each sample was comprised of five healthy plants, and nine samples were collected
from three stages. After shaking off the loosely root-attached soil, the tightly adhered
rhizosphere was collected with a sterile brush. The rhizosphere of a sample mixed together,
and stored at −70 �C for microbial analysis. Seedling measurements were based on these
five healthy plants, pooled into a single sample.

DNA extraction and PCR amplification
Total genome DNA was extracted using cetyltrimethylammonium bromide method
(Toju et al., 2013) and monitored on 1% agarose gel. The V4 region of the 16S rRNA gene
was amplified with the primer pair 515F/806R, and the V4 region of the 18S rRNA gene
with the primer pair 528F/706R. All PCR reactions were carried out in 30 µL reaction
solutions with 15 µL of Phusion� High-Fidelity PCR Master Mix (New England Biolabs,
Ipswich, MA, USA), 0.2 µm of the forward and reverse primers, and about 10 ng
template DNA. The PCR process included 98 �C for 1 min, 30 cycles of 98 �C for 10 s,
50 �C for 30 s and 72 �C for 30 s, finally 72 �C for 5 min.

Illumina sequencing
The amplicons were mixed in equimolar amounts and submitted for sequencing to the
IlluminaHiSeq (PE250; San Diego, CA, USA) platform at Novogene Science and
Technology Co., Ltd. (Beijing, China). Clean tags were obtained by cutting off the barcodes
and primer sequences, merging reads using FLASH (Magoč & Salzberg, 2011) to produce
raw tags, and filtering the raw tags (Bokulich et al., 2013). Eventually, effective tags
were gained by chimera removal (Edgar et al., 2011; Haas et al., 2011).

OTU cluster and species annotation
All the effective tags were analyzed using Uparse (Version 7.0.1001) and clustered by
their operational taxonomic units (OTUs) according to ≥97% sequence identity (Edgar,
2013). For each representative sequence, the Silva Database (Version 123) was used to
annotate taxonomic information for bacteria and fungi by the Mothur and RDP classifier
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(Version 2.2) respectively (Wang et al., 2007; Quast et al., 2013). Multiple sequence
alignment was conducted by MUSCLE (Version 3.8.31) (Edgar, 2004). OTU abundance
was normalized with the least sequences according to the sample sequence number by
Novogene Cloud Platform (www.novogene.com). Venn diagrams were generated using
custom R scripts.

Microbial diversity and functional prediction
All indices of alpha-diversity were calculated with QIIME (Version 1.7.0) and displayed
with R (Version 2.15.3), comprising the abundance-based coverage estimation for bacteria
(ACEB) and fungi (ACEF), and Shannon index of bacteria (SHAB) and fungi (SHAF).
Alpha-diversities were analyzed by one-way ANOVA and multiple comparisons with
Tukey test in SPSS (Version 22.0). Beta-diversity was calculated under Bray–Curtis
by QIIME (Version 1.7.0). The functional prediction of microbes was based on the
FAPROTAX database for bacteria (Louca, Parfrey & Doebeli, 2016) and the FUNGuild
database for fungi (Nguyen et al., 2016). Principal coordinate analysis was displayed
using the vegan, plyr, and ggplot2 packages and tested by Adonis based on Bray–Curtis in
R (Version 2.15.3). Correlation between pathogens and plant growth was calculated by
Pearson in SPSS (Version 22.0).

Core microbe definition, significant-changing microbes and specific
microbes
The core microbes for A. sinensis seedlings comprise OTUs which should be present in
all nine samples, and each OTU contains at least three reads in every sample. By Novogene
Cloud Platform, core OTUs were screened, and core OTU abundance was normalized with
the most sequences according to the sample sequence number. Significant-changing
microbes between growth stages were measured by T-test in SPSS (Version 22.0). Microbes
that only dwelt on the certain growth stage were found by MS Excel 2010 and were
considered as the stage-specific microbes. Microbes that were positively and significantly
related to plant growth indices including plant weight, root length and diameter were
identified by Spearman correlations (SPSS version 22.0) and were considered as the
host-specific microbes.

Environmental factors
Plant weight (PW), root length (RL), root diameter (RD), soil pH (pH), rainfall (RF),
and climate temperature (T) were considered as the environmental factors in this study.
PW was measured as the weight of the seeding without the root soil, RL as the length
along the main root, and RD as the diameter 1.0 cm below the rhizome of the seedling. pH
was determined with a glass electrode in water-to-soil ratio of 3:1 (v/w). RF and T data
were collected from a website (http://data.cma.cn/). Environmental factors were tested by
one-way ANOVA and multiple comparisons with Tukey test in SPSS (Version 22.0).
Canonical correspondence analysis and Variation partitioning analysis were performed
using the vegan package in R (Version 2.15.3).
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RESULTS
Global microbial composition
The high-quality reads, 559,472 for bacteria and 589,618 for fungi, were obtained from
nine samples, and 198,477 bacterial reads and 34,848 fungal reads were used in the study
after normalizing with the least sequences. The 4,880 bacterial and 354 fungal OTUs
were present during growth stages. However, only 1,538 bacterial and 128 fungal OTUs
were observed during all three stages, and other OTUs were distributed in three growth
stages, respectively (Figs. 1A and 1B). Global microbes were classified into different levels
(Table 1).

The composition of bacteria and fungi was analyzed at the phylum and class levels.
Proteobacteria and Bacteroidetes were the dominant phyla (relative abundance >10%) at
each growth stage, Proteobacteria accounting for 59–72% and Bacteroidetes 10–22%
(Fig. 2A). At the class level, Beta-, Alpha- and Gammaproteobacteria were the top

Figure 1 Venn diagrams of bacterial (A) and fungal (B) OTUs between different growth stages.
% Indicates the number of OTUs in percentage of total OTUs. The yellow circles indicate core
microbes. Overlap areas represent the shared OTUs. Bacteria: 1,538 overlap OTUs in all three stages; 512
overlap OTUs between AM5 and BM5, 319 overlap OTUs between BM5 and CM5, and 211 overlap
OTUs between CM5 and AM5; and 513 OTUs in AM5, 722 OTUs in BM5, and 1,065 OTUs in CM5.
Fungi: 128 overlap OTUs in all three stages; 50 overlap OTUs between AM5 and BM5, 16 overlap OTUs
between BM5 and CM5, and 18 overlap OTUs between CM5 and AM5; and 60 OTUs in AM5, 42 OTUs
in BM5, and 40 OTUs in CM5. Full-size DOI: 10.7717/peerj.8541/fig-1

Table 1 Taxonomic levels of global and core microbes. % Indicates the number of core bacteria/fungi
in percentage of global bacteria/fungi on taxonomic levels.

Microbe Phylum Class Order Family Genus Species

Global bacteria 30 61 127 233 553 274

Global fungi 8 31 69 98 122 104

Core bacteria 9 (30%) 19 (31%) 40 (31%) 54 (23%) 100 (18%) 35 (13%)

Core fungi 4 (50%) 11 (35%) 15 (22%) 16 (16%) 15 (12%) 9 (9%)
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three classes, and the sum of relative abundance was more than 50%. Fungal dominant
phyla varied with growth stages. Ascomycota and Chytridiomycota were the dominant
phyla (relative abundance >10%) in AM5, Basidiomycota, Ascomycota and Zygomycota in
BM5, and Basidiomycota and Ascomycota in CM5. Ascomycota, Basidiomycota,
Chytridiomycota, and Zygomycota accounted for 11–71%, 33–84%, 14–42%, and 21–25%,
respectively (Fig. 2B).

Microbial diversity and potential microbial functions
We analyzed the alpha- and beta-diversities of the microbial community. There was no
significant difference in the alpha-diversity of the bacteria and fungi (Table 2), revealing
that the community diversity was stable from AM5 to CM5. Principal coordinate
analysis showed that the community compositions (beta-diversity) in the bacteria and
fungi significantly (P < 0.01) changed with the growth stages (Figs. 3A and 3B).

The functions of the bacteria included the biotransformation of C, N, S and Fe, pollutant
degradation, and plant pathogens (Fig. 4A). The functional groups of the fungi community
included plant pathogens, saprotrophs, and mycorrhizae (Fig. 4B). Principal coordinate
analysis showed that the functions of the bacterial (Fig. 3C) and fungal (Fig. 3D)

Figure 2 Relative abundances of the top ten phyla in bacteria (A) and the top eight phyla in fungi (B) at each growth stage. Others: the
phyla without the top ten phyla in bacteria (A) and without the top eight phyla in fungi (B). AM51, AM52, and AM53, three parallels for AM5;
BM51, BM52, and BM53, three parallels for BM5; and CM51, CM52, and CM53, three parallels for CM5.

Full-size DOI: 10.7717/peerj.8541/fig-2

Table 2 Alpha-diversity of microbial communities. Data are presented as mean ± standard error (SE),
n = 3. Different lowercase letters indicate statistically significant (P < 0.05) differences. ACEB, abun-
dance-based coverage estimation for bacteria; SHAB, Shannon index of bacteria; ACEF, abundance-
based coverage estimation for fungi; and SHAF, Shannon index of fungi.

Stage Bacterial diversity Fungal diversity

ACEB SHAB ACEF SHAF

AM5 2578.94 ± 100a 8.10 ± 0.13a 160.91 ± 21a 4.58 ± 0.26a

BM5 3140.67 ± 321a 8.58 ± 0.04a 155.77 ± 21a 4.78 ± 0.24a

CM5 3215.68 ± 63a 8.37 ± 0.14a 134.00 ± 15a 3.53 ± 0.69a
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Figure 3 Principal coordinate analyses in the compositions of the global bacteria (A) and fungi (B) communities, the functions of the global
bacteria (C) and fungi (D) communities, and the compositions of the core bacteria (E) and fungi (F) communities.

Full-size DOI: 10.7717/peerj.8541/fig-3
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communities changed obviously (P < 0.01) with seedling growth. Among these functions,
the relative abundance of fungal pathogens increased with plant growth, and significantly
(P < 0.05) correlated with PW, RL and RD (Table 3).

Core microbes, significant-changing microbes and specific microbes
We found the core bacteria and fungi OTUs. The 299 bacterial OTUs (158,940 reads)
(Fig. 1A) were defined as the core bacteria, being 6.1% of the total bacterial OTUs. The 23
fungal OTUs (17,541 reads) (Fig. 1B) were defined as the core fungi, accounting for 6.5%
of the total fungal OTUs. Principal coordinate analysis showed that the bacterial and
fungal core communities significantly (P < 0.01) changed in their composition throughout
the growth stages (Figs. 3E and 3F). The core microbes were classified into different levels
(Table 1).

The bacterial and fungal genera that significantly (P < 0.05) changed between the
growth stages were found (Table 4), and among them, 14 bacterial and four fungal genera

Figure 4 Relative abundances of the bacterial (A) and fungal (B) community functions at each growth stage. Others: the functions without the
top thirty functions in bacteria and without the top ten functions in fungi. Full-size DOI: 10.7717/peerj.8541/fig-4

Table 3 Correlation between plant growth indices, genera and fungal pathogens. Itersonilia and
Dioszegia are the fungal genera, and other genera are the bacterial genera. PW, plant weight; RL, root
length; and RD, root diameter.

Genera Method PW RL RD

Massilia Spearman 0.93** 0.88** 0.92**

Ramlibacter Spearman 0.90** 0.77* 0.85**

Methylotenera Spearman 0.73* 0.80** 0.82**

Anaeromyxobacter Spearman 0.94** 0.88** 0.96**

Lysobacter Spearman 0.90** 0.73* 0.85**

Itersonilia Spearman 0.92** 0.91** 0.90**

Dioszegia Spearman 0.90** 0.83** 0.87**

Fungal pathogens Pearson 0.78* 0.73* 0.75*

Note:
* and ** represent significance at P < 0.05 and 0.01, respectively.
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obviously (P < 0.05) changed throughout the growth stages (Table 4). Bacteria and fungi
only dwelling on the certain growth stage were found (Table 5). In the dominant phyla,
five bacterial and two fungal genera were significantly and positively correlated with PW,
RL and RD (Table 3).

Table 4 Significant-changing genera between AM5 and BM5 and between BM5 and CM5. Thirty-five bacterial and eight fungal genera changed
significantly (P < 0.05) between AM5 and BM5, and 64 bacterial and six fungal genera between BM5 and CM5. The underlined genera obviously
(P < 0.05) changed throughout the growth stages.

Genera Between AM5 and BM5 Between BM5 and CM5

Bacteria Sphingomonas, Massilia, Arenimonas, Reyranella, Fluviicola,
Panacagrimonas, Haloferula, Verrucomicrobium, Rickettsia,
Hydrotalea, Candidatus Methylacidiphilum, unidentified MWH-
CFBk5, unidentified BSV26, Pedobacter, Sphingobium,
Flavisolibacter, Gemmatimonas, Adhaeribacter, Hymenobacter,
Sorangium, Bacillus, Pir4 lineage, Xanthomonas, Roseomonas,
Spirosoma, Turneriella, Illumatobacter, Perlucidibaca, Byssovorax,
Euzebya, Nibribacter, Skermanella, Kribbella, Paracocccus,
Bythopirellula

Sphingomonas, Massilia, Arenimonas, Reyranella, Fluviicola,
Panacagrimonas, Haloferula, Verrucomicrobium, Rickettsia,
Hydrotalea, Candidatus Methylacidiphilum, unidentified MWH
CFBk5, unidentified BSV26, Rhizobium, Anaeromyxobacter,
Devosia, Blastocatella, Bryobacter, Hydrogenophaga,
Mesorhizobium, Candidatus Solibacter, Sphingopyxis, Pirellula,
Candidatus Koribacter, Anaerolinea, Chryseobacterium,
Brevundimonas, Polycyclovorans, Phaselicystis, Chryseolinea,
Chitinophaga, Schlegelella, Aeromicrobium, Lysinimonas,
Deferrisoma, Solirubrobacter, Tumebacillus, Geobacter,
Pseudonocardia, unidentified Gemmatimonadetes, CL500-29
marine group, Intestinibacter, Sporichthya, unidentified Gaiellales,
unidentified Anaerolineaceae, unidentified Planctomycetaceae,
Intrasporangium, Nitrosomonas, Acidothermus, Thermincola,
Clostridium sensu stricto 1, Effusibacillus, Geothermobacter,
Terrabacter, Syntrophobacter, Paucimonas, Isosphaera, Kineococcus,
Rhodomicrobium, Magnetospirillum, unidentified DB1-14,
Christensenellaceae R-7 group, Clostridium sensu stricto 8, Frankia

Fungi unidentified Endogonales, Cladosporium, unidentified
Agaricomycetes, Phoma, Itersonilia, Cochliobolus, unidentified
Entylomatales, Scopulariopsis

unidentified Endogonales, Cladosporium, Phoma, unidentified
Agaricomycetes, unidentified Xylariales, Sporobolomyces

Table 5 Bacteria and fungi dwelling on the certain growth stage.Nine bacterial and 21 fungal genera dwelt on AM5, six bacterial and seven fungal
genera on BM5, and 55 bacterial and four fungal genera on CM5.

Genus

AM5 Bacteria Lactobacillus, Promicromonospora, Pirellula, unidentified GR-WP33-30, Amycolatopsis, Coxiella, Rhizocola, Pir4 lineage, Aquicella

Fungi Volvariella, Emericellopsis, Tilletiaria, Metarhizium, Ochroconis, Acremonium, Paraglomus, Rhizoctonia, Naohidea, Octosporella,
Bionectria, Helvella, Thecotheus, Endogone, Arthrobotrys, Acaulospora, Paratritirachium, Syncephalis, Leptosphaeria, Hyphodontia,
Neobulgaria

BM5 Bacteria unidentified MWH-CFBk5, Asteroleplasma, Flavobacterium, Candidatus Methylacidiphilum, Ferruginibacter, Prosthecobacter

Fungi Melampsora, Sistotrema, Gymnoascus, Hannaella, unidentified Plectosphaerellaceae, Nowakowskiella, Synchytrium

CM5 Bacteria Haliangium, Simiduia, Roseiflexus, Phaselicystis, Geothermobacter, Leptolyngbya, Lutispora, Thermincola, Haliscomenobacter,
Ferrovibrio, Anaerolinea, Parvularcula, Candidatus Koribacter, Hyphomonas, unidentified 34P16, unidentified Clostridiaceae 1,
Isosphaera, Effusibacillus, Clostridium sensu stricto 12, Desulfurispora, Desulfovirga, Syntrophus, Bdellovibrio, Intestinibacter,
Acidothermus, Rhodomicrobium, Gaiella, Flavisolibacter, Azospirillum, Defluviicoccus, unidentified Gaiellales, Inhella,
Denitratisoma, Microvirga, Clostridium sensu stricto 8, Oxalophagus, Tumebacillus, Syntrophobacter, Christensenellaceae R-7
group, Herpetosiphon, Micromonospora, Clostridium sensu stricto 5, Catenuloplanes, Desulfosporosinus, Leadbetterella,
Sandaracinobacter, unidentified mle1-27, Ruminiclostridium 1, Fonticella, Anaeromyxobacter, Clostridium sensu stricto 10,
Singulisphaera, Deferrisoma, unidentified Gemmatimonadetes, Acidibacter

Fungi Cochlonema, Mrakia, Atractiella, unidentified Capnodiales
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Environmental factors
Except for pH, other environmental factors significantly (P < 0.01) changed during the
growth stages (Table 6). Canonical correspondence analysis showed that pH, T, RF, RD,
PW and RL were the key divers to microbial community composition (Figs. 5A and 5B).
AM5 had positive correlation with pH and T, indicating that they were the major
drivers shaping community composition to AM5. Same as above analysis, RF was the
major driver to BM5, and RD, RW and RL were the major drivers to CM5. Additionally,
alpha- and gammaproteobacteria were sensitive to RF and T respectively. Beta- and
Deltaproteobacteria were closely correlated to the plant growth, and they could adapt to
the low temperature environment (Fig. 5C).

Variation partitioning analysis showed that most of the variation in bacterial and
fungal communities can be explained by environmental factors (Figs. 6A and 6B). Factors1
(pH, T and RF) contributed more variation to microbial community composition than
factors2 (RD, PW and RL).

DISCUSSION
In our study, Proteobacteria and Bacteroidetes were the dominant phyla. They also
were the dominant phyla in other plant rhizosphere. Compared to the previous works,
the Proteobacteria relative abundance in this study was higher than that in these
plants, including ramie (Zhu et al., 2018), tomatoes (Shao et al., 2018), potatoes

Figure 5 Canonical correspondence analysis between environmental factors and bacterial OTUs (A), between environmental factors and fugal
OTUs (B), and between environmental factors and bacterial classes (C). The top 10 bacterial classes are displayed in C. PW, plant weight; RL, root
length; RD, root diameter; pH, soil pH; RF rainfall; and T, climate temperature. Full-size DOI: 10.7717/peerj.8541/fig-5

Table 6 Environmental factor variation with growth stages. Data are presented as mean ± SE, n = 3.
Different lowercase letters indicate statistically significant (P < 0.05) differences. PW, plant weight; RL,
root length; RD, root diameter; pH, soil pH; RF, rainfall; and T, climate temperature.

Stage PW (g) RL (cm) RD (cm) pH T (�C) RF (mm/d)

AM5 0.39 ± 0.09c 6.00 ± 0.17b 1.58 ± 0.11c 8.33 ± 0.09a 17.33 ± 1.03a 2.64 ± 0.04b

BM5 2.83 ± 0.57b 10.43 ± 0.71a 4.47 ± 0.61b 8.00 ± 0.03a 14.43 ± 2.00ab 4.47 ± 0.27a

CM5 5.85 ± 0.64a 12.19 ± 0.87a 8.68 ± 0.48a 7.91 ± 0.18a 9.55 ± 1.10ab 2.11 ± 0.04b
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(Weinert et al., 2011), and Arabidopsis (Bulgarelli et al., 2012). This implies that
Proteobacteria is generally adapted to the rhizosphere environment across diverse plant
species. In terms of fungi, there were the distinct dominant phyla between the growth
stages, but these dominant phyla, Basidiomycota, Ascomycota, Chytridiomycota and
Zygomycota, have been identified as dominant phyla in previous studies on Panax
notoginseng (Tan et al., 2017), ramie (Zhu et al., 2018), and wheat and canola (Schlatter
et al., 2019). However, unlike plant and animal ecology, there is not a clear definition for
the dominant phylum in microbial ecology until now.

Previous studies have shown that the alpha-diversity of the rhizosphere bacterial and
fungal communities does not significantly change with plant development, but the
beta-diversity significantly changed (Chaparro, Badri & Vivanco, 2014; De Souza et al.,
2016; Zimudzi et al., 2018). The similar results were also found in this study. Thus we
speculate that the abundance of some microbes could significantly change between growth
stages, or the microbes that dwelt on the certain stage could be present in microbial
community succession.

Notably, the beta-diversity and function of the bacterial and fungal communities
significantly changed with the growth stages, suggesting that microbial community
composition variation was accompanied by the changes in the community function
(Philippot, Raaijmakers & Van Der Putten, 2013). Some plant pathogens were present
during the growth stages, such as Pseudomonas viridiflava (Albu et al., 2018), Rhodococcus
fascians (Putnam & Miller, 2007), Rhizobium larrymoorei (Bouzar & Jones, 2001), and
Rhizoctonia solani (Fang, 1983). R. solani that involved in A. sinensis root rot as one of the
pathogens was present in this study, indicating that R. solani was an opportunistic
pathogen. Normally, R. solani may have a neutral relationship with the host plant, but if
the plant is stressed, then this relationship can change to cause the plant disease.

Figure 6 Variation partitioning analysis of the effects of pH, T, RF, RD, PW and RL on the bacterial
(A) and fungal (B) community composition. The variance of 35.31%, 20.14% and 31.56% for bacterial
community could be explained by factor1, factor2, and both factor1 and factor2, respectively. The var-
iance of 12.98% could not be explained by factor1 and factor2. The variance of 13.14%, 10.82% and
69.67% for fungal community could be explained by factor1, factor2, and both factor1 and factor2,
respectively. The variance of 6.37% could not be explained by factor1 and factor2.

Full-size DOI: 10.7717/peerj.8541/fig-6
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The core microbes were a subset (less than 7.0%) of global microbiome, which could
facilitate the design of plant growth promoting rhizobacteria for A. sinensis seedlings.
However, we find that the percentage of core microbes in different studies varies widely
(De Souza et al., 2016; Pfeiffer et al., 2017), and the fact that the core microbial community
composition significantly changed during the growth stage in our study is contrary to
the previous findings (De Souza et al., 2016; Pfeiffer et al., 2017). These may be mainly
caused by the distinct definition of core microbes in different studies (Lundberg et al., 2012;
Saunders et al., 2016; Meier, Avis & Phillips, 2013). Among the significant-changing
bacterial genera, 43% of them belonged to Proteobacteria phylum, for example, the
Sphingomonas, Rickettsia and Reyranella of Alphaproteobacteria, the Massilia of
Betaproteobacteria, and the Arenimonas and Panacagrimonas of Gammaproteobacteria.

The stage-specific microbes could be used as the indicators of a growth stage. Those on
the rhizosphere are in low abundance and could be more susceptible to ecological drift
(Lankau, Hong & Mackie, 2012). It has been shown that low abundance microbes can play
an important ecological function, for example, in host health (Nuccio et al., 2016) and
microbial community stability and diversity (Shade et al., 2014). Root exudates as a
nutrient play an important role for rhizosphere microbial recruitment (Reinhold-Hurek
et al., 2015). So we surmise that the stage-specific microbes could be related to the special
root exudates inducing the fast response of microbes (Zhang, Vivanco & Shen, 2017).

Five bacterial and two fungal genera were considered as the host-specific microbes.
For bacteria, Massilia is a major group of bacteria associated with many plants. Members
of Massilia were reported to show plant growth promotion traits, including indole acetic
acid production (Kuffner et al., 2010), siderophore production (Chimwamurombe et al.,
2016), and biocontrol against plant-pathogenic fungi (Adrangi et al., 2010). Other
bacteria are also reported with plant growth promotion, such as Methylotenera related to
C cycling (Kalyuzhnaya et al., 2010), Ramlibacter to N and P cycling (Props et al.,
2019), Lysobacter to the suppression of soil phytopathogens (Lazazzara et al., 2017),
Anaeromyxobacter to Fe reduction (Suriyavirun et al., 2019), and Devosia to root nodules
and nitrogen fixation (Rivas et al., 2002). For fungi, Itersonilia is known as a fungal
pathogen. For example, Itersonilia perplexans appearing in this study causes petal, foliar,
and seedling blight and root cankers on host plants (McGovern et al., 2006). Overall, the
beneficial microbes and plant pathogens dwelt on a balanced microbial ecosystem of
A. sinensis seedlings (Vimal et al., 2017).

In our results, pH, T, RF, RD, PW and RL were the important drivers for the bacterial and
fungal community composition, which were consistent with previous studies (Chaparro,
Badri & Vivanco, 2014; Liang et al., 2015; Aslam et al., 2016; Nuccio et al., 2016).

Previous reports have described the similar results that Alpha-, Beta-, and
Gammaproteobacteria were the predominant classes in the plant rhizosphere (Cardinale et al.,
2015; Gottel et al., 2011). According to the sensitivity of the alpha-, beta-, delta-, and
gammaproteobacteria to environmental factors, the plant growth promoting rhizobacteria
for A. sinensis seedlings should be from the members of Beta- and Deltaproteobacteria.
In short, Proteobacteria variation in our study confirmed that Proteobacteria are r-strategists,
able to quickly adapt to a changing environment (Brzeszcz et al., 2016).
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Finally, all of results in our study are based on the taxonomic relative abundance,
but the reported studies have demonstrated that the observed differences with relative
abundances can cover those with the actual taxonomic abundances (Zhang et al., 2017;
Tkacz, Hortala & Poole, 2018). The method of combining the quantification and relative
abundance of the microbial communities should be used in the further studies (Lou et al.,
2018; Guo et al., 2019).

CONCLUSIONS
The study for the first time reported the variation and environmental drivers of
rhizosphere bacterial and fungal communities during the growth of A. sinensis seedlings.
Bacterial dominant phyla were Proteobacteria and Bacteroidetes, and fungal dominant
phyla were Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota. The variation
in microbial community composition was accompanied by community function changes.
We identified the core microbes, significant-changing microbes, stage-specific microbes,
and host-specific microbes. Fungal pathogen relative abundance increased with plant
growth. R. solani was an opportunistic pathogen that involved in A. sinensis root rot.
Therefore, the study increased the understanding of the rhizosphere bacterial and fungal
communities of A. sinensis seedlings. In further studies, the relationship between root
exudates and stage-specific microbes should be investigated. In addition, a method with
the combination of quantitative and relative abundance of microbial communities could
contribute to a better understanding for population variation.
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