A taxonomic revision of the south-eastern dragon lizards of the *Smaug warreni* Boulenger species complex in southern Africa, with the description of a new species (Squamata: Cordylidae) (#40394)

First submission

Guidance from your Editor

Please submit by 17 Oct 2019 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 14 Figure file(s)
- 5 Table file(s)
- 1 Raw data file(s)
- 1 Other file(s)

Custom checks

Vertebrate animal usage checks

- Have you checked the authors <u>ethical approval statement?</u>
- Were the experiments necessary and ethical?
- Have you checked our <u>animal research policies</u>?

New species checks

- Have you checked our new species policies?
- Do you agree that it is a new species?
- Is it correctly described e.g. meets ICZN standard?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

A taxonomic revision of the south-eastern dragon lizards of the *Smaug warreni* Boulenger species complex in southern Africa, with the description of a new species (Squamata: Cordylidae)

Michael F. Bates Corresp., Equal first author, 1, 2, Edward L. Stanley Equal first author, 3

Corresponding Author: Michael F. Bates Email address: herp@nasmus.co.za

A recent molecular phylogeny of the large dragon lizards of the genus Smaug Stanley et al., 2011 recovered a south-eastern clade of relatively lightly-armoured, geographicallyproximate species (S. warreni [Boulenger] and S. barbertonensis [Van Dam]) here referred to as the S. warreni species complex. Unexpectedly, S. barbertonensis was found to be paraphyletic, with individualssampled from northern Eswatini (formerly Swaziland) being more closely related to S. warreni than to S. barbertonensis from the type locality of Barberton in Mpumalanga Province, South Africa. Examination of voucher specimens used for the molecular analysis, as well as most other available museum material in this complex, indicated that the 'Eswatini' lineage—including populations in a small area on the northern Eswatini-Mpumalanga border, and northern KwaZulu-Natal Province in South Africa—was readily distinguishable from S. barbertonensis sensu stricto (and S. warreni) by its unique dorsal, lateral and ventral colour patterns. In order to further assess the taxonomic status of the three populations, a detailed morphological analysis was conducted. Multivariate analyses of scale counts and body dimensions indicated that the 'Eswatini' lineage and S. warreni were most similar. In particular, S. barbertonensis differed from the other two lineages by its generally lower numbers of transverse rows of dorsal scales, and a relatively wider head. High resolution Computed Tomography also revealed differences incranial osteology between specimens from the three lineages. The 'Eswatini' lineage is described here as a new species, *Smaugswazicus* sp. nov., representing the eighth known species of dragon lizard. The new species appears to be near-endemic to Eswatini, withabout 90% of its range located there. Our study indicates that S. barbertonensis sensu stricto is, therefore, a South African endemic restricted to an

altitudinal band of about 300 m in the Barberton-Nelspruit-Khandizwe area of eastern

Peer| reviewing PDF | (2019:08:40394:0:1:NEW 25 Sep 2019)

 $^{^{}f 1}$ Department of Herpetology, National Museum, Bloemfontein, South Africa

² Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa

³ Department of Herpetology, Florida Museum of Natural History, Gainesville, Florida, United States

Mpumalanga Province, while *S. warreni* is endemic to the narrow Lebombo Mountain range of South Africa, Eswatini and Mozambique. We present a detailed distribution map for the three species, and a revised diagnostic key to the genus *Smaug*.

1	
2	A taxonomic revision of the south-eastern dragon lizards of the Smaug warreni
3	(Boulenger) species complex in southern Africa, with the description of a new
4	species (Squamata: Cordylidae)
5	
6	
7	Michael F. Bates ^{1,2} , Edward L. Stanley ³
8	
9	¹ Department of Herpetology, National Museum, P.O. Box 266, Bloemfontein 9300, Free State
10	Province, South Africa
11	² Department of Zoology and Entomology, University of the Free State, P.O. Box 339,
12	Bloemfontein 9300, Free State Province, South Africa
13	³ Department of Herpetology, Florida Museum of Natural History, Gainesville, Florida, 32611,
14	USA
15	
16	Corresponding author:
17	Michael F. Bates
18	36 Aliwal Street, Bloemfontein, South Africa
19	herp@nasmus.co.za
20	

PeerJ

ABSTRACT

21

22	A recent molecular phylogeny of the large dragon lizards of the genus <i>Smaug</i> Stanley <i>et al.</i> , 2011
23	recovered a south-eastern clade of relatively lightly-armoured, geographically-proximate species
24	(S. warreni [Boulenger] and S. barbertonensis [Van Dam]) here referred to as the S. warreni
25	species complex. Unexpectedly, S. barbertonensis was found to be paraphyletic, with individuals
26	sampled from northern Eswatini (formerly Swaziland) being more closely related to S. warreni
27	than to S. barbertonensis from the type locality of Barberton in Mpumalanga Province, South
28	Africa. Examination of voucher specimens used for the molecular analysis, as well as most other
29	available museum material in this complex, indicated that the 'Eswatini' lineage—including
30	populations in a small area on the northern Eswatini-Mpumalanga border, and northern
31	KwaZulu-Natal Province in South Africa—was readily distinguishable from S. barbertonensis
32	sensu stricto (and S. warreni) by its unique dorsal, lateral and ventral colour patterns. In order to
33	further assess the taxonomic status of the three populations, a detailed morphological analysis
34	was conducted. Multivariate analyses of scale counts and body dimensions indicated that the
35	'Eswatini' lineage and S. warreni were most similar. In particular, S. barbertonensis differed
36	from the other two lineages by its generally lower numbers of transverse rows of dorsal scales,
37	and a relatively wider head. High resolution Computed Tomography also revealed differences in
38	cranial osteology between specimens from the three lineages. The 'Eswatini' lineage is described
39	here as a new species, Smaug swazicus sp. nov., representing the eighth known species of dragon
40	lizard. The new species appears to be near-endemic to Eswatini, with about 90% of its range
41	located there. Our study indicates that S. barbertonensis sensu stricto is therefore a South African
42	endemic restricted to an altitudinal band of about 300 m in the Barberton-Nelspruit-Khandizwe
43	area of eastern Mpumalanga Province, while S. warreni is endemic to the narrow Lebombo
44	Mountain range of South Africa, Eswatini and Mozambique. We present a detailed distribution
45	map for the three species, and a revised diagnostic key to the genus Smaug.
46	

48	INTRODUCTION
49	Members of the Smaug warreni (Boulenger, 1908) species complex (S. warreni, S.
50	barbertonensis [Van Dam, 1921], S. depressus [FitzSimons, 1930], S. breyeri [Van Dam, 1921],
51	S. vandami [FitzSimons, 1930], S. mossambicus [FitzSimons, 1958] and S. regius [Broadley,
52	1962]) are large, robust and spinose girdled lizards (family Cordylidae) restricted to high-
53	elevation regions of the north-eastern provinces of South Africa and Eswatini (formerly
54	Swaziland), and the highlands of eastern Zimbabwe and adjacent Mozambique. Like most
55	girdled lizards, members of the S. warreni complex are strictly rupicolous, inhabiting deep,
56	horizontal or gently sloping crevices, often in shaded rocky outcrops (Jacobsen, 1989; Stanley &
57	Bates, 2014). Due to their reliance on deep crevices they appear to be relatively substrate-
58	specific, occurring in partially-vegetated boulder fields on gentle slopes.
59	
60	The seven currently recognised taxa in the S. warreni complex are allopatric, occurring on
61	separate mountain chains, and are distinguishable on the basis of differences in scalation and
62	colour pattern (Jacobsen, 1989; Branch, 1998; Bates et al., 2014; Stanley & Bates, 2014).
63	Despite these clear diagnoses, the group has a tortuous taxonomic history (see Stanley & Bates,
64	2014). For example, FitzSimons (1943) treated Cordylus barbertonensis, C. b. depressus and C.
65	breyeri as subspecies of C. warreni, retained the subspecies C. vandami perkoensis (FitzSimons,
66	1930), and continued to recognise C. laevigatus (FitzSimons, 1933) as a valid species. Shortly
67	thereafter, Loveridge (1944) revised the Cordylidae and treated all seven of the above taxa as
68	subspecies of Cordylus warreni. FitzSimons (1958) later described Cordylus warreni
69	mossambicus, and Broadley (1962) described C. warreni regius. Cordylus warreni was therefore
70	considered a polytypic species with as many as nine subspecies (Branch, 1988). Jacobsen (1989)
71	subsequently investigated the status of South African populations and on the basis of sympatry
72	between C. w. vandami and C. w. breyeri at one locality, he recognised vandami as a full species.
73	As a result of overlapping morphological character variation (scalation and colour pattern) he
74	considered C. w. perkoensis a junior synonym of C. vandami, and C. w. laevigatus a junior
75	synonym of C. w. depressus. Branch (1998) later followed Jacobsen's (1989) arrangement for
76	South African and Eswatini (also spelled 'eSwatini') taxa, but also treated C. breyeri, C. w.
77	mossambicus and C. w. regius as valid species (without providing reasons). Broadley (2006)

treated all taxa in the C. warre	eni complex (except	laevigatus and	perkoensis)	as full species,	but
he too failed to provide justifi	cation for such actic	on.			

In a recent molecular study, *Stanley et al. (2011)* recovered the genus *Cordylus* as paraphyletic and allocated all members of the *C. warreni* complex, together with the large terrestrial species *C. giganteus Smith, 10-4*, to a new genus, *Smaug*. A subsequent molecular phylogeny that focused on the *Smaug warreni* complex found that *S. warreni*, *S. barbertonensis*, *S. depressus*, *S. breyeri*, *S. vandami*, *S. mossambicus* and *S. regius* were all valid species (*Stanley & Bates*, 2014) (*Fig. 1*). The authors identified a south-eastern clade of three species-level taxa (hereafter referred to as the *S. warreni* species complex), comprising *S. warreni* and two lineages of *S. barbertonensis* from northern Eswatini and Mpumalanga Province, South Africa. The latter taxon was shown to be paraphyletic, with samples from northern Eswatini being more closely related to *S. warreni* than to topotypic *S. barbertonensis*. This led us to hypothesise that diagnosable morphological differences should exist between specimens referable to the three lineages.

FitzSimons (1943: 427) had in fact noted regional differences in colouration in specimens of Cordylus warreni barbertonensis as follows: "sides of body and tail with vertical barring of yellow", "Lower surfaces brown, with irregularly scattered yellowish spots or short transverse bars" (Barberton, South Africa) versus "sides of body and tail with series of large yellow spots and narrow dark interspaces", "lower surfaces yellowish-white, with irregular dark brown transverse bars on chest and belly, chin spotted with blackish and throat with vermiculate blackish markings" (Eswatini), but he did not suspect that this indicated separate taxonomic status for the two colour forms. Jacobsen (1989) examined 24 specimens of C. w. barbertonensis from Mpumalanga and the adjacent northern part of KwaZulu-Natal (formerly part of Transvaal), but did not distinguish different colour patterns.

In the present study it was found that specimens of the two 'S. barbertonensis' lineages had consistently different dorsal, lateral and ventral colour patterns, as well as other morphological differences. Populations from Eswatini and adjacent areas in Mpumalanga and

108 109 110	KwaZulu-Natal provinces in South Africa, initially referred to as 'Smaug cf. barbertonensis' in this paper, are therefore described here as a new species.
111	MATERIALS AND METHODS
112	Study area
113	The study area comprises the South African provinces of Mpumalanga and (northern) KwaZulu-
114	Natal, as well as Eswatini and adjacent parts of southern Mozambique. This area is bounded by
115	latitudes 25°S and 28°S, and longitudes 30°30'E and 32°30'E.
116	
117	Material examined
118	All available specimens in the Ditsong National Museum of Natural History, Pretoria (TM) and
119	National Museum, Bloemfontein (NMB) were examined. Material of <i>Smaug</i> collected during
120	Jacobsen's (1989) survey of the former Transvaal Province and Boycott's (1992) survey of
121	Eswatini was, for the most part, deposited at Ditsong, and this includes the vast majority of
122	museum material identified as S. warreni and S. barbertonensis. Some non-types of the new
123	species referred to below are housed at American Museum of Natural History, New York
124	(AMNH), Durban Natural Science Museum, Durban (DNSM), and Natural History Museum of
125	Zimbabwe, Bulawayo (NMZB); and a few specimens of S. warreni are in the collections of
126	AMNH and NMZB.
127	
128	When collection co-ordinates and/or altitudes were not available in museum
129	documentation, these were estimated using Google Earth Pro.
130	
131	In addition to the data presented in this paper, comparative data consulted for the diagnoses
132	of species and for the purposes of preparing a diagnostic key (see below) were obtained from
133	specimens listed in Appendix 1 and Boulenger (1908), Van Dam (1921), FitzSimons (1930,
134	1933, 1943, 1958), Loveridge (1944), Broadley (1962, 1966), De Waal (1978), Jacobsen (1989)
135	and Mouton et al. (2018).
136	
137	Ethics approval

138 This project was approved by the National Museum Bloemfontein Ethics Clearance Committee (NMB ECC 2019/13). 139

140

141

External morphology

Head measurements (determined using vernier callipers): Length, measured from tip of snout to 142 143 car opening on right side; width, at widest point at about the level of the posterior borders of the 144 parietals; depth, on right side from middle of posterior sublabial to highest point of posterior 145 parietal. Scalation (examined using a binocular dissecting microscope, mostly a Nikon SMZ 146 745T): For the most part the morphological characters employed by FitzSimons (1943) were used, and in the same way, unless otherwise indicated. To avoid uncertainty, the following scale 147 148 counts are described in detail: occipitals: large scales behind the posterior parietals, the outermost ones situated directly behind the elongated upper temporals; gular scales (often 149 150 elongated and in longitudinal rows); counted transversely between posterior sublabials, the first 151 row extending to the anterior end of the posterior sublabial; dorsal scale rows longitudinally: 152 counted across the widest part of the body more-or-less midway between fore- and hindlimbs (scales of the most lateral rows are at least half the width of adjacent enlarged dorsals); dorsal 153 154 scale rows transversely: counted from the first complete row behind the occipitals to the row that ends immediately anterior to the vent (when followed around to the ventral side); ventral scale 155 156 rows longitudinally: counted across the widest part of the body, more-or-less midway between fore- and hindlimbs (lateral ventrals are rectangular or quadrangular, smooth or weakly keeled, 157 158 flattened, and at least half the size of adjacent ventrals); ventral scale rows transversely: counted 159 from the first row (which curves anteriorly) behind the posterior part of the forelimb insertion to the row (which curves posteriorly) immediately in front of the anterior part of the hindlimb 160 insertion (i.e. scale rows between axilla and groin); lamellae under 4th toe of right foot were 161 162 counted from the first scale entirely or largely [> 60%] anterior to the junction between 3rd and 4th toes to the scale behind the claw, and incomplete lamellae (i.e. those that do not extend to 163 either side) were excluded. Sexing: Males were identified by the presence of large femoral pores 164 165 (usually with waxy plugs of secreted fluid) as well as differentiated femoral scales (generation glands). Females had minute pin-prick-like femoral pores without waxy plugs, and lacked 166 differentiated femoral scales. 167

169	Osteological data
170	Osteological data was obtained from representative specimens of the S. warreni species complex
171	via High Resolution X-ray Computed Tomography (HRCT). Specimens used were: S. warreni
172	NMB R9292, AMNH-R-173381; S. barbertonensis NMB R9196 (topotype); S. cf.
173	barbertonensis NMB R9201 (holotype of new species, see below), AMNH-R-173382. These
174	specimens were scanned using a Phoenix v tome x S CT scanner at the American Museum of
175	Natural History's Microscopy and Imaging Facility, and GE Inspection Technologies, LP
176	Technical Solutions Center in San Carlos, California, or on a Phoenix v tome x M at the
177	University of Florida's Nanoscale Research Facility. Each specimen was scanned twice: once to
178	recover the full body, and a second higher resolution scan to focus on the cranial morphology.
179	Current, voltage, and detector-time were modified to optimise the grayscale range, and
180	specimens were scanned in sections to maximise resolution (Table S1). Raw data were processed
181	using GE's proprietary datos x software V.2.3 to produce a series of tomogram images which
182	were then viewed, sectioned, measured and analysed using VG Studio Max 2.2 (Volume
183	Graphics, Heidelberg, Germany). Individual skeletal elements and osteoderms were
184	reconstructed separately for each scan, so as to facilitate osteological analysis. Tomograms and
185	3D mesh files for all datasets are available online at www.morphosource.org (see supplementary
186	data for DOIs).
187	
188	Statistical and multivariate analyses
189	Univariate analysis was conducted using Statistica v. 6. Principal component and linear
190	discriminant analyses were run for three mensural characters (head length, width and height) and
191	12 meristic characters (highlighted in Table S2), taken from 78 adult museum specimens (>70
192	mm SVL), using the prcomp and lda commands in R {stats} and {MASS}. A second round of
193	principal component analysis was performed using a reduced dataset comprising eight characters
194	with the highest loading for the first two components (the three head measurements, number of
195	gular scales, numbers of transverse and longitudinal rows of dorsal scales, numbers of transverse
196	and longitudinal rows of ventral scales).
197	

198	Species concept and species delimitation
199	We apply a lineage-based species concept whereby a species is represented by an independently
200	evolving metapopulation lineage (see Frost & Hillis, 1990; De Queiroz, 1998, 2007). Genetic
201	distinctness and morphological characters were the operational criteria for species delimitation.
202	
203	The electronic version of this article in Portable Document Format (PDF) will represent a
204	published work according to the International Commission on Zoological Nomenclature (ICZN),
205	and hence the new names contained in the electronic version are effectively published under that
206	Code from the electronic edition alone. This published work and the nomenclatural acts it
207	contains have been registered in ZooBank, the online registration system for the ICZN. The
208	ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed
209	through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The
210	LSID for this publication is: [urn:lsid:zoobank.org:pub:490BDD66-155F-423F-A4E9-
211	DEAEEB024CC5]. The online version of this work is archived and available from the following
212	digital repositories: PeerJ, PubMed Central and CLOCKSS.
213	
214	RESULTS
215	Character analysis
216	Dorsal colour pattern. (Fig. 2) Specimens from all three clades recovered by Stanley & Bates
217	(2014) are distinguishable on the basis of dorsal, lateral and ventral colour patterns. Smaug
218	warreni has a medium to light brown (sometimes reddish-brown) dorsum with a series of 5–6
219	interrupted transverse bands between fore- and hindlimbs, each consisting of white or cream
220	ocelli (spots or blotches) with dark (often black) borders. The dark-edges exaggerate the ocelli,
221	but some specimens have only small pale markings which also lack heavy dark borders. The
222	dorsum of <i>S. barbertonensis</i> is medium to dark brown (or even black), usually with 4–5
223	interrupted bands on the back formed mostly by transversely enlarged pale markings (rather than
224	spots or blotches) with moderately dark edges. Smaug cf. barbertonensis is similar to the latter
225	form, but there are usually 5-6 bands. However, in S. barbertonensis there is almost always a
226	pale spot on the nape immediately posterior to the median occipitals, followed in close proximity
227	by a distinct transverse band. In S. cf. barbertonensis, the spot on the nape is replaced by a pale
228	band, followed after a distinct gap by another pale band (often divided medially) with a slightly

229	posteriorly-directed curvature. <i>Smaug warreni</i> often also has a pale band behind the occipitals,
230	but it usually lacks the curved band that follows as in the case of the previous form.
231	
232	Ventral colour pattern. (Fig. 2) In S. warreni the belly is generally white with the centre of each
233	scale pale brown; the throat is white with a few small to medium-sized dark brown spots. In S.
234	barbertonensis the belly is almost completely black or dark brown, with only a few pale
235	markings on the sides; the throat is also dark, with occasional pale specks. In S. cf.
236	barbertonensis the belly is white with 5-6 dark brown cross-bands, interrupted mid-ventrally by
237	six longitudinal rows of brown scales; the throat is white with heavy, dark, reticulations.
238	
239	Lateral colour pattern. (Figs 6, 9, 12) The flanks of S. warreni are often mostly cream with a
240	few dark markings, but may consist of alternating light and dark vertical bands. In S.
241	barbertonensis the flanks are primarily dark brown or even black, with a few narrow or moderate
242	cream bands and/or spots/blotches. In contrast, the sides of the body in S. cf. barbertonensis
243	consist of large cream spots or blotches on a dark background. In some cases the light patch
244	behind the armpit is elongated (antero-posteriorly).
245	
246	Scales at the edges of the ear openings. Smaug barbertonensis usually has generally elongated
247	and spinose scales at the anterior edges of the ear openings (especially the central ones), whereas
248	in most cases these scales are short and non-spinose in S. cf. barbertonensis and S. warreni.
249	
250	Relative length of occipital scales. In all three forms in the complex there are usually six
251	occipital scales, and the scales of the median pair are shorter and usually smaller than the others
252	(although usually less distinctly so in S. warreni). In S. warreni the outer occipital is usually of
253	similar size and shape to the adjacent inner occipital, but in S. barbertonensis and S. cf.
254	barbertonensis the outer one is usually shorter and smaller. In S. warreni a small median
255	occipital is common.
256	
257	Quadrate variation. In S. cf. barbertonensis the quadrates have a pronounced ridge and concave
258	region at the lateral edge of the adductor musculus mandibulae posterior origin, whereas in <i>S</i> .

259	barbertonensis and S. warreni the quadrates have a less pronounced ridge and a non-concave
260	region (Fig. 3).
261	
262	Scale counts. The three forms are similar in terms of scale counts (Table 1), but S.
263	barbertor is tends to have lower numbers of transverse dorsal scale rows than S. warreni and
264	S. cf. barbertonensis (28–34 versus 31–41; Fig. 4A).
265	
266	Head width. Smaug barbertonensis, when compared to both S. warreni and S. cf. barbertonensis
267	usually has a wider head relative to snout-vent length (SVL) (Fig. 4B).
268	
269	Spinosity. A recent study by Mouton et al. (2018) that investigated the relationship between
270	generation gland morphology and armour in the genus Smaug found that those species with
271	multi-layer generation glands (S. giganteus, S. breyeri, S. vandami) had relatively long (basal)
272	tail and occipital spines, while all other species (including S. warreni, S. barbertonensis and S.
273	cf. barbertonensis) had two-layer glands and relatively short spines. The latter two forms were
274	found to be slightly more spinose than S. warreni with regard to both tail and occipital spines.
275	
276	Statistical analyses
277	Both principal components and linear discriminant analyses reveal clear separation in scale
278	characters between <i>S. warreni</i> and <i>S. barbertonensis</i> , and <i>S.</i> cf. <i>barbertonensis</i> and <i>S.</i>
279	barbertonensis (4% LDA mis-classification rate in both cases) (Fig. 4C–D, Table 2). Smaug cf.
280	barbertonensis and S. warreni display similar pholidosis and head proportions and cannot be
281	consistently sorted by these characters alone (25% LDA mis-classification rate). The first two
282	principal components explain 30% of the variation in the total dataset and 44% of the total
283	variation in the reduced dataset.
284	
285	Systematics
286	Family Cordylidae
287	Smaug swazicus Bates & Stanley sp. nov.
288	Swazi Dragon Lizard

- 289 Figs 5–7, Tables 3–4
- 290 urn:lsid:zoobank.org:act:A942675E-5E76-4FC9-AA8F-BFA7A4C131C7

- 292 Cordylus warreni barbertonenis (not Van Dam, 1921): FitzSimons, 1943: 426 (part: Hluti-
- 293 Goedgegun, eSwatini); Branch, 1988: 164 (part) & 1998: 195 (part); Jacobsen, 1989 (part:
- Godlwayo; Nzulase; Farm Zwartkloof 60 HU); Adolphs, 1996: 15 (part); Bourquin, 2004: 96
- 295 (KwaZulu-Natal); Adolphs, 2006: 22 (part).
- 296 Smaug warreni barbertonensis (not Van Dam, 1921): Stanley et al., 2011: 64 (part); Bates et al.
- 2014: 211 (part, including fig. on p. 211); Reissig, 2014: 190 (part, including figs 215–217,
- 298 219).
- 299 Smaug sp. Stanley & Bates, 2014: 905.

300 Smaug cf. barbertonenis Mouton et al., 2018: 464.

301

- 302 Holotype. NMB R9201, adult male (differentiated glandular femoral scales present) from
- 303 Maguga Dam, Hhohho Region, Eswatini [26°04'32"S, 31°15'34"E; 2631AB; 562 m a.s.l.],
- 304 collected by E.L. Stanley & J.M. da Silva, 31 October 2008.

- 306 Paratypes. Allotype: TM 78918, adult female (no differentiated femoral scales) from Nkomati
- 307 Gorge, Malolotja Nature Reserve, Hhohho Region, Eswatini [26°03'15"S, 31°08'06"E;
- 308 2631AA; 640 m a.s.l.], collected by R.C. Boycott, 29 August 1993 (Fig. 2). Ten more paratypes:
- TM 83000, adult male, 1 km NW of Maguga Dam, Hhohho Region, Eswatini [26°04'04"S,
- 310 31°14'55"E; 2631AA; 618 m a.s.l.], R.C. Boycott, 25 March 1997; TM 83532, adult male, 5 km
- 311 SE of Bhunya, Eswatini [26°32'16"S, 31°02'54"E; 2631CA; 960 m a.s.l.], R.C. Boycott, 28 June
- 2000; TM 42531, adult female, Mbutini Hills, 23 km N of Sepofaneni, Eswatini [26°31'34"S,
- 313 31°35'45"E;], W.D. Haacke, 3 September 1972; TM 51376, adult male, 15 km NW of Gilgal on
- route to Manzini, Lubombo district, Eswatini [2631DA], W.D. Haacke, 3 September 1972; TM
- 315 78931, juvenile, Nkomati Gorge, Malolotja Nature Reserve, Hhohho Region, Eswatini
- 316 [26°03'14"S, 31°08'02"E; 2631AA; 669 m a.s.l.], R.C. Boycott, 14 September 1993; TM 78921,
- juvenile, Nkomati Valley, Hhohho Region, Eswatini [26°03'12"S, 31°14'24"E; 2631AA; 580 m
- 318 a.s.l.], J. Linden, 31 October 1992; NMB R9194, adult male, Komati View Point, Malolotja
- 319 Nature Reserve, Hhohho Region, Eswatini [26°04'29"S, 31°07'32"E; 2631AA; 1033 m a.s.l.],

320 E.L. Stanley & J.M. da Silva, 31 October 2008 (Fig. 7); NMB R9195, adult male, Komati View Point, Malolotia Nature Reserve, Hhohho Region, Eswatini [26°04'32"S, 31°08'01"E; 2631AA; 321 322 1052 m a.s.l.], E.L. Stanley & J.M. da Silva, 31 October 2008; NMB R9202, adult male from 323 Maguga Dam, Hhohho Region, Eswatini [26°04'32"S, 31°15'35"E; 2631AB; 562 m a.s.l.], collected by E.L. Stanley & J.M. da Silva, 31 October 2008; TM 73290, adult female, Nzulase, 324 325 Mpumalanga Province, South Africa [2531DC], N.H.G. Jacobsen, 29 March 1983. 326 327 Additional records (*material examined). SOUTH AFRICA: KwaZulu-Natal. Godlwayo Hill (27°20'S, 31°25'E; 750 m a.s.l.) TM 73290–1*, 73294*; Ithala Game Reserve (central point for 328 mapping 27°30'S, 31°17'E) TM 51670*; Farm Zwartkloof 60HU (27°24'S, 31°33'E; ?420 m 329 a.s.l.) TM 73285. ESWATINI: between Hluti and Goedgegun [now called Nhlangano] (no co-330 ordinates) TM 16827–9*, 16798*; same locality (27°12'20.1"S, 31°20'10.5"E, photographic 331 332 record: T. Sparkes); 1 km NW of Maguga Dam wall (26°04'04''S, 31°14'55''E; 618 m a.s.l.) DNSM 1707 (identified as Smaug barbertonensis by R.C. Boycott), TM 83002*; 1 km SE of 333 334 Maguga Dam wall (26°05'08"S, 31°16'20"E) DNSM 1710 (identified as Smaug barbertonensis 335 by R.C. Boycott); Manzini, 25 km ESE of (26°31'S, 31°37'E) NMZB-UM 2026, 2529 (identified as Cordylus warreni barbertonensis by D.G. Broadley); Nwempisi Gorge, 12 km E of 336 337 Mankayane (26°42'13.4"S, 31°11'49.1"E, sight record: R.C. Boycott). NO DATA: AMNH-R173382 (used for CT scanning). 338 339 340 **Diagnosis.** (includes 'additional material') Distinguished from all other cordylids by its unique 341 dorsal, lateral and ventral colour patterns (see descriptions and figures). It also differs from the 342 terrestrial S. giganteus by its smaller adult size (maximum SVL 145 mm versus 198 mm), and 343 possession of six (occasionally four) moderate sized and weakly spinose occipitals, versus four 344 (occasionally five) large and distinctly spinose occipitals. Differs from other species of *Smaug* as follows: from S. vandami by usually having six (versus usually four) occipitals; from S. 345 depressus by having only 10–12 (versus 16–24) femoral pores per thigh in males; and from S. 346 breyeri by having much less rugose head shields. It differs from S. giganteus, S. breyeri and S. 347 348 vandami by having less spinose occipitals and tail spines, and two-layer (rather than multi-layer) generation glands. 349

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Most similar to S. barbertonensis and S. warreni, but easily distinguishable by its colour pattern (back dark brown usually with 5–6 pale bands between fore- and hindlimbs, pale band on nape behind occipitals; flanks with large pale spots or blotches; venter pale with a dark central longitudinal band bordered on either side by dark transverse bands) compared to S. barbertonensis (back dark brown with 4–5 pale bands, pale spot or blotch on nape behind occipitals; flanks dark with narrow pale vertical markings; venter mostly dark brown or black) and S. warreni (back usually pale brown with 5–6 pale dark-edged bands, pale band on nape behind occipitals; flanks pale with brown markings; venter with brown markings on most scales); by usually having sort, non-spinose scales at the edges of the ear openings; and quadrates with a pronounced ridge and concave region at the lateral edge of the adductor musculus mandibulae posterior origin (no pronounced ridge or concave region in the other two species). Also differs as follows: outer occipitals shorter than the adjacent inner ones (of about equal length in S. warreni); head narrower than S. barbertonensis (head width/head length = 76–84% versus 80–92%); generally higher numbers of transverse dorsal scale rows (32–37 in 86% of specimens) than S. barbertonensis (29–32 in 81% of S. barbertonensis).

365

366

367

368

369

370

371

373

374

376

377

378

379

380

Description of holotype. NMB R9201. External morphology: Snout-vent length 138.8 mm, tail length (original) 187 mm, total length 325.8 mm, head length 40.2 mm, head width 31.2 mm, head depth 16.2 mm. Tail length/SVL = 1.35; head width/SVL = 22.4%; head width/head length = 77.5%; head depth/head length = 40.3%. Head strongly depressed, head shields rugose and moderately striated over parietal region. Frontonasal 1.05 times as wide as long, in contact with the rostral and loreals, separating the nasals, latter slightly swollen. Nostril – with a large inner flap attached posteriorly – situated in the posterior part of the nasal and in contact with the loreal 372 and 1st supralabial. Prefrontals in contact at their inner angles. Frontal hexagonal, slightly widened anteriorly, anterior sides curved slightly inwards. Frontoparietals slightly broader than long. Posterior parietals larger than anterior ones; interparietal between four parietals, more 375 sharply pointed anteriorly than posteriorly. Occipitals scales 6, well-developed, bluntly spinose, the outer ones shorter and smaller than the second ones, middle pair shortest and narrowest. Anterior upper temporals large, keeled at their lower edges. Gulars 23. Lateral temporals large, often bluntly keeled. Scales at anterior edge of ear opening (4 on left side of head, 5 right) projecting outwards as flattened and somewhat spatulate spines, the lowermost one narrow and

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

slender, the one above it distinctly spatulate and the largest. Supraoculars 4, the anterior one longest, the next (2nd) one broadest, posterior one the smallest. Supraciliaries 4, anterior one the longest. Lower eyelid opaque, consisting of about 10 small, vertically-elongated scales. Preocular at least twice the size of the loreal. Five large scales below the eye. Rostral 2.04 times wider than deep. Supralabials 6, 4th (longest) and 5th separated by a large suborbital shield (much narrower below than above). Mental 1.36 times as wide as long. Infralabials 6, 5th and 6th keeled, bordered below by five large sublabial shields. First pair of sublabials separated by an elongated scale in contact with the large mental and followed behind by two pairs of similarsized scales, and numerous small elongated scales that increase in size until about the middle of the throat, but then reduce in size posteriorly. Sides of neck with irregular erect spines, the largest about twice as high as wide. Dorsal scales large, rugose, often striated, forming regular (but not always aligned) transverse series; four vertebral rows with smooth scales (probably due to rubbing against rocks), other dorsals keeled, but lateral scales keeled and spinose. Dorsals in 34 transverse series (from first row posterior to occipitals to row above vent) and 20 longitudinal rows. Ventrals smooth, mostly quadrangular, occasionally pentagonal near middle of venter posteriorly, mostly broader than long, two outer rows moderately keeled and weakly spinose, some scales of the 3rd row also weakly keeled, forming 14 longitudinal and 26 transverse series from axil to groin (with an additional seven rows to base of throat). A pair of slightly enlarged hexagonal preanal plates (slightly longer than wide), with smaller plates anteriorly and on the sides. Limbs above with large, keeled, spinose scales. Femoral pores 21 (10 left leg, 11 right). Differentiated femoral scales 46 (21 left, 25 right). Fourth toe on each foot with 16 subdigital lamellae. Tail with whorls of large, strongly keeled, spinose scales; each whorl separated by a smaller whorl of small, moderately keeled and weakly spinose scales; two upper lateral caudal scale rows consist of especially large and very strongly spinose scales (spines project backwards at angles of about 45°); subcaudal scales long, narrow, mostly pentagonal (occasionally rectangular) and moderately keeled. Colour: Back dark brown to black with cream to yellow markings forming 5 interrupted transverse bands (with slightly dark borders in preservative) between fore-and hindlimbs, which

continue along the tail, together with a band immediately behind the occipitals and another on

the nape that is divided medially and curved slightly backwards. Belly cream with a brown

Peerl reviewing PDF | (2019:08:40394:0:1:NEW 25 Sep 2019)

412 longitudinal band medially (six ventral plates wide) and short, broad, widely separated brown crossbands on either side between the limbs (at least four on the left, three on the right) which 413 414 are often confluent with the darker parts of the back. The joining of these dark ventral and dorsal markings decorates the flanks with large cream-yellow spots/blotches. Top of limbs dark brown 415 with numerous irregular cream to yellowish spots and blotches; underparts of limbs mostly 416 417 cream with irregular brown markings, occasionally bands. Top of head brown with scattered irregular cream markings; throat mottled in brown and cream. 418 419 Osteodermal osteology: The dorsal and lateral sides of the trunk are covered in circular, well-420 421 separated osteoderms, dorsomedially unkeeled grading to well keeled and mucronate towards the sides. The nuchal osteoderms are small, becoming highly spined posterior to the tympanic 422 423 opening. Ventral osteoderms are delicate and plate-like. The forelimbs are covered in keeled non-imbricate circular/ rhomboid osteoderms, while the hindlimbs are well armored, save for the 424 ventral surface of the thigh, which lacks osteoderms. Osteoderms on the posterior part of the 425 hindlimbs are heavily spinose. The caudal osteoderms are large, robust and arranged in 426 427 imbricated whorls. Caudal osteoderms are feebly keeled and mucronate along the dorsal and ventral aspects, becoming more heavily spined laterally. 428 429 Postcranial skeleton: Tail complete, 26 presacral vertebrae, 32 caudal vertebrae. The 430 431 haemapophyses of the first caudal osteoderms extend laterally to fuse to the postereoventral edge of the parapothysis, forming a biphid rib. Four cervical, three sternal, two xiphisternal, 6 left and 432 433 7 right long asternal ribs with ossified costal cartilage, then 6 left and 5 right short asternal ribs and one very short pair of ribs immediately anterior to the sacral vertebrae. Cervical ribs 2–4 are 434 435 distally flattened and biphid, with the ventral processes more elongated. Pubis flattened and 436 curved with a large, ventrally angled pectineal tubercle. Pubic symphysis flattened and triangular, separating the pubes entirely. Hyperischiam and Hypoischium well developed. Illium 437 triangular in cross-section, with a feeble iliac tubercle. Sternal plate broad with no fontanelle. 438 439 Interclavicle cruciform, clavicles flattened dorsally. Epicoracoid connects the scapular ray to the 440 primary and secondary coracoid rays, but not to the anterior process of the scapular. Phalanges display a typical pattern of 2–3–4–5–3. Metatarsal 5 with elongated medial process at midbody. 441 442

443 Cranial skeleton: The scales of the dorsal and temporal regions of the skull and the ventrolateral aspects of the jaws are underlain with rugose osteoderms. These osteoderms fuse to the proximal 444 445 parietal, frontal and postorbital bones, although the mesokinetic and metakinetic joints appear 446 unobstructed and flexible. Lateral maxilla and anterior aspect of the premaxilla lack osteoderms. The parietal is pentagonal, with five osteoderms that underlie the parietal shields fused to its 447 448 dorsal surface, and a bifid medioposterior process that extends either side of the sagittal crest of the supraocciptial. Three large osteoderms are fused to the frontal, which is unpaired and clasped 449 by the parietal at its posteriolateral edge. The upper temporal fenestra is obscured anteriorly by a 450 large osteoderm fused to the dorsal surface of the postorbital bone, posteriorly by an unfused 451 rectagonal osteoderm that overlies the squamosal. Premaxilla is unpaired and contains seven 452 pleurodont teeth and five foramina, with a dorsal process that extends posteriorly to be clasped 453 454 by the nasals, which themselves insert into the frontal. The maxilla is scinciform, with a deeply grooved crista dentalis, 9 left or 8 right lateral foramina, and 19 teeth. Teeth display pleurodont 455 attachment and are unicuspid, with a slight concave surface where they connect with the 456 mandibular teeth. No palpebral is present and the prefrontal connects directly to the anteriormost 457 458 superorbital osteoderm. The jugal is triangular in cross-section and asymmetrically T-shaped, with a tapering anterior process and a broad, truncated posterior process that extends along and 459 460 past the posterior edge of the maxilla. Lacrimal bone is small, flattened and oval. Pterygoids are edentate and extend back to connect with the quadrates, becoming C-shaped in cross-section 461 462 posterior to the epipterygoid condyle. The squamosal is curved and blade-like, circular in crosssection anteriorly, becoming flattened posteriorly, where it articulates with the cephalic condyle 463 464 of the quadrate and the braincase. Supratemporals are flattened, ovoid and not fused with the elongate paroccipital processes. The posterior aspect of the prootic not fully fused with the oto-465 466 ocipital, resulting in a deep groove along the dorsal aspect of the para-occiptal processes. 467 Quadrates very broad with a pronounced ridge and concave region at the lateral edge of the adductor musculus mandibulae posterior origin. The supraoccipital has a strong sagittal crest that 468 extends posteriorly to contact the ventral surface of the medioposterior process of the parietal. 469 470 The prootic bears an extended alar process and a well-developed, rhomboid christa prootica, and 471 a very weak supratrigeminal process. Basipterygoid processes are well developed and flattened. The lower jaw possesses a large adductor fossa, a highly flattened and medially extended 472 473 retroarticular process, a medially open Meckelian canal that is closed posteriorly by a large

foramina. 475 476 Variation in paratypes (including allotype TM 78918). External morphology: Tail length/SVL 477 478 1.12-1.44 (SVL: 129.4–143.8 mm, N=3); head width/SVL = 21.6–23.9% in males (SVL: 129.4-145.0 mm, N = 5), 20.3-23.1% in females (SVL: 102.8-143.8 mm, N = 4); head 479 width/head length = 78.3-82.7% (SVL: 102.8-145.0 mm, N = 9); head depth/head length = 480 41.9-48.7% (SVL: 102.8-145.0 mm, N=9). In TM 78918, shields on anterior part of head 481 smooth, weakly rugose on posterior part of head but without striations; in two juveniles: head 482 shields smooth (TM 78921) or weakly rugose without striations (TM 78931). Frontonasal 483 0.89–1.12 (0.94–1.05 in juveniles) times as wide as long. Nasal scale fragmented on left side in 484 485 TM 83000. Small infranasal present on both sides of head in TM 78918. Frontal with anterior sides straight in TM 78921, strongly curved inwards in NMB R9202, separated from rostral by a 486 487 small rectangular scale in TM 42531. Prefrontals in narrow contact in TM 51376, anterior half of prefrontals in contact in TM 78918 and 83532. Frontoparietals about as wide as long in TM 488 489 73290, 78918, 78931 and 83532. Interparietal sunken in NMB R9195, about as large as an anterior parietal in two juveniles (TM 78921, 78931), triangular in TM 51376 and 73290, and as 490 491 pointed posteriorly as it is anteriorly in TM 83000 and 83532. Occipitals 6 but middle pair separated by a small elongate scale in TM 78931, mostly very weakly spinose, all of about the 492 493 same size in TM 78918, outer scale and the one adjacent to it of similar length in NMB R9202 494 and TM 73290; in TM 83532 scales of the middle pair are shortest but of similar width to the 495 others, and wider than the outer occipitals; but the middle and outer scales may be similar in size (TM 42531, 51376); middle occipitals the same size as second occipitals on either side in TM 496 497 78931; on left side of TM 83000 the outer occipital is about equal in size to the occipital adjacent to it; in TM 51376 the inner occipitals are rugose only, not spinose. Gulars 22–28 (25 in 498 allotype). Posterior upper temporal scale keeled at its lower edge in TM 42531, 78918 and 499 500 78921; anterior and posterior upper temporals similar in size and keeled at the sides in TM 501 51376. Lateral temporals rugose only (not keeled) in NMB R9194 and TM 51376. Scales at 502 anterior edge of ear opening 4–6 (3rd from the top is tiny in TM 83532), lowermost spine often not slender and similar to other small spines, but elongate and distinctly spiny in TM 42531. First 503 504 and 2nd (TM 78921, 78931) and 1st and 3rd (TM 78918) supraoculars about the same length,

splenial, and a dentary with a strong subdental shelf; 21 mandibular teeth, and nine dentary

505	2nd and 3rd on left side of NMB R9194 largely fused. Supraciliaries 5 (left side: NMB R9202,
506	TM 42531; right: TM 83532), first and second supraciliaries about equal in length in TM 78931.
507	Lower eyelid transparent in TM 73290 and TM 83532, usually consisting of several irregular
508	scales (e.g. NMB R9195). Preocular about 1.5 times (TM 42531, 51376, 83532) and 1.75 times
509	(TM 73290) larger than loreal. Six large scales below the eye in TM 42531, TM 73290 (left) and
510	TM 78931 (left), and four in TM 83000; large suborbital shield divided in TM 73290. Rostral
511	2.14-2.81 (1.87-2.10 in juveniles) times wider than deep. Supralabials 7 on left side of head in
512	TM 73290 and TM 78921; sixth (of six) in TM 51376 is granular and 2nd is fragmentary; 4th (of
513	6) distinctly keeled in TM 42531; 3rd and 4th fused in NMB R9202. Mental 1.17-1.66 (1.16 in
514	juvenile TM 78931) times as wide as long. Fourth and 6th infralabial weakly keeled in TM
515	78931. Fifth and most posterior sublabial on either side of head rugose and keeled (TM 73290,
516	78918); 1st pair of sublabials in contact (NMB R9202; TM 78918, 78921, 78931, 83000, 83532)
517	or separated by a narrow groove (TM 51376), large rectangular scale (NMB R9194), elongated
518	triangular scale (NMB R9195), or separated posteriorly by a tiny pair of granules (TM 73290);
519	1st pair of sublabials followed by three (not two) pairs of smaller, slightly enlarged scales in TM
520	78931, and by one pair of distinctly enlarged scales in NMB R9202. Spines on sides of neck only
521	about 1.5 times (not twice) as high as wide in juveniles (TM 78921, 78931) and TM 83000.
522	Dorsal scales of TM 78918 and 78931 with short folds rather than distinct striations; two
523	vertebral scale rows smooth in TM 42531, 4-6 rows smooth in TM 83532, 6-8 rows smooth in
524	NMB R9195, none smooth in TM 83000, all vertebrals keeled in juveniles. Dorso-lateral and
525	lateral scales usually keeled and spinose, but weakly spinose in juveniles. Dorsals in 32-41 (34
526	in allotype) transverse, and 21-26 (21 in allotype) longitudinal, rows. Ventrals occasionally
527	pentagonal (TM 73290, 78918, 83532), longer than broad on anterior part of belly (TM 73290,
528	78918) or mostly square (NMB R9195, TM 51376 and 83000). All ventrals smooth in TM
529	51376; in NMB R9194 and TM 83532 only the outermost row of ventrals is moderately keeled
530	and weakly spinose, with rows 2-3 very weakly keeled only; some scales of the 3rd row also
531	very weakly spinose in NMB R9194 (including first inner row) and TM 73290, 78918, 83000;
532	all three outer rows weakly keeled in NMB R9195. Ventrals in 23-29 (28 in allotype) transverse
533	rows (6-9 additional rows on throat), and occasionally only 12 (NMB R9194, TM 51376)
534	longitudinal rows. Enlarged hexagonal preanal plates 3 (TM 78918) or 4 (TM 83532); median
535	preanal plates (pair) pentagonal in TM 42531, 51376, 78931 and 83000, heptagonal in TM

536 73290 (left side) which also has two extranumerary plates posterior to the large pair, and irregular in TM 78921; no enlarged plates anterior to median and lateral plates in TM 78931; 537 538 enlarged median pair of plates in TM 42531, 51376, 78931 and 83000 much elongated, about twice as long as wide. Femoral pores 20–24 (10–12 on each thigh, 10 in allot, 2), appearing as 539 small, shallow pits in females. Differentiated glandular femoral scales in males 19–61 (9–35 per 540 thigh). Fourth toe with 16–19 (18 in allotype) subdigital lamellae. 541 542 Colour: Dorsum dark brown to black in preservative. Back with 4–6 (usually 5) interrupted 543 transverse bands between fore- and hindlimbs, which are usually without dark borders after 544 preservation in alcohol. In TM 73290 there is a roundish cream spot on the nape between the 545 pale band behind the occipitals and the band on the neck. Belly with 5–6 brown crossbands on 546 547 either side of the median band (prominent in the centre of the belly). 548 Variation in additional material. (All localities in KwaZulu-Natal; material examined only for 549 the characters listed below.) External morphology (N = 10 unless otherwise indicated): Tail 550 length/SVL 1.35–1.42 \overline{C} VL: 97.9–132.7 mm, N = 3); head width/SVL = 23.3–24.6% in males 551 (SVL: 97.9–130.7 mm, N = 3), 21.4–22.7% in females (SVL: 123.9–132.7 mm, N = 3); head 552 width/head length = 76.2-83.9% (SVL: 97.9-132.7 mm, N = 6); head depth/head length = 553 554 36.2-47.6% (SVL: 97.9-132.7 mm, N=6). Preoculars 1; supraoculars 4 (N=9); supraciliaries 4 (3 on right side in TM 73294; N = 8); postnasals 1 (N = 9); suboculars 4–5 (4 left, 5 right in TM 555 83002); supralabials (anterior to median subocular) usually 4 (5 in TM 16828; N = 9); 556 infralabials 6 (N = 9); sublabials 5 (4 on left side in TM 16827; N = 9); occipitals 6 (additional 557 small median scale in TM 16798 and 83002); gulars 24–29 (N = 9); scales at anterior edges of 558 559 ear openings elongate and distinctly spinose (rather than short and blunt) in TM 16828; dorsal rows transversely 31–38; dorsal rows longitudinally 21–24; ventral rows transversely 25–27 (N =560 9); ventral rows longitudinally usually 14, but 12 in TM 73285 and 773291; femoral pores 11–13 561 (males, N = 4), 10–13 (females, N = 6); differentiated femoral scales (generation glands) in 562 563 males 19–29 per thigh (N = 3); lamellae under fourth to 16–19. 564

565	Colour: Similar to holotype. Back with 5–6 (4 in TM 73285) interrupted transverse bands (with
566	slightly dark borders in preservative). Belly with 5-6 brown crossbands on either side of the
567	median band (prominent in the centre of the belly).
568	
569	Size. Largest male (NMB R9194 [paratype], Komati View Point, Eswatini) 140.6 = 342
570	mm, but NMB R9195 (paratype, Komati View Point) has SVL of 145.0 mm (tail
571	broken/missing). Largest female (TM 78918 [allotype], Nkomati Gorge, Eswatini) 143.8 + 161 =
572	305 mm.
573	
574	Etymology. Named for the Kingdom of Eswatini, the country where most of the species' range
575	is located. Both 'eSwatini' and 'Swaziland' derive from the word iSwazi, after the name of an
576	early chief, Mswati II.
577	
578	
579	Distribution. Highveld and Middleveld regions of Eswatini, and adjacent areas in the South
580	African provinces of (eastern) Mpumalanga (in Nkomazi municipality) and (northern) KwaZulu-
581	Natal (in uPhongolo and Abaqulusi municipalies) (Fig. 8) at elevations of 462 to 1052 m a.s.l.
582	
583	Natural history. Rupicolous, living in deep, horizontal (or gently sloping) crevices in granitic
584	rock along hillsides, usually in the partial shade of trees (see also Jacobsen 1989). According to
585	R C Boycott (in litt., 2019), rocky terrain in closed canopy bushveld is the preferred habitat in
586	Eswatini. A specimen in Ithala Game Reserve in KwaZulu-Natal was photographed on a tree
587	trunk (ReptileMAP, VM no. 152451).
588	
589	Note. The photograph of a specimen of 'Smaug warreni barbertonensis' from 'Barberton' in
590	Bates et al. (2014) is in fact the same one used for Fig. 7 in the current paper (i.e. NMB R9194,
591	paratype of S. swazicus sp. nov.).
592	
593	
594	Smaug barbertonensis (Van Dam, 1921)
595	Barberton Dragon Lizard

596	Figs 9–11
597	
598	Zonurus barbertonensis Van Dam, 1921: 240 (Barberton); Power, 1930: 14 & 17 (Barberton).
599	Zonurus barbertonensis barbertonensis FitzSimons, 1933 (by implication after describing
600	Zonurus barbertonensis depressus).
601	Cordylus warreni barbertonensis FitzSimons, 1943: 426 (part, Barberton and Nelspruit);
602	Loveridge, 1944: 20 (Barberton); Branch, 1988: 164 (part), 1998: 195 (part); Jacobsen, 1989:
603	590 (part: 5 km S of Nelspruit; Barberton Townlands 369JU; Broedershoek 129JU;
604	Friedenheim 282JT; Karino to White River; Khandizwe; Nelspruit); Adolphs, 1996: 15 (part)
605	& 2006: 22 (part);
606	Smaug warreni barbertonensis Stanley et al., 2011 (part); Bates et al., 2014: 211 (part, but
607	excluding fig. on p. 211); Reissig, 2014: 190 (part, including fig. 218).
608	Smaug barbertonensis Stanley & Bates, 2014: 905; Mouton et al., 2018: 463.
609	
610	Diagnosis. Distinguished from all other cordylids by its unique combination of dorsal, lateral
611	and ventral colour patterns (see descriptions and figures). It also differs from the terrestrial S.
612	giganteus by its smaller adult size (maximum SVL 140 mm versus 198 mm) and possession of
613	six (occasionally four) moderate sized and weakly spinose, versus four (occasionally five) large
614	and distinctly spinose, occipitals. Differs from other species of <i>Smaug</i> as follows: from <i>S</i> .
615	vandami by usually having six (versus usually four) occipitals; from $S.$ $depressus$ by having only
616	10–12 (versus 16–24) femoral pores in males; from <i>S. breyeri</i> by having much less rugose head
617	shields. It differs from S. giganteus, S. breyeri and S. vandami by having less spinose occipitals
618	and tail spines, and two-layer (rather than multi-layer) generation glands.
619	Most similar to S. swazicus sp. nov. and S. warreni, but easily distinguishable by its colour
620	pattern (back dark brown with 4–5 pale bands between fore- and hindlimbs, pale spot or blotch
621	on nape behind occipitals; flanks dark with narrow pale vertical markings; venter mostly dark
622	brown or black) compared to S . $swazicus$ $sp.$ $nov.$ (back dark brown usually with 5–6 pale bands,
623	pale band on nape behind occipitals; flanks with large pale spots or blotches; venter pale with a
624	dark central longitudinal band bordered on either side by dark transverse bands) and S. warreni
625	(back usually pale brown with 5–6 pale dark-edged bands; flanks pale with brown markings;
626	venter with brown markings on most scales); by usually having more elongate and spinose scales


```
627
      at the edges of the ear openings (shorter and non-spinose in S. swazicus sp. nov. and S. warreni);
      and quadrates lacking a pronounced ridge and concave region at the lateral edge of the adductor
628
629
      musculus mandibulated sterior origin (with a pronounced ridge and concave region in S.
630
      swazicus sp. nov.). Also differs as follows: outer occipitals shorter than the adjacent inner ones
      (of about equal length in S. warreni); head relatively wider than the other two species (head
631
      width/head length = 80–92% versus 73–84%); lower numbers of transverse dorsal scale rows
632
      (29–32 in 81%) compared to S. swazicus sp. nov. (32–37 in 86%) and S. warreni (32–38 in
633
      92%); and lower numbers of longitudinal dorsal scale rows (20–24, mean 21.7) compared to S.
634
      warreni (22–28, mean 23.6).
635
636
      Variation. (N = 26 \text{ unless otherwise indicated}) External morphology: Tail length/SVL 1.21–1.42
637
      (SVL: 109.6-134.0 \text{ mm}, N = 7); head width/SVL = 22.5-25.7\% in males (SVL: 111.0-134.0
638
      mm, N = 9), 20.9–24.1% in females (SVL: 109.6–139.9 mm, N = 11); head width/head length =
639
      80.4-92.0\% (SVL: 109.6-139.9 mm, N = 20); head depth/head length = 38.2-48.2\% (SVL:
640
      109.6-139.9 mm, N=20). Frontonasal in contact with the rostral and loreals, separating the
641
642
      nasals, latter slightly swollen; nostril – with a large inner flap attached posteriorly – situated in
      the posterior part of the nasal and in contact with the loreal and first supralabial (N = 4)
643
644
      topotypes). Scales at anterior edge of ear opening 4–6 on either side of head, projecting outwards
      as flattened, somewhat spatulate spines, the lowermost one narrow and slender, the one above it
645
646
      distinctly spatulate and the largest; scales generally elongate and somewhat spinose (more so
      than in S. swazicus and S. warreni), but short and blunt in TM 55789, 73292 and three juveniles
647
648
      (TM 4275, 26643, 73286). Preoculars 1; postoculars 1; supraoculars 4; supraciliaries usually 4 (5
      on one side in three specimens); postnasals 1; suboculars usually 4–6 (often different on either
649
650
      side of head), but 7 on left side in NMB R9192); supralabials (anterior to median subocular)
      usually 4 (3 on one side in three specimens, and 5 on one side in two specimens); infralabials
651
      usually 5–6 (5 on left and 7 on right in TM 73281, and 6 left and 7 right in TM 55787);
652
      sublabials usually 5 (6 in NMB R9192); occipitals usually 6 (7 in TM 4468 and 4472, 8 in TM
653
654
      73284; NMB R9192 has a single tiny median granule, TM 73293 has two such granules), outer
      occipitals shorter than those adjacent to them and those of the median pair the shortest (N = 4);
655
      gulars 23–31, but 20 in NMB R9193; dorsal scale rows transversely 28–34, longitudinally
656
      20–24; ventral scale rows transversely 25–28, longitudinally usually 14 (16 in TM 73283);
657
```



```
femoral pores per thigh 8–11 (males, N = 11), 8–12 (females and juveniles, N = 15);
658
      differentiated femoral scales (generation glands) in males >100 mm SVL: 16–36 per thigh (N=
659
660
      10), in juvenile males <66 mm SVL: 18-22 per thigh (N=2); lamellae under fourth toe 15-19.
661
      Colour: Back dark brown to black with cream to yellow markings (mostly transversely enlarged)
662
663
      forming 4–5 (usually 4) interrupted transverse bands (usually with dark borders in preserved
      material) that continue onto the tail, together with a band on the nape and a cream spot, blotch or
664
      elongate marking (absent in TM 73286) immediately behind the median occipitals. Belly mostly
665
      brown (older material) to black (as in life) with a few cream patches or short 'bands' on either
666
      side, which are occasionally joined to the pale bands on the side of the back. The flanks are dark
667
      brown to black, usually with narrow, cream to yellowish, vertically elongated bars, occasionally
668
669
      spots (e.g. TM 51066). Top of limbs with numerous irregular cream to yellowish spots and
670
      blotches; underparts of limbs mostly cream with irregular brown markings, occasionally bands.
671
      Top of head brown or black with scattered irregular cream markings. Throat (including
672
      sublabials) mostly black or brown with occasional irregular scattered cream markings, but about
673
      half dark and half pale in TM 73283 and 73293, and mostly plain cream in TM 4275 (juvenile).
674
      Size. Largest male (TM 73287, Broedershoek) 129.0 + 182.8 = 311.8 mm, but TM 51066
675
      (between Karino and White River) has SVL of 134.0 mm (tail broken/missing). Largest female
676
      (TM 4273: holotype, Barberton) 134.0 + 1 = 309 mm, but TM 4468 (Barberton) has SVL of
677
678
      139.9 mm (tail broken/missing).
679
680
      Natural history. Rupicolous, living in deep, horizontal (or gently sloping) crevices in and
681
      between large granitic boulders, often in the partial shade of trees (see also Jacobsen 1989). For
      S. 'barbertonensis', FitzSimons (1943: 427) noted that the diet is similar to that of S. warreni
682
      (see below), but includes cetonid beetles and small land snails; usually five young are produced,
683
      and based on his examination of a series of females, fertilisation occurs in early spring, with
684
685
      young born at the end of summer. However, one of FitzSimons' (1943) localities
686
      ('Hluti-Goedgegun', Eswatini) is reference to S. swazicus sp. nov., so it is not possible to know
      which species his data applies to. Computed Tomography scanning of NMB R9192 revealed four
687
688
      large embryos, and a large beetle in the stomach.
```


689	
5 90	Distribution. Restricted to the Barberton, Nelspruit and Khandizwe areas of eastern
691	Mpumalanga Province, South Africa (Fig. 8) at elevations of 724 to 1008 m a.s.l. An isolated
692	record for this species at Farm: Jessievale, Ermelo district (2630AB, Bates et al. 2014) is in fact
693	referable to Cordylus vittifer (re-examination by both authors of VM no. 1400 on ReptileMAP).
694	
95	Localities. SOUTH AFRICA: Mpumalanga Province. Barberton (25°47'S, 31°03'E) TM 4273-
8 96	5, 4468–9, 4471–2; Barberton army base – NMB R9191, 9196 (25°46'26"S, 31°03'20"E; 861 m
697	a.s.l.), NMB R9192-3 (25°46'27"S, 31°03'21"E; 861 m a.s.l.); Barberton Townlands (25°47'S,
698	31°03E, M 73281, 73283–4; Broedershoek 129JU (25°27'S, 31°07E, 753 m a.s.l.) TM 73286–
699	7; Friedenheim 282JT (25°26'S, 30°59'E; 754 m a.s.l.) TM 55787; Karino and White River,
700	between (2531AC) TM 51066; Khandizwe (25°28'S, 31°25'E; 724 m a.s.l.) TM 73292-3;
701	Nelspruit, 5 km S of (25°32'S, 30°57'E; 824 m a.s.l.) TM 44873; Nelspruit, 14 km W of, on road
702	to Machadodorp (2530BD) TM 26643; Nelspruit, 82 Ehmke Street, Extension 5 (Fig. 11);
703	Nelspruit, Van Riebeeck Park (25°28'S, 30°59'E) TM 55788–9.
704	
705	Notes. Van Dam's (1921) type locality of 'Barberton' does not indicate the exact locality at
706	which the specimens were collected, so it is considered appropriate to treat the localities of
707	'Barberton Townlands' (Jacobsen 1989) and 'Barberton army base' as topotypic.
708	
709	
710	Smaug warreni (Boulenger, 1908)
711	Lebombo Dragon Lizard
712	Figs 12–14
713	
714	Zonurus warreni Boulenger, 1908: 232 (Ubombo); Hewitt, 1909: 36; Boulenger, 1910: 467 &
715	468; Power, 1930: 14 & 17; FitzSimons, 1930: 30; Lawrence, 1937: 111.
716	Cordylus warreni warreni FitzSimons, 1943: 424 (Ubombo & Ingwavuma); Loveridge, 1944: 19
717	(Ubombo); Branch, 1988: 164, 1998: 195; Jacobsen, 1989: 586 (Duikershoek,
718	Halfkroonspruit, Jozini Dam, Mananga, The Hippos); Adolphs, 1996: 15; Bourquin, 2004: 96
719	(KwaZulu-Natal); Adolphs, 2006: 22.


```
721
      Smaug warreni Stanley & Bates, 2014: 905; Mouton et al., 2018: 463.
722
      Diagnosis. Distinguished from all other cordylids by its unique combination of dorsal, lateral
723
      and ventral colour patterns (see descriptions and figures). It also differs from the terrestrial S.
724
      giganteus by its smaller adult size (maximum SVL 141 mm versus 198 mm) and possession of
725
      six (occasionally 7 or 8) moderate sized and weakly spinose, versus four (occasionally five) large
726
      and distinctly spinose, occipitals; and from other species of Smaug as follows: Differs from S.
727
      vandami by usually having six (versus usually four) occipitals. Differs from S. depressus by
728
      having only 8–12 (versus 16–24) femoral pores in males; and from S. breveri by having much
729
      less rugose head shields. It differs from S. giganteus, S. breveri and S. vandami by having less
730
731
      spinose occipitals and tail spines, and two-layer (rather than multi-layer) generation glands.
732
            Most similar to S. swazicus sp. nov. and S. barbertonensis but easily distinguished by its
      colour pattern (back usually pale brown with 5-6 pale dark-edged bands between fore- and
733
734
      hindlimbs, pale band on nape behind occipitals; flanks pale with brown markings; venter with
735
      brown markings on scales) compared to S. swazicus sp. nov. (back dark brown usually with 5–6
      pale bands, pale band on nape behind occipitals; flanks with large pale spots or blotches; venter
736
737
      pale with a dark central longitudinal band bordered on either side by dark transverse bands) and
      S. barbertonensis (back dark brown with 4–5 pale bands, pale spot or blotch on nape behind
738
739
      occipitals; flanks dark with narrow pale vertical markings; venter mostly dark brown or black);
      by usually having less spinose-like scales at the edges of the ear openings than S. swazicus sp.
740
741
      nov.; and quadrates without a pronounced ridge and concave region at the lateral edge of the
      adductor musculus mandibulae posterior origin (with a pronounced ridge and concave region in
742
743
      S. swazicus sp. nov.). Also differs as follows: outer occipitals and scales adjacent to them of
      about equal length (outer occipitals shorter than the adjacent inner ones in the other two species);
744
      head narrower than S. barbertonensis (head width/head length = 73–83% versus 80–92%);
745
      generally higher numbers of transverse dorsal scale rows (32–38 in 92% of specimens) than S.
746
747
      barbertonensis (29–32 in 81%); and greater numbers of longitudinal dorsal scale rows (22–28,
      mean 23.6) than S. barbertonensis (20–24, mean 21.7).
748
749
```

Smaug warreni warreni Stanley et al., 2011; Bates et al., 2014: 210; Reissig, 2014: 187.


```
750
      Variation. External morphology (N = 39 unless otherwise indicated): Tail length/SVL 1.06–1.43
      (SVL: 105.0-128.9 mm, N = 6); head width/SVL = 22.2-24.2\% in males (SVL: 105.3-127.3
751
752
      mm, N = 9), 19.4–23.3% in females (SVL: 100.6–141.1 mm, N = 21); head width/head length =
      72.5–83.1% (SVL: 100.6-141.1 \text{ mm}, N = 30); head depth/head length = 35.0-47.2\% (SVL:
753
      100.6-141.1 mm, N=31). Frontonasal in contact with the rostral and loreals (often in narrow
754
      contact, especially on right side in TM 50130), separating the nasals, latter slightly swollen;
755
756
      nostril – with a large inner flap attached posteriorly – situated in the posterior part of the nasal
      and in contact with the loreal and 1st supralabial (TM 50130: loreal in very narrow contact with
757
      nostril on left side of head and separated by first supralabial on right) (N = 16). Scales at anterior
758
      edge of ear opening usually 4–5 (3 on right side of head of TM 63567) projecting outwards as
759
      flattened, somewhat spatulate, spines, the lowermost one narrow and slender (especially so in
760
      TM 47449), the one above it distinctly spatulate and the largest; spines generally long and
761
762
      somewhat spinose in TM 50130, 70961 (N = 16). Preoculars 1; supraoculars 4 (2nd and 3rd on
      left side largely fused in NMB R10913); supraciliaries usually 4–5 (3 on left side of TM 78967,
763
      4 left and 6 right in TM 13639, 6 on left side of 78969); postnasals 1; suboculars usually 4–5.
764
765
      occasionally 6; supralabials (anterior to median subocular) usually 4 (3 on one side in four
      specimens, 5 on one side of TM 78967); infralabials usually 6 (5 on both sides of TM 582, 5 on
766
      one side of TM 47449, 7 on both sides of TM 15320, 7 on one side in six specimens); sublabials
767
      5; occipitals usually 6, but an additional – often narrow and much elongated – scale medially in
768
769
      41% of specimens (median scale large in TM 50660, granular in TM 78966); outermost
770
      occipitals and those adjacent to them of similar size and length, but scales of the inner pair
771
      shorter and often smaller, except in NMB R10878 in which all occipitals are of similar length,
      although those of the inner pair are wider (N = 16); gulars 23–32 (N = 37); dorsal scale rows
772
773
      transversely 31–41, longitudinally 22–28; ventral scale rows transversely 23–27, longitudinally
      usually 14 (13 in NMB 9199, 12 in TM 2808 and 78969); femoral pores 7–13 (males [smallest is
774
775
      86.2 mm SVL], N = 11), 8–13 (females and juveniles, N = 27); differentiated femoral scales
      (generation glands) in males 13–38 per thigh (N=10); lamellae under fourth toe 15–20.
776
777
      Colour: Back usually tan/khaki brown with irregular, black-bordered, cream or white blotches
778
      (ocelli) forming 5–6 slightly interrupted transverse bands between the legs that continue onto the
779
780
      tail, together with a band immediately behind the occipitals and another on the nape. Ocelli may
```


781	be in close proximity, creating the impression of distinct bands across the back. Occasional
782	specimens have grey-brown backs with small, widely separated white spots lacking obvious
783	black-borders (e.g. fig. 212 in Reissig, 2014). Belly white to cream, usually with numerous
784	small, square, rectangular or irregular pale to dark brown markings; occasionally mostly without
785	markings except for the sides (e.g. NMB R10898 and 10912) or with a large dark blotch on each
786	ventral (NMB R9292). The flanks are mostly pale whitish, occasionally with some darker
787	colouring and pale vertical bars. Top of limbs with numerous irregular cream to yellowish spots
788	and blotches; underparts of limbs mostly cream with occasional scattered, irregular brown
789	markings. Top of head tan/khaki brown with dark brown patches and scattered, irregular, cream
790	markings (or small yellow speckles); throat mostly white to cream with varying amounts of
791	darker markings (often extensive and bold).
792	
793	Size. Largest male (TM 78963, Mananga Mountain, Mpumalanga, South Africa) 127.3 + 193.5
794	[on museum tag] = 320.8 mm. Largest female (NMB R9292, Mananga Mountain) 128.9 + 182 =
795	311 m but TM 53869 (Lomahasha, Eswatini) has SVL of 141.1 mm (tail broken/missing).
796	
797	Natural history. Diurnal and rupicolous, occurring in crevices between or under rocks on
798	outcrops along the Lebombo mountains. According to FitzSimons' (1943), ants, beetles, fossorial
799	wasps, myriapods, frogs and lizards are eaten. Loveridge (1944) noted that for a sample from
800	Ubombo, one specimen had eaten 32 Eristalis (drone fly) maggots, another lizard contained
801	millipedes and ants, while a third had consumed a large grasshopper. Females give birth to 4–5
802	young in late summer (FitzSimons, 1943).
803	
804	Distribution. Endemic to the Lebombo Mountains of eastern Eswatini, adjacent western
805	Mozambique and South Africa (north-eastern Mpumalanga and north-eastern KwaZulu-Natal)
806	(Fig. 8) at elevations of 82 to 745 m a.s.l.
807	
808	Localities. (*specimens examined by D.G. Broadley – data not included in morphological
809	analysis) MOZAMBIQUE: Estatuene (26°24'18"S, 32°04'42" E) NMZB-UM 30510–3*;
810	Meponduine (25°56'45"S, 31°58'44"E) NMZB 30514*, 30562*; near Moambo close to Komati
811	River (25°35'23"S, 32°14'47"E; photo: L. Verburgt [pers. comm.], in Reissig, 2014: 188, fig.

812	213). SOUTH AFRICA: <u>KwaZulu-Natai Province</u> . Bhokweni (2/°22′S, 32°03′E) 1M /8969–
813	72, 78974; Ingwavuma (27°08'S, 32°01'E) TM 15319–20; Mayaluka (26°54'52"S, 32°00'31"E)
814	NMB R10878, 10911–2; Farm: Middlein 84 (27°21'03.0''S, 31°59'10.7"E; photographic record:
815	S. Nielsen); Ubombo (27°34'S, 32°05'E) TM 582, 2808, 13639–41; NMZB–UM 1542*.
816	Mpumalanga. Duikerhoek 489JU (25°42'S, 31°57'E) TM 78966; Halfkroon Spruit, Kruger
817	National Park (2531BD) TM 78973, 'J6955'; Mananga Mountain (25°58'S, 31°52'E) TM
818	78961–5; Mananga Mountain, 2 km SSW of Nsizwane (25°54'12"S, 31°52'12"E) NMB R9197–
819	200, 9292; The Hippos 192JU (25°28'S, 31°57'30" E) TM 78967–8. ESWATINI: Lomahasha
820	(25°59'S, 31°59'E) TM 50130–1, 53869, 63567; Lubombo foothills, 6 km E of Big Bend
821	(26°47'S, 31°59'E) TM 70960–1; Siteki, S of (26°28'S, 31°56'E) TM 47449; Tshaneni
822	(25°59'S, 31°46'E) TM 50660-1. NO DATA: AMNH 173381 (used for CT scanning).
823	
824	Notes. Boulenger's (1908) description was based on two male specimens (i.e. syntypes) from
825	Ubombo in the Lebombo Mountains of KwaZulu-Natal. His description includes a plate with a
826	splendid drawing (by A.H. Searle) depicting a specimen with somewhat indistinct, narrow, dark
827	crossbars on the back, each containing scattered pale spots. This illustration, together with
828	Boulenger's (1908: 233) description: "Dark brown above, with small yellow black-edged spots
829	forming more or less regular transverse series on the body; lower parts pale brown" characterise
830	S. warreni (but back usually light brown, see Fig. 14). Reissig (2014) noted that the 'type
831	specimen' is NHM 1946.8.8.1.

A revised diagnostic key to the genus Smaug

833 834 a. Occipitals greatly enlarged, the outer ones strongly spinose and about twice as long as those of the median pair; dorsal scales strongly spinose; ventral scales imbricate; lamellae under fourth 836 837 1b. Occipitals moderately to weakly enlarged, those of the outer pair somewhat larger or of similar 838 size to the others; dorsal scales not strongly spinose; ventral scales non-imbricate; lamellae 839 840 841 842 2a. Occipitals of the outermost pair largest (and longest), innermost the smallest (and shortest). 3 843 844 2b. Occipitals of the outermost pair not the largest (or longest), innermost of similar size to other occipitals or slightly smaller (and shorter) ______4 845 846 847 3a. Dorsum mostly plain brown, at most with occasional scattered pale markings; belly cream or 848 brown; throat plain or with small brown spots; ventrals in 10–14 rows longitudinally S. breyeri 849 850 3b. Dorsum brown with transversely enlarged cream markings, at least at the sides of the back, but 851 often extensively on the back and tail; belly dark with short pale transverse markings, 852 especially towards the edges; throat pale with dark reticulations; ventrals in 12–16 rows 853 854 4a. Back with few or no pale markings; flanks mostly plain, and brightly coloured (red, orange or 855 vellow) in males; first supralabial with distinct upward prolongation; dorsals in 22–30 rows 856 857 4b. Back usually with distinct pale markings (except the 'laevigata' form of S. depressus); flanks 858 859 of males with light and dark markings, and not brightly coloured; first supralabial with 860

62 5a. Loreal large and not elongated, separated from nostril by upward prolongation of	first
supralabial; preocular usually widely separated from the nasal by the loreal; throat of n	nale
64 uniform dark brown	icus
65 5b. Loreal small and elongated, in contact with nostril; preocular large and usually in contact	(or
nearly so) with the nasal above the loreal; throat of male yellow or orange, with o	lark
67 infuscations	zius
68	
69 6a. Back usually with distinct, small to moderate, scattered white spots or irregular markings,	not
forming crossbands, or completely plain grey ('laevigata' form); dorsals in 13–21 rd	ows
71 longitudinally; differentiated femoral scales (generation glands) in males 14	-16
72	ssus
73 6b. Back with distinct crossbands (usually interrupted) consisting of cream spots, blotches	s or
74 transversely enlarged bars, often with dark edges; dorsals in 18–28 rows longitudina	ılly;
differentiated femoral scales (generation glands) in males 19–38	7
76	
77 7a. Outer occipital of similar length to the occipital adjacent to it; small occipital often pres	sent
between median pair; back medium to light brown with distinctly dark-edged pale spot	s or
blotches forming crossbands; belly usually with centre of each scale brown (not mostly bl	ack
or brown, or with brown crossbars interrupted by a median band); throat with small brown	own
81 spots	reni
7b. Outer occipital usually shorter than the occipital adjacent to it; small occipital seldom pres	sent
between median pair; back dark brown to black with pale markings, mostly in the form	ı of
narrow, transversely enlarged bars; throat black or with dark reticulations	8
85	
86 8a. Back with 4–5 pale crossbands between the fore-and hindlimbs, with a pale spot on the n	ape
behind the occipitals; throat mostly black; flanks dark with narrow, pale, vertical bars; b	elly
mostly black, with a few pale markings at the sides; scales at anterior edges of ear openi	ngs
89 elongated and spinose; dorsals in 28–34 (mostly ≤32) rows transvers	sely
90	nsis
91 8b. Back usually with 5–6 pale crossbands between the fore-and hindlimbs, with a pale band	l on
92 the nape behind the occipitals; throat pale with dark reticulations; flanks with large cre	eam

893	spots and blotches; belly with brown crossbars interrupted by a dark median band; scales at
894	anterior edges of ear openings short and blunt; dorsals in 31 – 41 (mostly ≥ 32) rows
	transversely
895	transversery
896	
897	DISCUSSION
898	A molecular assessment of the genus Smaug by Stanley & Bates (2014) resulted in an
899	unexpected finding – that populations in Eswatini, previously considered referable to S.
900	barbertonensis, formed a distinct evolutionary lineage phylogenetically more closely allied to S.
901	warreni, a species restricted to the narrow Lebombo mountain range. We subsequently noted
902	distinct differences in colour pattern between vouchers of each of the three lineages referred to
903	above, which we now collectively refer to as the S. warreni species complex. In the present study
904	we therefore conducted a detailed morphological analysis of museum material of all populations
905	identified as S. warreni and S. barbertonensis.
906	
907	We found that specimens of the 'Eswatini' lineage—including populations in small areas
908	on the northern Eswatini-Mpumalanga border, and in northern KwaZulu-Natal Province in South
909	Africa—were readily distinguishable from S. barbertonensis sensu stricto (and S. warreni) by
910	their unique dorsal, lateral and ventral colour patterns. FitzSimons (1943) had in fact noted
911	differences in colour pattern between specimens of S. barbertonensis from the type locality of
912	Barberton and specimens from 'Hluti-Goedgegun' in Eswatini (now referred to the new species),
913	but this had been regarded as merely representing regional variation.
914	
915	In order to further assess the taxonomic status of the three populations, a detailed
916	morphological analysis was conducted. Multivariate analyses of scale counts and body
917	dimensions indicated that the 'Eswatini' lineage and S. warreni were most similar. In particular,
918	S. barbertonensis differed from the other two lineages by its generally lower numbers of
919	transverse rows of dorsal scales, more spinose scales at the anterior edges of the ear openings,
920	and a relatively wider head. Also, the outer two occipital scales in S. warreni are of similar
921	length, distinguishing it from the other two species which have the outer occipital usually
922	slightly shorter that the adjacent inner occipital. High resolution Computed Tomography

revealed differences in cranial osteology between specimens from all three lineages, with the

953

954

924	Eswatini lineage being remarkable in having a pronounced ridge and concave region at the
925	lateral edge of the posterior origin of the adductor musculus mandibulae.
926	
927	The 'Eswatini' lineage is described here as a new species, Smaug swazicus sp. nov. It
928	appears to have a fairly widespread distribution in Eswatini west of the Lebombo Mountains, and
929	a somewhat peripheral distribution in South Africa near its borders with Mpumalanga and
930	KwaZulu-Natal provinces. We estimate that about 90% of its range is in Eswatini and suggest
931	that it be considered near-endemic to that country. Recognition of the new species means that S.
932	barbertonensis sensu stricto is a South African endemic restricted to an altitudinal band of about
933	300 m in the Barberton-Nelspruit-Khandizwe area of eastern Mpumalanga Province, while S.
934	warreni is endemic to the narrow Lebombo Mountain range of South Africa, eSwatini and
935	Mozambique.
936	
937	The phylogenetic analysis of Stanley & Bates (2014) did not include samples from the
938	southern part of the range (especially KwaZulu-Natal) of S. swazicus sp. nov., but northern
939	(including one locality in Mpumalanga) and southern material is morphologically
940	indistinguishable, and so we provisionally treat S. swazicus sp. nov. as a single species.
941	
942	The geographical break between S. barbertonensis and S. swazicus appears to correspond
943	to the location of the ancient Makhonjwa mountain range, which lies directly south of Barberton.
944	This range, also referred to as the Barberton Greenstone belt, is made up of some of the world's
945	oldest exposed rocks (3.6 G., which contain fossilised evidence of the earliest life on Earth (De
946	Wit 2010). The time-calibrated phylogenetic analyses of the S. warreni species complex by
947	Stanley & Bates (2014) indicates that the S. warreni-S. swazicus sp. nov. lineage diverged from
948	S. barbertonensis during the late Miocene, around 7.5 million years ago. This is somewhat
949	earlier than the most recent and extreme period of uplift of the eastern escarpment (Partridge &
950	Maud, 1987), suggesting that populations on either side of the Makhonjwa mountains were
951	isolated before that time. The population east of the Makhonjwa mountains split around 6.2
952	million years ago (Stanley & Bates, 2014), after which time S. warreni became closely

associated with the narrow Lebombo mountain range.

955	Conservation implications
956	Due to their obligate rupicolous ecology, members of the Smaug warreni species complex are
957	not subject to the same levels of habitat destruction as their terrestrial congener, S. giganteus.
958	Jacobsen (1989) listed all species of Smaug (except the Vulnerable S. giganteus) as protected
959	schedule 2 (Transvaal Nature Conservation Ordinance 12 of 1983), while Bates et al. (2014) and
960	Bates & Mouton (2018a) reported their global conservation status as "Least Concern", while
961	recommending that further research is needed to assess the impact of tree removal from the
962	habitat of S. barbertonensis (i.e. S. barbertonensis and S. swazicus sp. nov.) as crevices in the
963	partial shade of trees are often selected for shelter (<i>Jacobsen, 1989</i>). In this regard Richard C.
964	Boycott (2019, in litt.) noted that when he visited the locality 'between Hluti and Goedgegun' in
965	Eswatini (as reported by FitzSimons 1943) a few years ago, S. swazicus sp. nov. was not present,
966	possibly because all large trees along the rocky hillsides had disappeared, such that dappled
967	shade was no longer available. The species appeared to have been replaced by skinks
968	(Trachylepis varia [Peters] and T. margaritifer [Peters]). Part of the natural range of S. swazicus
969	sp. nov. was inundated and thus lost to the species when the Maguga Dam in Eswatini was filled
970	in 2002/3, although about 20 specimens were collected by Boycott and relocated downstream
971	from the Dam as part of the Maguga Dam Comprehensive Mitigation Plan (R C Boycott, 2019,
972	in litt.). The recognition of S. swazicus sp. nov. means that the range of S. barbertonensis sensu
973	stricto now covers only about 180 km ² . Also, this species has been recorded within a narrow
974	altitudinal band of only 300 m. Its conservation status should therefore be monitored. Despite
975	being endemic to the narrow Lebombo mountain range, S. warreni apparently does not face any
976	significant threats, and it is therefore also considered "Least Concern" (Bates et al., 2014; Bates
977	& Mouton, 2018a). It appears to occur throughout the Lebombo range, from low to high altitudes
978	(82 to 745 m a.s.l.). Using IUCN (2012, 2017) criteria, we suggest that all three species be
979	regarded as Least Concern at this time.
980	
981	CONCLUSIONS
982	Following the finding by Stanley & Bates (2014) that the south-eastern assemblage of
983	populations referable to the S. warreni species complex comprised three distinct genetic lineages,
984	we hypothesised that morphological differences should also exist between specimens referable to
985	these lineages. Distinct differences were indeed identified between populations with regard to

986	colour pattern, scalation and cranial osteology, necessitating the description of a new species, S.
987	swazicus sp. nov., which appears to be near-endemic to eSwatini. This finding means that S.
988	barbertonensis sensu stricto is endemic to South Africa, with a restricted range that may require
989	monitoring in future to ensure that the species does not become threated with extinction. Also,
990	sampling of populations referable to S. swazicus sp. nov. in South Africa's KwaZulu-Natal
991	Province is needed to investigate whether additional cryptic diversity exists in this species
992	complex. Smaug warreni is endemic to the Lebombo range in South Africa, Eswatini and
993	Mozambique. There are now nine known species of dragon lizards (Smaug).
994	
995	ACKNOWLEDGEMENTS
996	We thank Lauretta Mahlangu (Ditsong Natural History Museum, Pretoria) for access to, and for
997	loans of, Smaug material in her care; the late Donald Broadley for data on specimens in the
998	collection of the Natural History Museum of Zimbabwe (Bulawayo); Richard Boycott for
999	information about the distribution of this genus in Eswatini; and T. Busschau for the use of his
1000	photographs.
1001	
1002	
1003	REFERENCES
1004	ADOLPHS, K. 1996. Bibliographie der Gürtelechsen und Schildechsen (Reptilia: Sauria:
1005	Cordylidae & Gerrhosauridae). Squamata Verlag, Sankt Augustin, 255 pp.
1006	
1007	ADOLPHS, K. 2006. Bibliotheca Cordyliformium. Squamata Verlag, Sankt Augustin, 303 pp.
1008	
1009	BATES, M. F., W. R. BRANCH, A. M. BAUER, M. BURGER, J. MARAIS, G. J. ALEXANDER, AND M.
1010	S. DE VILLIERS eds. 2014. Atlas and Red List of the Reptiles of South Africa, Lesotho and
1011	Swaziland. Suricata 1. Pretoria: South African National Biodiversity Institute.
1012	
1013	BATES, M.F. & MOUTON, P.L.F.N. 2018a. Smaug barbertonensis. The IUCN Red List of
1014	Threatened Species 201'8: e.T110167262A115679786.

1015	http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T110167262A115679786.en.
1016	Downloaded: 2 January 2019.
1017	
1018	BATES, M.F. & MOUTON, P.L.F.N. 2018b. Smaug warreni. The IUCN Red List of Threatened
1019	Species 2018: e.T110167218A115679533. http://dx.doi.org/10.2305/IUCN.UK.2018-
1020	2.RLTS.T110167218A115679533.en. Downloaded: 2 January 2019.
1021	
1022	BOULENGER, G. A. 1908. On a collection of fresh-water fishes, batrachians, and reptiles from
1023	Natal and Zululand, with description of new species. Annals of the Natal Government
1024	Museum (Pietermaritzburg) 1:219–235.
1025	
1026	BOULENGER, G. A. 1910. A Revised List of the South African Reptiles and Batrachians, with
1027	Synoptic Tables, special reference to the specimens in the South African Museum, and
1028	Descriptions of New Species. Annals of the South African Museum 5(9):455-538.
1029	
1030	BOURQUIN, O. 2004. Reptiles (Reptilia) in KwaZulu-Natal: I – diversity and distribution. Durbar
1031	Museum Novitates 29:57–103.
1032	
1033	BRANCH, W. R. 1988. Field guide to snakes and other reptiles of southern Africa. Struik
1034	Publishers, Cape Town, 328 pp.
1035	
1036	BRANCH, W. R. 1998. Field guide to snakes and other reptiles of southern Africa. Third edition.
1037	Struik Publishers, Cape Town, 399 pp.
1038	
1039	BROADLEY, D. G. 1962. On some reptile collections from the North-Western and North-Eastern
1040	Districts of Southern Rhodesia 1958-61, with descriptions of four new lizards. Occasional
1041	Papers of the National Museums of Southern Rhodesia 3:787–843.
1042	
1043	BROADLEY, D. G. 1966. The herpetology of south-east Africa. Unpublished Ph.D. thesis,
1044	University of Natal, Pietermaritzburg.
1045	

046	BROADLEY, D. G. 2006. CITES Standard Reference for the Species of Cordylus (Cordylidae,
047	Reptilia): CITES Nomenclature Committee for the 14th meeting of the CoP. 10.
048	
049	DE QUIEROZ, K. 1998. The General Lineage Concept of Species, Species Criteria, and the
050	Process of Speciation. A Conceptual Unification and Terminological Recommendations.
051	Pp. 55-75 in D. J. Howard, and S. H. Berlocher (Eds.). Endless forms: species and
052	speciation. Oxford University Press, U.S.A.
053	
054	DE QUIEROZ, K. 2007. Species Concepts and Species Delimitation. Systematic Biology
055	56(6):879–886.
056	
057	DE WIT, M. J. 2010. The deep-time treasure chest of the Makhonjwa mountains. South African
058	Journal of Science 106(5/6): 1–2.
059	
060	DE WAAL, S. W. P. 1978. The Squamata (Reptilia) of the Orange Free State, South Africa.
061	Memoires van die Nasionale Museum, Bloemfontein 11 <mark>:+i–ii</mark> i, 1–160.
062	FITZSIMONS, V. 1930. Descriptions of new South African Reptilia and Batrachia, with
064	distribution records of allied species in the Transvaal Museum Collection. Annals of the
065	Transvaal Museum (Pretoria) 14:20–48.
066	Transvaar Museum (Fretoria) 14.20–46.
067	FITZSIMONS, V. 1933. Descriptions of five new lizards from the Transvaal and Southern
068	Rhodesia. Annals of the Transvaal Museum (Pretoria) 15:273–280.
069	Minute of the Transvaar Waseum (Tetoria) 13.273 200.
070	FITZSIMONS, V. 1943. The lizards of South Africa. Memoirs of the Transvaal Museum (Pretoria)
071	1:1–528.
072	
073	FITZSIMONS, V. 1958. A new <i>Cordylus</i> from Gorongoza, Mocambique. Annals of the Natal
074	Museum (Pietermaritzburg) 14:351–353.
075	(()
-	

1076	FROST, D. R. AND D. M. HILLIS 1990. Species in concept and practice: Herpetological
1077	applications. Herpetologica 46(1):87–104.
1078	
1079	HEWITT, J. 1909. Description of a New Species of Platysaurus and Notes on the Specific
1080	Characters of certain Species of Zonuridae, together with Synoptical Keys to all the known
1081	South African Species, and a résumé of our knowledge of their Distribution; and a Key to
1082	the known Genera of South African Lizards. Annals of the Transvaal Museum 2(1):29-40,
1083	1 plt.
1084	
1085	IUCN [International Union for Conservation of Nature]. 2012. IUCN Red List Categories and
1086	Criteria: Version 3.1. Second edition. IUCN, Gland, Switzerland and Cambridge, UK.
1087	
1088	IUCN [International Union for Conservation of Nature] [Standards and Petitions Subcommittee].
1089	2017. Guidelines for Using the IUCN Red List Categories and Criteria. Version 13.
1090	Prepared by the Standards and Petitions Subcommittee. (Downloadable from:
1091	http://www.iucnredlist.org/documents/RedListGuidelines.pdf.)
1092	
1093	JACOBSEN, N. H. G. 1989. A herpetological survey of the Transvaal. Unpublished PhD thesis,
1094	University of Natal.
1095	
1096	LAWRENCE, R. F. 1937. The Girdle Tailed Lizard and its Mites. The Cape Naturalist,
1097	1(4):107–113.
1098	
1099	LOVERIDGE, A. 1944. Revision of the African lizards of the family Cordylidae. Bulletin of the
1100	Museum of Comparative Zoology at Harvard College, 95(1):1–118, 12 pls.
1101	
1102	MOUTON, P. LE F. N., A. FLEMMING, M. F. BATES, AND BROECKHUIZEN, C. 2018. The relationship
1103	between generation gland morphology and armour in Dragon Lizards (Smaug): A
1104	reassessment of ancestral states for the Cordylidae. Amphibia-Reptilia 39:457-470.
1105	

1106	PARTRIDGE, R. R., AND T. C. MAUD. 1987. Geomorphic evolution of southern Africa since the
1107	Mesozoic. South African Journal of Geology 90(2):179-208.
1108	
1109	POWER, J. H. 1930. On the South African Species of the genus Zonurus. Annals of the Transvaal
1110	Museum, 14(1):11–19, 2 pls.
1111	
1112	REISSIG, J. 2014. Girdled Lizards and their relatives: Natural History, Captive Care and
1113	Breeding. Edition Chimaira, Frankfurt am Main, 249 pp.
1114	
1115	SMITH, A. 1844. Illustrations of the Zoology of South Africa. Consisting chiefly of figures and
1116	descriptions of the objects of natural history collected during an expedition into the interior
1117	of South Africa, in the years 1834, 1835, and 1836. Fitted out by 'The Cape of Good Hope
1118	Association for Exploring Central Africa'. London: Smith, Edler and Co.
1119	
1120	STANLEY, E. L., AND M. F. BATES 2014. Here be dragons: a phylogenetic and biogeographical
1121	study of the Smaug warreni species complex (Squamata: Cordylidae) in southern Africa.
1122	Zoological Journal of the Linnean Society 172:892-909.
1123	
1124	STANLEY, E. L., A. M. BAUER, T. R. JACKMAN, W. R. BRANCH, AND P. LE F. N. MOUTON 2011.
1125	Between a rock and a hard polytomy: rapid radiation in the rupicolous girdled lizards
1126	(Squamata: Cordylidae). Molecular Phylogenetics and Evolution 58:53-70.
1127	
1128	VAN DAM, G. 1921. Descriptions of new species of Zonurus, and notes on the species of Zonurus
1129	occurring in the Transvaal. Annals of the Transvaal Museum (Pretoria) 7:239–243.
1130	

Table 1(on next page)

Comparison of scalation data in the three species of the *Smaug warreni* species complex. Data for *S.* cf. *barbertonensis* is based on all type and additional material.

For ventral scale rows longitudinally, rare exceptions are indicated in parentheses, and superscripts indicate the relevant numbers of specimens. Femoral pores (males and females >95 mm SVL only) and differentiated femoral scales (generation glands, males >95 mm SVL only) are expressed as average number per thigh (left and right sides examined).

Table 1. Comparison of scalation data in the three species of the *Smaug warreni* complex. Data for *S.* cf. *barbertonensis* is based on all type and additional material. For ventral scale rows longitudinally, rare exceptions are indicated in parentheses, and superscripts indicate the relevant numbers of specimens. Femoral pores (males and females >95 mm SVL only) and differentiated femoral scales (generation glands, males >95 mm SVL only) are expressed as average number per thigh (left and right sides examined).

0	
О	
_	

	Dorsal scale rows longitudinally	Dorsal scale rows transversely	Ventral scale rows longitudinally	Ventral scale rows transversely	Lamellae under 4th toe	Femoral pores (per thigh) (males and females)	Differentiated femoral scales in males (per thigh)	Gular scales between posterior sublinguals
Smaug	20–26	31–41	14	23–29	16–19	10–13	9.5–33	22–29
cf. barbertonensis	22.6 ± 1.53	34.7 ± 2.37	(12^2)	26.3 ± 1.24	17.6 ± 0.85	11.2 ± 0.90	23.2 ± 7.25	25.7 ± 1.93
	N = 22	<i>N</i> = 22		N = 21	N = 22	<i>N</i> = 17	N = 9	N = 20
Smaug	20–24	28–34	14	25–28	15–19	8.5–11.5	18.5–35.5	(20) 23–31
barbertonensis	21.7 ± 1.46	30.5 ± 1.48	(16^1)	26.4 ± 0.86	17.7 ± 1.04	9.9 ± 0.79	25.9 ± 5.16	27.0 ± 2.47
	N = 26	N = 26		N = 26	N = 26	N = 20	N = 9	N = 26
Smaug	22–28	31–41	14	23–27	15–20	7.5–13	14.5–38	23–32
warreni	23.6 ± 1.42	35.2 ± 2.11	$(12^2, 13^1)$	25.9 ± 1.00	16.8 ± 1.20	10.4 ± 1.30	25.7 ± 6.81	26.8 ± 1.94
	N = 39	N = 39		<i>N</i> = 39	N=39	N = 31	N = 9	N=37

Table 2(on next page)

Results of linear discriminate analysis.

 Table 2: Results of linear discriminate analysis.

Character	LD1	LD2
Head width	-0.7844609	-0.1758688
Head length	0.88220298	0.1207981
Head depth	-0.5397809	0.02969013
Supraciliaries	-0.3409638	0.64462659
Subocular	-0.3379355	-0.3798594
Supralabials	-1.2012326	-1.3092285
Infralabials	0.25093769	0.44987475
Sublabial	-2.1044475	2.13129379
Occipitals	-0.0857466	1.30120872
Gulars	-0.1238755	0.17796345
Dorsals transversely	0.42902426	-0.2617689
Dorsals longitudinally	0.15039435	0.34392291
Ventrals transversely	-0.2437863	0.04772589
Ventrals longitudinally	-0.3060718	0.95058204
Femoral pores	-0.0504546	-0.0592088
Differentiatiated femoral		
scales (generation glands)	0.00847055	0.00312826
Lamellae on 4th toe	-0.0151936	-0.7436493

Proportion of trace: LD1 = 0.593, LD2 = 0.407

Table 3(on next page)

Mensural data (mm) for the type series of *Smaug swazicus* sp. nov. (M = male, F = female, J = juvenile; r = regenerating tail).

Table 3. Mensural data (mm) for the type series of *Smaug swazicus* **sp. nov.** (M = male, F = female, J = juvenile; r = regenerating tail).

Museum	Type	Sex	Snout-	Tail	Total	Head	Head	Head
number status			vent	length	length	length	width	depth
			length					
NMB R9201	Holotype	M	138.76	187	325.76	40.19	31.15	16.19
TM 78918	Allotype	F	143.80	161	304.80	37.23	29.14	15.97
TM 83000	Paratype	M	129.35	150	279.35	34.86	27.99	14.85
TM 83532	Paratype	F	132.08			35.11	28.55	15.08
TM 42531	Paratype	F	102.77			29.23	23.71	12.25
TM 51376	Paratype	M	129.60			36.37	29.60	17.71
TM 78931	Paratype	J	70.14			21.00	16.30	8.00
TM 78921	Paratype	J	65.76			19.33	14.07	8.14
NMB R9194	Paratype	M	139.95	202	341.95	40.53	33.51	17.92
NMB R9195	Paratype	M	145.01			41.96	34.36	18.71
NMB R9202	Paratype	M	141.23	140r	281.23+	40.11	32.73	16.61
TM 73290	Paratype	F	140.11	116.40r	256.51+	37.49	30.97	17.86

Table 4(on next page)

Meristic data for the type series of $Smaug\ swazicus\ sp.\ nov.\ (H = holotype,\ A = allotype,\ P = paratype);\ values\ on\ either\ side\ of\ a\ slash\ refer\ to\ the\ animal's\ left\ and\ right\ sides\ respectively.$

Meristic data for the type series of *Smaug swazicus* **sp. nov.** (H = holotype, A = allotype, P = paratype); values on either side of a slash refer to the animal's left and right sides respectively.

3

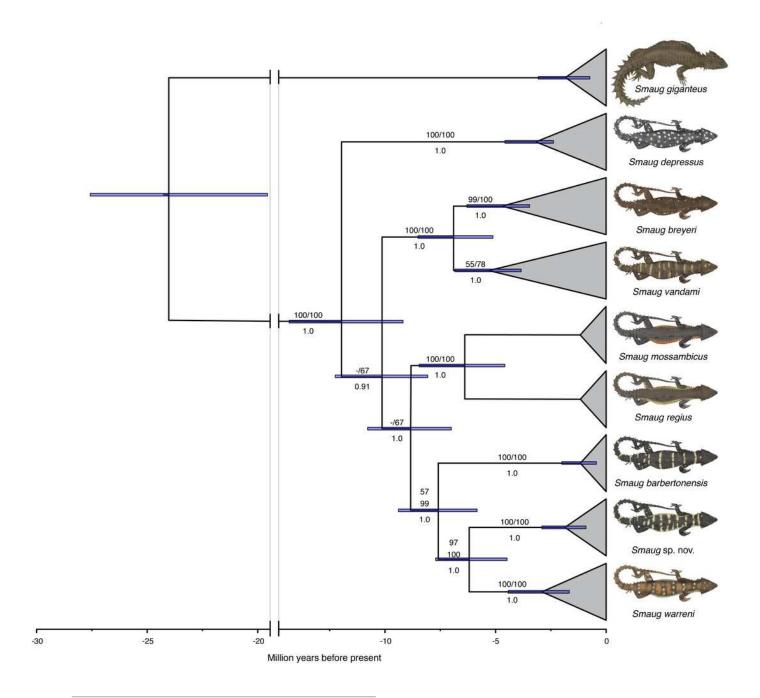
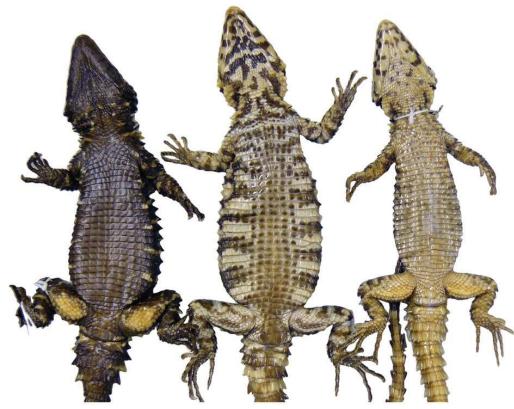

4

Table 4. Meristic data for the type series of *Smaug swazicus* **sp. nov.** (H = holotype, A = allotype, P = paratype); values on either side of a slash refer to the animal's left and right sides respectively.

Museum number	Type status	Dorsal scale rows longitudinally	Dorsal scale rows transversely	Ventral scale rows longitudinally	Ventral scale rows transversely	Lamellae under 4 th toe	Femoral pores (left+right)	Differentiated femoral scales (left+right)	Gular scales (betwn poster sublinguals)
NMB R9201	Н	20	34	14	26	16	10/11	21/25	23
TM 78918	A	21	34	14	28	18	10/10	0/0	25
TM 83000	P	22	34	14	23	16	10/10	10/9	28
TM 83532	P	25	41	14	29	18	11/10	0/0	27
TM 42531	P	22	37	14	25	17	10/10	0/0	28
TM 51376	P	26	36	12	26	18	?/11	?/24	26
TM 78931	P	21	35	14	26	17	12/12	10/16	25
TM 78921	P	23	32	14	25	18	11/11	12/12	24
NMB R9194	P	22	34	12	26	17	11/12	26/35	22
NMB R9195	P	25	35	14	27	17	12/11	33/?	25
NMB R9202	P	22	34	14	27	18	12/11	15/19	24
TM 73290	P	24	37	14	27	19	11/10	0/0	?

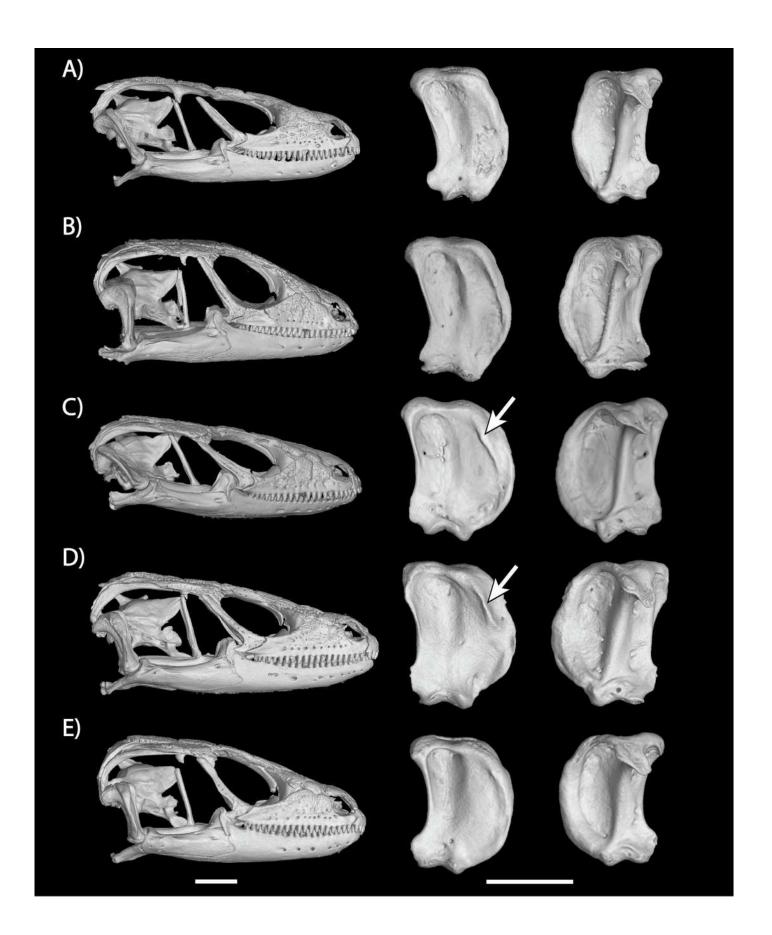
Time calibrated phylogram of six concatenated nuclear and mitochondrial genes for the genus *Smaug*.

Bootstrap support values (MP/ML) are shown above branches, and posterior probabilities below branches. (Modified from: Stanley & Bates 2014, fig. 3.)

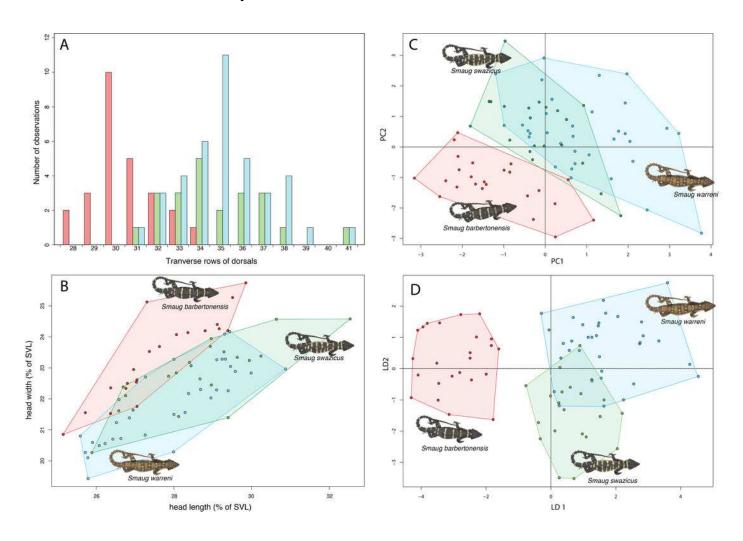


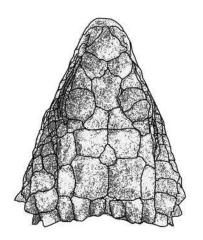
Differences in colour pattern in the *Smaug warreni* species complex.

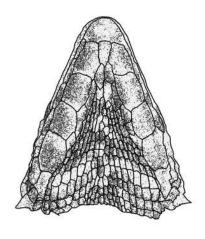
From left to right: Dorsal views of Smaug barbertonensis (NMB R9196, topotype), S. cf. barbertonensis (TM 78918, allotype, see below) and S. warreni (TM 63567); ventral views of S. barbertonensis (TM 55789), S. cf. barbertonensis (TM 78918) and S. warreni (TM 78969) (photos: M.F. Bates).

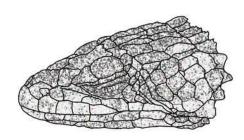


Quadrate variation in the Smaug warreni species complex.


(A) *S. warreni* NMB R9292. (B) *S. warreni* AMNH-R-173381. (C) *S.* cf. barbertonensis AMNH-R-173382. (D) *S.* cf. barbertonensis NMB R9201 (holotype, see below). (E) *S. barbertonensis* NMB R9196 (topotype). Diagnostic ridges on the quadrates of *S.* cf. barbertonensis are indicated using arrows.

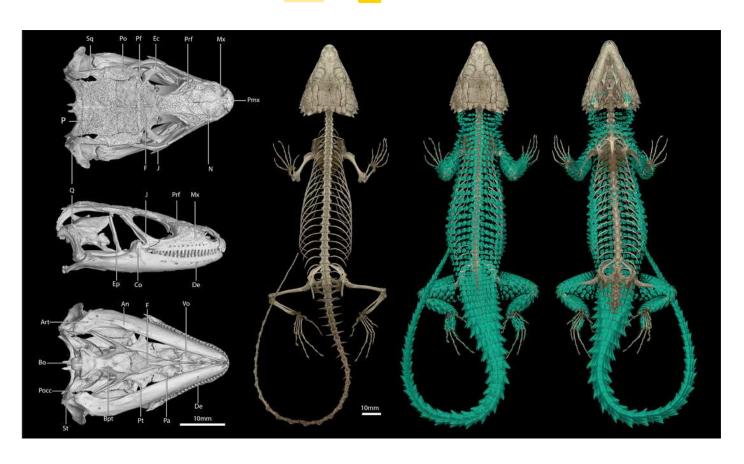



Morphological variation in the Smaug warreni species complex.


A) Transverse rows of dorsal scales. (B) Scatterplot showing head length and head width (corrected by SVL). (C) Principal Component analysis of eight meristic and linear characters. (D) Linear Discriminate analysis of 15 meristic and linear characters.

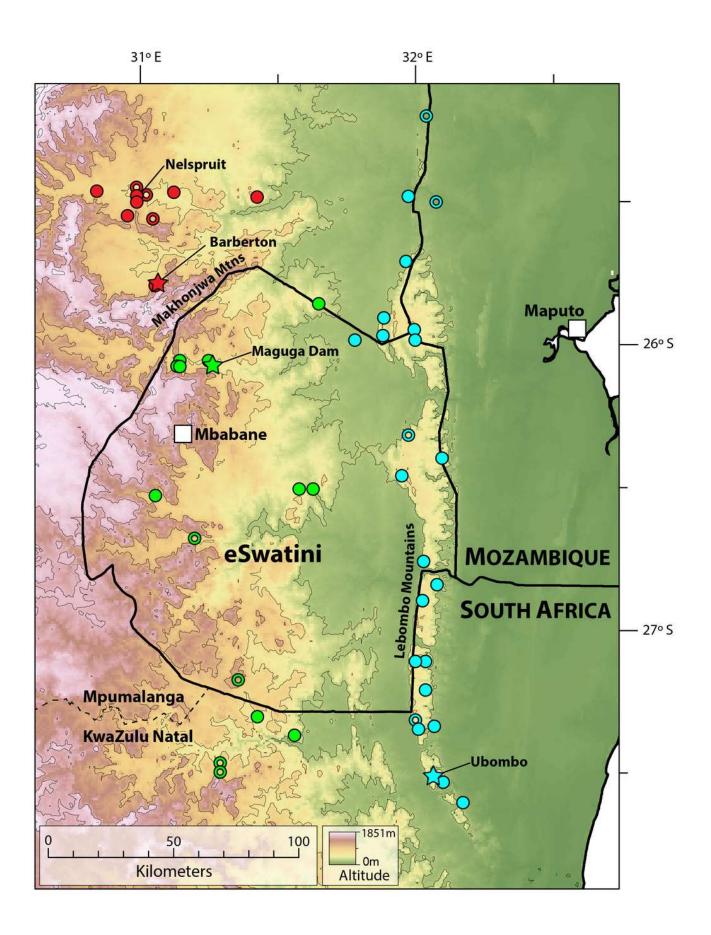
Smaug swazicus sp. nov. Dorsal, ventral and lateral views of the head of the holotype (NMB R9201).

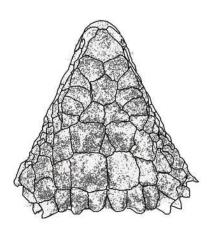
left Habitat at Malolotja National Park, Eswatini, vicinity of type locality of *Smaug swazicus* sp. nov.

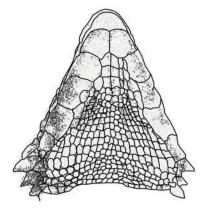

upper right Dorsal colouration of live paratype of *S. swazicus* (NMB R9194). *lower right* Ventral colouration of the same specimen. (Photos: E.L. Stanley)

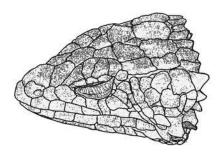
Cranial and postcranial osteology of Smaug swazicus sp. nov. (holotype, NMB R9201).

Body ostoderms are highlighted in blue.

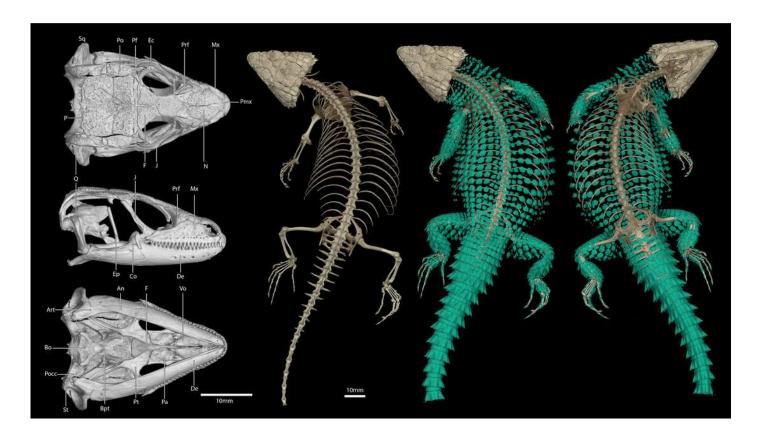



Map showing recorded localities of *Smaug barbertonensis* (red) *S. swazicus* sp. nov. (green) and *S. warreni* (blue).

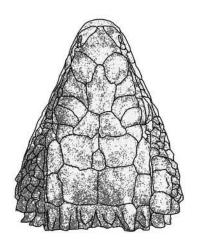

Filled circles denote museum records, while open circles show geo-referenced photo vouchers from University of Cape Town's Animal Demography Unit Virtual Museum. The type locality for each species is represented by a star.

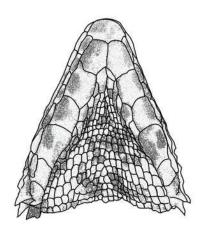


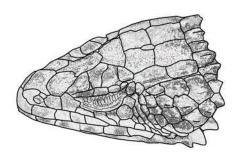
Smaug barbertonensis. Dorsal, ventral and lateral views of the head of NMB R9191 (topotype).


left Smaug barbertonensis habitat, Nelspruit (Extension 5), Mpumalanga Province, South Africa.

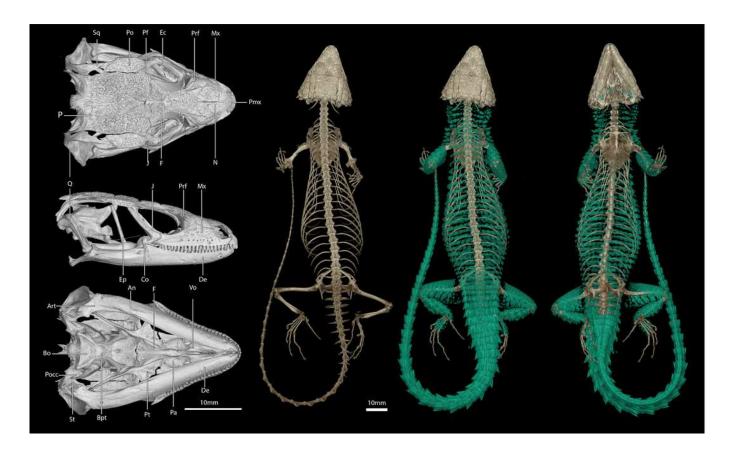
upper right Dorsal colouration of *S. barbertonensis* from the latter locality. *lower right* Ventral colouration of *S. barbertonensis* (same specimen). (Photos: T. Busschau).




Cranial and postcranial osteology of *Smaug barbertonensis* (NMB R9196, topotype).


Body ostoderms are highlighted in blue.

Smaug warreni. Dorsal, ventral and lateral views of the head of TM 50130 (Lomahasha, Eswatini).


left: Smaug warreni habitat, northern Lebombo mountains, Mpumalanga Province, South Africa.

right: Dorsal colouration of S. warreni. (Photos: E.L. Stanley).

Cranial and postcranial osteology of Smaug warreni (NMB R9292).

Body ostoderms are highlighted in blue.

