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ABSTRACT
Background. Gastric carcinoma is a very diverse disease. The progression of gastric
carcinoma is influenced by complicated gene networks. This study aims to investigate
the actual and potential prognostic biomarkers related to survival in gastric carcinoma
patients to further our understanding of tumor biology.
Methods. A weighted gene co-expression network analysis was performed with a
transcriptome dataset to identify networks and hub genes relevant to gastric carcinoma
prognosis. Data was obtained from 300 primary gastric carcinomas (GSE62254). A
validation dataset (GSE34942 and GSE15459) and TCGA dataset confirmed the results.
Gene ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis, and gene set enrichment analysis (GSEA) were performed to
identify the clusters responsible for the biological processes and pathways of this disease.
Results. A brown transcriptional module enriched in the organizational process of
the extracellular matrix was significantly correlated with overall survival (HR = 1.586,
p= 0.005, 95% CI [1.149–2.189]) and disease-free survival (HR = 1.544, p= 0.008,
95% CI [1.119–2.131]). These observations were confirmed in the validation dataset
(HR = 1.664, p= 0.006, 95% CI [1.155–2.398] in overall survival). Ten hub genes
were identified and confirmed in the validation dataset from this brown module;
five key biomarkers (COL8A1, FRMD6, TIMP2, CNRIP1 and GPR124 (ADGRA2))
were identified for further research in microsatellite instability (MSI) and epithelial-
tomesenchymal transition (MSS/EMT) gastric carcinoma molecular subtypes. A high
expression of these genes indicated a poor prognosis.
Conclusion. A transcriptional co-expression network-based approach was used to
identify prognostic biomarkers in gastric carcinoma. This method may have potential
for use in personalized therapies, however, large-scale randomized controlled clinical
trials and replication experiments are needed before these key biomarkers can be applied
clinically.
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INTRODUCTION
Gastric carcinoma (GC) is one of the most aggressive and life-threatening malignancies. It
ranks as the second-most common cause of tumor-related deaths worldwide, accounting
for approximately 10%of all tumor deaths (Song et al., 2014).More than 50%ofGC-related
deaths occurred in East Asia, specifically in China (Ferlay et al., 2010;Kang et al., 2015). The
development ofmalignant GC is amulti-step process. Patients diagnosedwith advancedGC
generally have a poor prognosis and the 5-year overall survival (OS) rate is approximately
20% (Catalano et al., 2009). Medical evaluation after gastrectomy and chemotherapy (CT)
or chemo-radiotherapy (CRT) in a neo-adjuvant or adjuvant setting for GC is limited and
the results of these treatments are disappointing. The lack of precision treatments and
assessment strategies has prompted researchers to investigate the oncogenic abnormalities
of GC to appraise survival rates and guide medical decisions. Identifying therapeutic targets
and prognostic biomarkers for early detection of GC and developing appropriate therapies
is a prospective approach for defining the subtypes of GC and improving the prognosis
of patients with advanced GC. However, the potential heterogeneities and complexities of
GC make it difficult to identify reliable factors for determining effective clinical treatments
(Liu et al., 2017).

The complexity of GC is highlighted by its molecular biomarkers. However, the
molecular subtyping of GC is based on several commonly used biomarkers (Liu et al.,
2017), such as microsatellite instability (MSI) (Cancer Genome Atlas Research Network,
2012) and epithelial-to-mesenchymal transition (EMT) (Loboda et al., 2011). Four new and
distinct GC subtypes associated with survival were proposed in a large population-based
study (Cristescu et al., 2015).

Microarray technology is the preferredmethod to investigate the gene expression profiles
of GC; enormous amounts of data have been produced to measure the factors that drive
GC diagnosis and prognosis. The extraction of transcriptional-based prognostic signatures
and clinical outcomes has been studied extensively in a limited number of subtype-related
cases (Cho et al., 2011; Deng et al., 2012; Wu et al., 2013; Zouridis et al., 2012). However,
there have been no high-grade repeatability of GC-related studies to verify the results. GC
is comprised of various molecular entities with different biological processes; thus, the
prognostic signatures may be included in disparate GC subtypes making it necessary to
study tumorigenesis in different GC entities.

A weighted gene co-expression network analysis (WGCNA) based on gene-associated
phenotypes from transcriptomics data can be used to construct functional clusters of
co-expressed genes (modules). This relatively novel co-expression approach also allows for
investigation of a consistent expression relationship; these modular genes share common
biological regulations and pathways (Stuart et al., 2003). WGCNA has been widely used in
a variety of diseases, such as breast cancer (Clarke et al., 2013; Liu, Guo & Zhou, 2015), lung
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cancer (Li et al., 2013; Liu et al., 2015), hepatocellular carcinoma (Pan et al., 2016; Zhang
et al., 2017a), glioma cancer (Ivliev, T Hoen & Sergeeva, 2010), head and neck squamous
cell carcinoma (Liu et al., 2018), cervical cancer (Ge et al., 2018), bone mineral density
(BMD) (Farber, 2010) and coronary artery disease (Liu, Jing & Tu, 2016). Earlier studies
involving the WGCNA identified modular biomarkers associated with prognosis and
potential therapeutic targets. Horvath et al. (2006) identified the ASPM gene as a potential
novel molecular target in glioblastoma. Yepes et al. (2016) used WGCNA to discover the
miRNAs 100, let-7c, 125b, and 99a associated with the diffuse histological subtype; the let-7
miRNA family was shown to play a central role in regulatory relationships.

In this study, WGCNA was used to analyze a large sample of global transcriptome data
from gastric tumors in 300 GC patients. Our research sought to identify the gene modules
and hub genes related to GC patient prognosis. Our findings were validated by independent
datasets of GC samples from other institutions.

MATERIALS & METHODS
Available microarray-based mRNA expression datasets and
preprocessing
The training dataset used for co-expression construction was composed of 300 primary
GC tumor specimens obtained at the time of total or subtotal gastrectomy from Samsung
Medical Center, Seoul, Korea, from 2004–2007. This dataset was also part of the Asian
Cancer Research Group (ACRG) study. These data were downloaded from the Gene
Expression Omnibus (GEO) database using accession number GSE62254 (Cristescu et al.,
2015) and comprised the largest set of samples ever downloaded from the database.

The validation dataset was constructed from248 primaryGC samples from the Singapore
patient cohort known as the Gastric Cancer Project ’08. This dataset was used to confirm
the relationship of gene modules or biomarkers with survival of GC. Raw data with .CEL
profiles from two studies were downloaded from GEO using accession numbers GSE34942
and GSE15459 (Ooi et al., 2009); there were 56 and 192 available samples with detailed
information, respectively.

All raw expression data was produced using the Affymetrix Human Genome U133
Plus 2.0 ArrayTM (HG-U133_Plus_2, Affymetrix, Inc., Santa Clara, CA) and normalized
with robust multi-array average (RMA) algorithms (Irizarry et al., 2003) using the affy R
package (Gautier et al., 2004). The validation dataset was adjusted for potential batch effects
among multiple datasets using the ComBat algorithm (Pavlou et al., 2014). Probe sets with
available gene symbols were reserved for subsequent analysis and probe-level expression
data were transformed into gene-level expression data by merging the probes according
to the official annotation file. The average expression values for the multi-probes were
calculated as the corresponding gene expression value for one gene. The primary endpoints
for the training dataset were overall survival (OS) and disease-free survival (DFS); overall
survival (OS) was regarded as the endpoint event for the validation dataset. Gene expression
profiles (Illumina HiSeq RNA Seq), level 3 data, and phenotype data of stomach cancer
from The Cancer Genome Atlas Project database (TCGA-STAD) were downloaded
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Table 1 Basic characteristics of the datasets.

Characteristics Training dataset
(n= 300)

Validation dataset
(n= 248)

TCGA dataset
(n= 374)

Gender (%)
Male 199 (66.33) 161 (64.92) 242 (64.71)
Female 101 (33.67) 87 (35.08) 132 (35.29)
Age: mean (sd) 61.94 (11.36) 65.40 (12.50) 65.11 (10.62)
Lauren type (%)
Intestinal 146 (48.67) 138 (55.65) –
Diffuse 135 (45) 86 (34.68) –
Mixed 17 (5.67) 22 (8.87) –
Unknown 2 (0.67) 2 (0.81) –
pStage (%)
I 30 (10) 42 (16.94) 52 (13.90)
II 97 (32.33) 40 (16.13) 121 (32.35)
III 96 (32) 91 (36.69) 164 (43.85)
IV 77 (25.67) 73 (29.44) 37 (9.89)
Unknown 0 (0.00) 2 (0.81) 0
Mol. Subtype (%)
MSS/TP53− 107 (35.67) – –
MSS/TP53+ 79 (26.33) – –
MSI 68 (22.67) – –
MSS/EMT 46 (15.33) – –
OS
Time mean (sd) 50.60 (31.42) 38.81 (42.69) 20.40 (17.93)
Event (%) 152 122 146
DFS
Time mean (sd) 33.72 (29.82) – –
Event (%) 152 – –

Notes.
Overall survival (OS), Disease-free survival (DFS).

through the UCSC Xena portal (https://xena.ucsc.edu/) to validate the identified hub
genes. All of the gene expression values were in log2 (x+1) transformed normalized count
for subsequent analysis. Patients chosen for biomarker identification met the following
criteria: (1) histologic diagnosis of primary GC; and (2) available RNA expression profiles
and complete clinic-pathological and follow-up data. After sample filtering, 374 patients
were enrolled for further analysis. The demographics are listed in Table 1. The hub genes
were also validated in the cBio Cancer Genomics portal (https://www.cbioportal.org/) (Gao
et al., 2013; Cerami et al., 2012). The Human Protein Atlas (http://www.proteinatlas.org)
(HPA) was applied to the protein expression dataset to validate the immunohistochemistry
of the identified hub genes. Tissues were defined by the normal tissues of stomach cancer
and the pathology was defined by the tumor tissues. The selection process of the prognostic
biomarkers is shown in Fig. 1.

Liu et al. (2020), PeerJ, DOI 10.7717/peerj.8504 4/26

https://peerj.com
https://xena.ucsc.edu/
https://www.cbioportal.org/
http://www.proteinatlas.org
http://dx.doi.org/10.7717/peerj.8504


 300 samples from GSE62254 (training dataset) 

Data preprocessing 

Top 5000 most variable genes 

WGCNA analysis 

WGCNA hub genes 
KEGG analysis 

GO analysis 

Brown module 

Real hub genes 

248 samples from GSE34942 and GSE15459  

(valida�on dataset) 

Validation 

Validation 

Validation 

Oncomine database cBioPortal database TCGA database Human Protein Atlas 
database 

GSEA analysis 

Univariable Cox regression analysis (P < 0.05)

Median absolute deviation (MAD)

Figure 1 Flow diagram of the study.
Full-size DOI: 10.7717/peerj.8504/fig-1

Gastric carcinoma molecular subtypes
GC patients were divided into four groups according to their molecular subtypes as
described by Cristescu et al. (2015). The molecular subtype signatures had the following
tumor biomarkers: MSI (microsatellite instability); MSS/EMT (epithelial-tomesenchymal
transition); MSS/TP53+ (the tumor protein 53 (TP53)-active); andMSS/TP53− (the tumor
protein 53 (TP53)-inactive). Information on the molecular subtypes can be found in the
supplement materials of the original publication (Cristescu et al., 2015). In this dataset, 68
samples were classified as MSI, 46 samples were classified as MSS/EMT, 79 samples were
classified as MSS/TP53+, and 107 samples were classified as MSS/TP53−. A subsequent
survival analysis according to the molecular subtype was not performed in this dataset
because the validation dataset lacked information regarding those subtypes.

Weighted gene co-expression network detection
The training dataset (GSE62254) was the target for WGCNA using the ‘‘wgcna’’ R package
(Langfelder & Horvath, 2008). The top 5000 most variable genes were selected according to
the median absolute deviation (MAD), which restricted the analysis to those genes with a
notable variance in expression; MAD is a robust measure of variability for the construction
of co-expression networks.

Pearson’s correlation coefficient (PCC) was used to assess the relationship between each
pair of the 5000 genes. These data were used to construct an unsupervised co-expression-
based adjacency matrix with a soft threshold power of 4 based on the scale-free topology
criterion to raise the matrix to simulate a realistic network structure (Zhang & Horvath,
2005). The intramodular connectivity (k.in) measured how connected, or co-expressed, a
given gene was with respect to the genes of a particular module. The connection strengths
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were assessed by calculating the topology overlap (TO) (Yip & Horvath, 2007), and the
modules were defined as sets of genes with a high TO (Zhang & Horvath, 2005). The
topological overlap matrix (TOM) was the network distance measure for each gene pair
from the adjacent matrix. A TOM-based dissimilarity measure (1-TOM) was utilized to
achieve an average hierarchical linkage clustering (Ravasz et al., 2002). Gene modules were
defined using a dynamic hybrid branch-cutting algorithm with a cutoff of 0.95 and a
minimum module size and cutoff of 30 in the hierarchical clustering dendrogram on the
basis of TOM dissimilarity (Langfelder, Zhang & Horvath, 2008). The module eigengene
(ME) was calculated by a principal component analysis (PCA) by defining the first principal
component of a given module. The module membership, also known as eigengene-based
connectivity kME, related each gene expression profile with the ME of a specific module.
The MEs of a summary profile were used to assess the underlying correlation of gene
modules with the clinico-pathological variables and survival.

Survival analysis and identification of hub genes
Survival analysis was performed using the survival R package with the hazard ratio (HR) and
its corresponding 95% confidence interval (CI) determined by the Cox regression module
and Kaplan–Meier survival curves (http://cran.r-project.org/web/packages/survival/index.
html). OS or DFS were considered to be the survival endpoints. Covariates, including
the Lauren’s diffuse type and intestinal type, tumor type, stage and molecular type were
corrected via multivariate analysis to estimate the prognostic effects of modules and hub
genes. For modules or single gene-based associations, each ME or gene expression value
was a continuous variable that was categorized as having a high or low expression according
to the median expression value at the cutoff point. For a given ME/gene, the patients were
split into two groups known as high expression (≥median expression of the ME/gene) and
low expression (<median expression of the ME/gene).

The gene significance (GS) was defined as minus log 10 of the univariate Cox
proportional hazard-regression p-values in the single gene-based analysis. Hub genes,
namely, highly connected genes, were genes that tended to have high network connectivity
(k.in) that determined the connection strength (co-expression) of a specific gene with
other genes in a given module (Liu et al., 2017). Genes that satisfied the following criteria
were classified as hub genes: (i) GS > 2; (ii) targeted module kME value >0.85.

Functional annotation of the targeted module
Gene enrichment analysis of the categorical biological processes of gene ontology (GO) was
conducted on the targeted modules associated with GC patient survival to explore further
insights into the genes via the DAVID annotation tool (http://david.abcc.ncifcrf.gov/)
(Dennis Jr et al., 2003). The fold enrichment was calculated for all GO terms in the given
ontologies to examine the enrichment degree of the specific genes for all genes on the
array. Multiple tests were performed with p-values adjusted according to the Bonferroni,
Benjamini and false discovery rate (FDR) methods.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis
for genes in the targeted module was conducted via the ClueGO (Bindea et al., 2009) and
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CluePedia (Bindea, Galon & Mlecnik, 2013) applications in the Cytoscape v3.3.0 software.
Only terms with p-values <0.05 were retained.

Gene set enrichment analysis (GSEA)
Toobtain further insight into the potentialmechanisms of hub genes significantly associated
with survival, GSEA (http://software.broadinstitute.org/gsea/index.jsp) (Subramanian,
Tamayo & Mootha, 2005) was conducted based on the median expression level of the
significant hub genes to map for the KEGG pathways database. The annotated gene set
c2.cp.kegg.v6.1.symbols.gmt was chosen as the reference gene set. Differences with a false
discovery rate (FDR) of less than 5% had statistical significance; FDR was calculated using
the p.adjust function.

RESULTS
Detection of gene co-expression modules
To investigate the potential patterns of expression among the 5000 most varied genes;
WGCNA was conducted on a public microarray-based GC dataset derived from 300
primary GC tumor tissues. Seven informative modules were identified with lengths of 43
to 1,059 genes (Fig. 2A). Each module was assigned a unique color (Table 2), and the gray
module, with 2708 non-co-expressed genes, was assigned a gradient color. The topological
overlap matrix was plotted according to the expression levels of all genes (Fig. 2B). The
MEs and MM (kME) were calculated across all samples and all genes, respectively. The
affiliations of all 5000 genes and the complete list of network indices (kME and k.in) for
each gene are presented in Data S1.

Correlation of modules with clinico-pathological variables
To measure the association between the seven identified co-expression modules and
clinico-pathological variables, we calculated the PCCs betweenMEs as continuous variables;
gender, age, Lauren’s diffuse type and intestinal type, tumor type, tumor stage, molecular
subtype, T (Tumor), N (Node), M (Metastasis), node count, positive node, DFS, OS, and
status were also calculated (Fig. 2C). The yellow, brown, and turquoise modules yielded
significant associations with Lauren’s type (yellow = −0.25, brown = +0.3, turquoise =
+0.34), tumor type (yellow = −0.36, brown = +0.28, turquoise = +0.42), tumor stage
(yellow = −0.23, brown = +0.22, turquoise = +0.26), and molecular subtype (yellow =
−0.22, brown = +0.52, turquoise = +0.45).

Gene modules significantly correlated with survival
The relationship betweenOS/DFS andmoduleswas assessed as awhole usingCox regression
analysis withHRs and corresponding p-values (Table 2). The black, brown, green, turquoise,
and yellowmodules showed significant correlations withOS in the training dataset (module
brown: HR = 1.586, p= 0.005, 95% CI [1.149–2.189]). However, only the brown module
was confirmed in the validation dataset (HR = 1.664, p= 0.006, 95% CI [1.155–2.398]).
We also found that MEblack, MEbrown, MEgreen, and MEturquoise were significantly correlated
with DFS in the training dataset. The brown module was the focus in subsequent analyses
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Figure 2 Identification of specific modules defined byWGCNA in the training dataset GSE62254 with
300 primary gastric cancer samples. (A) Hierarchical clustering tree (dendrogram) of median absolute
deviation (MAD) genes clustered based on a dissimilarity measure (1-TOM). Each leaf, represented as a
short vertical line, corresponds to a gene, and branches of the dendrogram that group together represent
densely interconnected, highly co-expressed genes. In total, seven modules ranging from 43 to 1,059 genes
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unassigned genes. (B) Topological overlap matrix plot. Genes in the rows and columns are sorted by the
clustering tree in (A). (C) Pearson’s correlation coefficient (PCC) matrix among MEs, clinico-pathological
variables and survival. Depending on the strength of the correlation, the PCC values range from−1 to+1.
A negative value suggests that the genes within a module increase as the variable decreases, whereas the
opposite is true if the PCC value is positive.

Full-size DOI: 10.7717/peerj.8504/fig-2

as its high expression demonstrated poor prognosis in the training (Figs. 3A and 3B) and
validation datasets (Fig. 3C).

Biological insights into the brown module
To illuminate the potential biological insights into the brown module, we performed GO
biological process enrichment analysis with DAVID and KEGG pathway analyses using
Cytoscape v3.3.0. Seven GO terms were identified that were significantly enriched with
FDR < 0.05 (Fig. 3D) and five pathways with FDR < 0.05 (Fig. 3E). The most significant
terms from the GO analysis were ‘‘extracellular matrix organization’’ (raw p-value =
6.29 × 10−13, Bonferroni-adjusted p-value = 9.68 × 10−10, FDR = 8.11 × 10−11) and
‘‘ECM-receptor interaction’’ (raw p-value = 2.40 × 10−5, Bonferroni-adjusted p-value =
3.40 × 10−4, FDR = 1.20 × 10−4) from the KEGG analysis. A full list of biological GO
terms and the KEGG analysis of all co-expression genes in the brown module is shown in
Data S2 and S3, respectively.
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Table 2 Association of expressionmodules with OS/DFS in the training and validation dataset.

Modules Gene count Training dataset (n= 300) Validation dataset (n= 248)

OS DFS OS

HR 95%CI p-value HR 95%CI p-value HR 95%CI p-value

MEblack 43 0.633 0.458–0.876 0.006** 0.695 0.503–0.961 0.028* 1.486 1.04–2.121 0.029*

MEblue 404 0.992 0.721–1.363 0.959 0.991 0.721–1.362 0.955 1.158 0.809–1.657 0.422
MEbrown 342 1.586 1.149–2.189 0.005** 1.544 1.119–2.131 0.008** 1.664 1.155–2.398 0.006**

MEgreen 113 1.691 1.222–2.34 0.002** 1.609 1.163–2.226 0.004** 1.105 0.774–1.578 0.583
MEred 95 0.756 0.548–1.042 0.088 0.791 0.574–1.09 0.152 1.2 0.84–1.713 0.317
MEturquoise 1,059 1.75 1.264–2.424 0.001*** 1.66 1.198–2.299 0.002** 1.208 0.843–1.729 0.303
MEyellow 236 0.654 0.474–0.903 0.010** 0.749 0.543–1.034 0.079 1.201 0.842–1.713 0.313

Notes.
*p≤ 0.05.
**p≤ 0.01.
***p≤ 0.001.
Overall survival (OS), Disease-free survival (DFS). Hazard ratios (HRs), 95% confidence intervals (CI), and p-values were calculated using Cox proportional hazards regression
analysis after grouped the gastric cancer patients by the median of gene level.

Identification and validation of survival-related hub genes
Hub genes are highly likely to serve as key factors in a given module. Ten hub genes were
identified from the 342 co-expression genes in the brown module (COL8A1, FRMD6,
DDR2, LOC100505881, TIMP2, CNRIP1, CLEC11A, MRC2, BGN, and GPR124). These
were associated with OS/DFS in the training dataset and were confirmed in the validation
dataset with the exception of the relationship between CNRIP1, and OS (Table 3). Survival
analysis of the hub genes COL8A1, FRMD6, TIMP2, CNRIP1, and GPR124 in the training
dataset and validation dataset is shown in Fig. 4. The high expression of the five hub genes
presented with poor overall survival and was validated in the TCGA dataset (Fig. 5). We
also investigated the hub genes in other modules based on the above screening criterion.
The results are presented in Data S1 with highlights. There were no hub genes in the blue,
red, and gray modules. Immunohistochemistry (IHC) staining obtained from the Human
Protein Atlas database also demonstrated the expression status of hub genes (Fig. 6).
There were no related IHC samples of CNRIP1 in the database. The Oncomine database
was used in our analysis and the mRNA levels of COL8A1, TIMP2, and GPR124 were
higher in tumor tissues compared with normal tissues (Fig. 7A). The OncoPrint module
in cBioPortal, an online tool, was used to analyze genetic alterations, including missense
mutations, truncating mutations, amplifications and deep deletions (Fig. 7B).

Identification of gene modules and hub genes significantly
associated with GC subtype-specific survival
The relationship between the gene modules or hub genes and GC molecular subtypes was
explored and HRs and accompanying p-values were calculated to denote their significance.
Analysis revealed that MEgreen (HR = 1.765, 95% CI [1.043–2.99], p-value = 0.034) and
MEturquoise (HR = 2.485, 95% CI [1.205–5.124], p-value = 0.014) involving 113 and 1059
genes, respectively, were associated with poor OS outcomes within the MSS/TP53− and
MSS/EMT molecular subtypes (Table 4). The increased expression of genes in module
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Figure 3 Identification of module brown in the training set and confirmed in the validation set. (A)
Relationship between overall survival (OS) and the MEbrown in the training dataset. Kaplan–Meier survival
plots for overall survival are shown (gastric cancer patients were grouped by the median of module eigen-
gene). Increased expression of the MEbrown indicated low overall survival (A) and poor disease-free sur-
vival (B). Additionally, the relationship between overall survival (OS) and the MEbrown in the validation
dataset was presented in (C). The dashed line in K-M curves mean the median survival. It defined that
the survival time corresponding to a cumulative survival rate of 0.5 means that only 50% of individuals
can live this time. (D) GO enrichment analysis for the 342 genes comprising the brown module identified
multiple biological processes with FDR < 0.05. The raw significance output from DAVID was transformed
into ‘‘−log 10 (FDR)’’ for plotting. (E) The relationship of KEGG enrichment pathways with p-value <

0.05 for the 342 genes involved in the brown module.
Full-size DOI: 10.7717/peerj.8504/fig-3

turquoise indicated poor DFS prognosis in the MSS/EMTmolecular subtype (HR= 2.467,
95% CI [1.198–5.081], p-value = 0.014) (Table S1).

Furthermore, we also investigated whether significant correlations could be detected
among the 10 hub genes in the brown module and the molecular subtypes in the training
dataset. Association analysis revealed that the expression levels of genes FRMD6 (HR =
2.822, 95% CI [1.156–6.888], p-value = 0.023), TIMP2 (HR = 2.942, 95% CI [1.199–
7.217], p-value = 0.018), CNRIP1 (HR = 2.626, 95% CI [1.077–6.401], p-value = 0.034)
and GPR124 (HR = 3.696, 95% CI [1.451–9.413], p-value = 0.006) were significantly
associated with OS in the MSI molecular subtype. The increased expression of the COL8A1
gene showed poor prognosis (HR = 2.216, 95% CI [1.104–4.447], p-value = 0.025) in the
MSS/EMT molecular subtype (Table 5). We also found that the FRMD6 (HR = 2.715,
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Table 3 Relationships between hub genes in module brown with OS/DFS in the training and validation datasets.

Gene Training dataset (n= 300) Validation dataset (n= 248)

OS DFS OS

HR 95%CI p-value HR 95%CI p-value HR 95%CI p-value

COL8A1 1.573 1.139–2.171 0.006** 1.468 1.063–2.026 0.020* 2.5 1.72–3.632 0.000***

FRMD6 1.615 1.17–2.231 0.004** 1.557 1.127–2.15 0.007** 1.591 1.104–2.292 0.013*

DDR2 1.612 1.167–2.226 0.004** 1.521 1.101–2.1 0.011* 1.71 1.187–2.463 0.004**

LOC100505881 1.549 1.122–2.138 0.008** 1.477 1.07–2.039 0.018* 1.792 1.241–2.589 0.002**

TIMP2 1.574 1.141–2.171 0.006** 1.446 1.049–1.995 0.024* 1.943 1.347–2.803 0.000***

CNRIP1 1.537 1.113–2.121 0.009** 1.457 1.056–2.01 0.022* 1.36 0.949–1.948 0.094
CLEC11A 1.706 1.235–2.356 0.001*** 1.667 1.207–2.303 0.002** 1.44 1.004–2.065 0.047*

MRC2 1.652 1.194–2.284 0.002** 1.543 1.117–2.133 0.009** 1.599 1.112–2.3 0.011*

BGN 1.613 1.168–2.229 0.004** 1.564 1.132–2.16 0.007** 1.978 1.368–2.858 0.000***

GPR124 1.929 1.39–2.677 0.000*** 1.878 1.353-2.606 0.000*** 1.572 1.094–2.259 0.014*

Notes.
*p≤ 0.05.
**p≤ 0.01.
***p≤ 0.001.
Overall survival (OS), Disease-free survival (DFS). Hazard ratios (HRs), 95% confidence intervals (CI), and p-values were calculated using Cox proportional hazards regression
analysis after grouped the gastric cancer patients by the median of gene level.

95% CI [1.116–6.605], p-value = 0.028), TIMP2 (HR = 2.964, 95% CI [1.217–7.217],
p-value = 0.017), CNRIP1 (HR = 2.942, 95% CI [1.207–7.168], p-value = 0.018), MRC2
(HR = 2.379, 95% CI [1.007–5.62], p-value = 0.048) and GPR124 (HR = 3.814, 95%
CI [1.5–9.694], p-value = 0.005) genes were significantly associated with DFS in the
MSI molecular subtype. In addition, COL8A1 gene expression was associated with DFS
prognosis in theMSS/EMTmolecular subtype (HR= 2.295, 95%CI [1.144–4.602], p-value
= 0.019) (Table S2). There were significant differences noted in the expression of five hub
genes when the tumor stages and molecular subtypes were compared (Figs. 8A and 8B).

GSEA analysis of key hub genes significantly correlated with
subtype-specific survival of GC patients
To characterize the potential function of the real hub genes, 300 GC samples were divided
into two groups (high vs. low) according to the median expression values of the above
hub genes. GSEA was performed based on the expressions of COL8A1, FRMD6, TIMP2,
CNRIP1 andGPR124. GC samples in the COL8A1 and CNRIP1 high expression group were
significantly enriched for focal adhesion (Tables S3–S6). GC samples in the FRMD6 and
TIMP2 high expression groupwere significantly enriched for hypertrophic cardiomyopathy
(HCM) (Fig. 9; Tables S4–S5). GC samples in the GPR124 high expression group were
significantly enriched for dilated cardiomyopathy (Fig. 9; Table S7).

DISCUSSION
In this study, WGCNA, which is a systems biology approach, was utilized to research one
available mRNA expression dataset composed of 300 primary GC patients to investigate
the clusters (modules) and single genes associated with prognostic indicators. The results
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Figure 4 Identification of hub genes in the training set and confirmed in the validation set. (A–E) Re-
lationship between overall survival (OS) and the five key hub genes (COL8A1, FRMD6, TIMP2, CNRIP1,
GPR124) in the training dataset. Kaplan-Meier survival curve plots for OS are shown (gastric cancer pa-
tients were grouped by the median of the expression level of hub genes). Increased expression of the five
genes indicated poor overall survival. Additionally, the relationship between OS and the five key hub genes
in the validation dataset was presented in (F–J). Red lines represent high expression of the real hub genes
and blue lines represent low expression. The ‘‘+’’ symbol in the panel indicated censored data. The dashed
line in KM curves mean the median survival. It defined that the survival time corresponding to a cumula-
tive survival rate of 0.5 means that only 50% of individuals can live this time.

Full-size DOI: 10.7717/peerj.8504/fig-4

were confirmed in an independent validation dataset. Compared to select genes that focus
on traditional differential expression, WGCNA uses almost 10,000 of the most variable
genes to identify the set of genes of interest and conducts a significant association analysis
with the phenotype. It makes full use of clinical information and converts thousands of
genes and phenotypes into several gene sets and phenotypes, eliminating the problem of
multiple hypothesis testing.
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Figure 5 Relationship between overall survival (OS) and the five key hub genes in the TCGA dataset.
(A) COL8A1; (B) FRMD6; (C) TIMP2; (D) CNRIP1; (E) GPR124. Kaplan–Meier survival curve plots for
OS are shown (gastric cancer patients were grouped by the median of the expression level of hub genes).
Increased expression of the five genes indicated poor overall survival. Red lines represent high expression
of the real hub genes and blue lines represent low expression. The ‘‘+’’ symbol in the panel indicated cen-
sored data. The dashed line in KM curves mean the median survival. It defined that the survival time cor-
responding to a cumulative survival rate of 0.5 means that only 50% of individuals can live this time.

Full-size DOI: 10.7717/peerj.8504/fig-5

Eight distinct gene modules were identified from the top 5000 most variable genes
that were filtered by the median absolute deviation (MAD) pre-filtering standard for the
co-expression network. Increased expression of the brown module, including 342 genes
enriched in an extracellular matrix organization, was associated with positive OS prognosis
in the training dataset; this was confirmed in the validation dataset. Furthermore, 10 hub
genes were explored as potential biomarkers for GC prognosis in the training dataset
and all but CNRIP1 were confirmed in the validation dataset. Increased expression of the
COL8A1, FRMD6, TIMP2, CNRIP1, and GPR124 genes indicated poor survival in the MSI
(n= 68) and MSS/EMT (n= 46) molecular subtypes versus the MSS/TP53− (n= 107) and
MSS/TP53+ (n= 79) molecular subtypes. Significant results were achieved in the small
sample size, but there may be bias in a larger sample size.

Several hub genes were identified as potential novel markers. Collagen type VIII alpha
1 chain (COL8A1), encodes one of the two alpha chains of type VIII collagen. Wang,
Chen & Wang (2017) constructed a 9-gene model and COL8A1 was identified as one of
the 7 positive prognostic biomarkers in GC. COL8A1 is also involved in cell-substrate
adhesion and was reported to be significantly down-regulated in non-malignant breast
cells (Chen et al., 2014). COL8A1 may be involved in the proliferation, adhesion, and
migration of a variety of cells. The overexpression of COL8A1 is detected in several rapidly
proliferating cells, such as in epithelial and tumor cells (Xu et al., 2001; Bendeck et al., 1996;
Paulus et al., 1991). It has been reported that the down-regulation of COL8A1 may inhibit
the proliferation and colony formation of hepatocarcinoma cells (Zhao et al., 2009). This
might provide a new potential target for the treatment of hepatocarcinoma. However,
the role of COL8A1 in human cancers, especially in GC, should be further studied.
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Figure 6 Immunohistochemistry of the five hub genes based on the Human Protein Atlas. There was
no related IHC samples of CNRIP1 in the database. (A) Protein levels of COL8A1 in normal tissue. (B)
Protein levels of COL8A1 in tumor tissue. (C) Protein levels of FRMD6 in normal tissue. (D) Protein lev-
els of FRMD6 in tumor tissue. (E) Protein levels of TIMP2 in normal tissue. (F) Protein levels of TIMP2 in
tumor tissue. (G) Proteins level of GPR124 in normal tissue. (H) Protein levels of GPR124 in tumor tissue.

Full-size DOI: 10.7717/peerj.8504/fig-6
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Figure 7 Validation of the five hub genes in Oncomine database across 23 studies (A) and exploration
of genetic alterations of the five hub genes via cBioPortal tool (B).

Full-size DOI: 10.7717/peerj.8504/fig-7

Liu et al. (2020), PeerJ, DOI 10.7717/peerj.8504 15/26

https://peerj.com
https://doi.org/10.7717/peerj.8504/fig-7
http://dx.doi.org/10.7717/peerj.8504


FERM domain containing 6 (FRMD6), a protein-coding gene, has been shown to have
tumor-related functions and may have tumor suppressor properties in human cancer
cell lines (Visser-Grieve, Hao & Yang, 2012). Proteins encoded by FRMD6 can activate
the Hippo kinase pathway, which is an important regulator of cancer development
in mammals (Angus et al., 2012; Pan, 2010; Zeng & Hong, 2008). However, few studies
have investigated the relationship between this gene and cancer prognosis in humans.
TIMP metallopeptidase inhibitor 2 (TIMP2), is thought to be a protective factor, and
its expression indicates a favorable prognosis in patients with non-small cell lung cancer
(NSCLC) in a meta-analysis (Zhu et al., 2015). TIMP2 expression by cancer-associated
fibroblasts (CAFs) was the most potent independent prognostic factor for predicting the
clinical outcome of patients in breast cancer (Eiro et al., 2015). Yang et al. (2011) developed
a novel CRAd (Ad5/3-CXCR4-TIMP2) for ovarian cancer therapy. Cannabinoid receptor
interacting protein 1 (CNRIP1), encodes a protein that interacts with the C-terminal
tail of cannabinoid receptor 1. Cannabinoid receptor 1 can be found in several tissues,
including those of the cardiovascular system, lung, small intestine, peripheral tissues like fat
tissue, skeletal muscle, uterus, testes (Russo & De Azevedo, 2019). A study conducted on the
CNRIP1 gene indicated that the CNRIP1 promoter region may have some value in the early
detection and prognostic evaluation of colorectal cancers (Zhang et al., 2017b). This gene
may be a potential biological marker of human cancers. G protein-coupled receptor 124
(GPR124), was a direct target of miR-138-5p, specifically the adhesion G protein-coupled
receptor A2 (ADGRA2). It has been demonstrated that the expression ofGPR124 in protein
and mRNA can be suppressed by miR-138-5p in non-small cell lung cancer (NSCLC) cells
(Gao et al., 2014).

The classification method in this study is based on the research by Cristescu et al. (2015)
for GC molecular subtypes that encompass tumorous heterogeneity. We concluded that
theMSI subtype had a better prognosis, similar to the result of Cristescu’s research.We also
identified more hub genes that were correlated with the prognosis of the entire population
or with molecular subtypes. However, further research is needed to identify accurate
outcomes related to the prognostic biomarkers and applications of these genes for safer
and more efficient clinical therapies.

Our study has several limitations. Due to the lack of relevant information, such as the
molecular subtype in the validation dataset, the results of the training dataset could not
be confirmed. As a retrospective study, the patient cohort was heterogeneous, and the
significance and robustness of the results and hub genes in the prognostic assessment
must be validated in prospective patient cohorts. Lastly, although WGCNA is a powerful
systematic biological technique aimed at constructing a co-expression network based on
the genes with consistently expressed relationships, further in vivo/in vitro experiments are
required to verify the identified biomarkers.

CONCLUSION
This study used an effective systematic biology-based WGCNA approach to expose the
underlying biological mechanisms and to identify the hub biomarkers (COL8A1, FRMD6,
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Table 4 Relationship between expressionmodules with OS within gastric cancer molecular subtypes in the training dataset.

Modules Gene count MSS/TP53−(n= 107) MSS/TP53+ (n= 79) MSI (n= 68) MSS/EMT (n= 46)

HR 95%CI p-value HR 95%CI p-value HR 95%CI p-value HR 95%CI p-value

MEblack 43 0.839 0.5–1.406 0.504 1.309 0.69–2.484 0.41 0.873 0.376–2.027 0.752 0.759 0.381–1.511 0.433

MEblue 404 1.063 0.635–1.78 0.815 0.823 0.435–1.557 0.55 0.779 0.341–1.779 0.553 0.865 0.435–1.72 0.678

MEbrown 342 1.128 0.674–1.887 0.648 1.403 0.737–2.673 0.303 1.835 0.791–4.257 0.157 1.903 0.949–3.817 0.07

MEgreen 113 1.765 1.043–2.99 0.034* 0.961 0.505–1.826 0.903 1.384 0.603–3.177 0.444 0.491 0.241–1.001 0.05*

MEred 95 0.69 0.411–1.158 0.16 1.512 0.794–2.878 0.209 0.852 0.367–1.975 0.709 1.003 0.505–1.992 0.993

MEturquoise 1,059 1.452 0.863–2.443 0.16 0.861 0.456–1.629 0.646 2.174 0.919–5.142 0.077 2.485 1.205–5.124 0.014*

MEyellow 236 0.82 0.49–1.375 0.452 1.027 0.542–1.945 0.936 0.665 0.287–1.539 0.34 0.63 0.314–1.2 0.193

Notes.
*p≤ 0.05.
**p≤ 0.01.
***p≤ 0.001.
Overall survival (OS). Hazard ratios (HRs), 95% confidence intervals (CI), and p-values were calculated using Cox proportional hazards regression analysis after grouped the gastric cancer patients by the
median of gene level.
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Table 5 Relationships between hub genes in module brown with OS within GCmolecular subtypes in the training dataset.

Gene MSS/TP53−(n= 107) MSS/TP53+ (n= 79) MSI (n= 68) MSS/EMT (n= 46)

HR 95%CI p-value HR 95%CI p-value HR 95%CI p-value HR 95%CI p-value

COL8A1 0.983 0.587–1.644 0.947 0.967 0.511–1.83 0.918 2.19 0.927–5.176 0.074 2.216 1.104–4.447 0.025*

FRMD6 1.092 0.652–1.83 0.738 1.242 0.655–2.356 0.506 2.822 1.156–6.888 0.023* 1.562 0.781–3.123 0.207
DDR2 1.208 0.721–2.024 0.473 1.18 0.622–2.239 0.612 1.776 0.767–4.109 0.18 1.934 0.956–3.909 0.066
LOC100505881 1.104 0.66–1.848 0.706 1.336 0.701–2.546 0.379 1.116 0.492–2.531 0.793 1.276 0.642–2.536 0.487
TIMP2 0.965 0.577–1.616 0.893 1.257 0.663–2.382 0.484 2.942 1.199–7.217 0.018* 1.704 0.851–3.412 0.132
CNRIP1 1.162 0.693–1.947 0.569 1.217 0.642–2.307 0.548 2.626 1.077–6.401 0.034* 1.808 0.902–3.624 0.095
CLEC11A 1.241 0.74–2.08 0.413 1.197 0.633–2.265 0.581 1.732 0.748–4.009 0.2 1.309 0.66–2.597 0.441
MRC2 0.825 0.493–1.381 0.465 1.693 0.882–3.249 0.113 2.27 0.959–5.377 0.062 1.233 0.621–2.449 0.549
BGN 1.295 0.771–2.175 0.329 1.282 0.675–2.438 0.448 2.115 0.895–4.997 0.088 1.816 0.913–3.612 0.089
GPR124 1.017 0.608–1.702 0.948 1.612 0.838–3.103 0.153 3.696 1.451–9.413 0.006** 1.536 0.767–3.076 0.226

Notes.
*p≤ 0.05.
**p≤ 0.01.
***p≤ 0.001.
Overall survival (OS). Hazard ratios (HRs), 95% confidence intervals (CI), and p-values were calculated using Cox proportional hazards regression analysis after grouped the gastric cancer patients by the
median of gene level.
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Figure 8 The correlation of the five hub gene expressions with pathological stage (A–E) andmolecu-
lar subtypes (F–J) in the training dataset. T -test was used to evaluate the statistical significance of differ-
ences.

Full-size DOI: 10.7717/peerj.8504/fig-8

TIMP2, CNRIP1, and GPR124) suggestive of a GC prognosis. This approach could be
applied to personalized therapies. However, large-scale randomized controlled clinical
trials and replication experiments are required to evaluate the possible molecular signatures
to predict survival and to use these hub genes in a clinical setting.
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Figure 9 Gene set enrichment analysis of the five hub genes in the brownmodule. Pathway enriched in
the focal adhesion (A), hypertrophic cardiomyopathy HCM (B) and dilated cardiomyopathy (C).

Full-size DOI: 10.7717/peerj.8504/fig-9

Abbreviations

GC gastric carcinoma
WGCNA weighted gene co-expression network analysis
TCGA The Cancer Genome Atlas
KEGG Kyoto Encyclopedia of Genes and Genomes Pathway
GO gene ontology
GSEA gene set enrichment analysis
OS overall survival
DFS disease-free survival
MAD median absolute deviation
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