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ABSTRACT
Background: The gray snapper (Lutjanus griseus) has a tropical and subtropical
distribution. In much of its range this species represents one of the most important
fishery resources because of its high quality meat and market value. Due to this,
this species is vulnerable to overfishing, and population declines have been observed
in parts of its range. In recent decades, it has been established that knowing the level
of genetic connectivity is useful for establishing appropriate management and
conservation strategies given that genetic isolation can drive towards genetic loss.
Presently the level of genetic connectivity between subpopulations of L. griseus of the
southern region of the Gulf of Mexico and the Caribbean Sea remains unknown.
Methods: In the present study we analyze genetic structure and diversity for seven
subpopulations in the southern Gulf of Mexico and the Mexican Caribbean Sea. Eight
microsatellite primers of phylogenetically closely related species to L. griseus were
selected.
Results: Total heterozygosity was 0.628 and 0.647 in the southern Gulf of Mexico
and the Mexican Caribbean Sea, however, results obtained from AMOVA and
RST indicated a lack of genetic difference between the major basins. We also found
no association between genetic difference and geographic distance, and moderately
high migration rates (Nm = > 4.1) suggesting ongoing gene flow among the
subpopulations. Gene flow within the southern Gulf of Mexico appears to be stronger
going from east-to-west.
Conclusions:Migration rates tended to be higher between subpopulations within the
same basin compared to those across basins indicating some regionalization. High
levels of genetic diversity and genetic flow suggest that the population is quite large;
apparently, the fishing pressure has not caused a bottleneck effect.
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INTRODUCTION
Establishing effective fisheries regulations is a complex and multidisciplinary task
(INAPESCA, 2012). In recent decades, it has been determined that delineating stock
boundaries and knowing the level of genetic connectivity among stocks is useful for
establishing appropriate management and conservation strategies (Villegas Sánchez et al.,
2014). Improper management can lead to genetic diversity loss and increased inbreeding
within genetically isolated populations with negative effects for the survival of the
populations (Urbiola-Rangel & Chassin-Noria, 2013; Villegas Sánchez et al., 2014). With
the use of genetic markers, diversity and the level of genetic connectivity can be estimated
between populations at different geographic scales.

The Gray snapper (Lutjanus griseus) is an economic and ecologically important fishery
species and can be highly abundant throughout its range, yet there is a paucity of
information for its fishery management (Lindeman et al., 2016). Gray snapper fisheries are
subjected to fishery regulations in some countries, for example, in the Everglades National
Park, United States, a catch limit of 10 individuals per person was established in the 1970’s
(Claro & Lindeman, 2008). In Cuba the fishery is closed in June, during the breeding
season (Claro & Lindeman, 2008). Nevertheless, in Mexico, although it’s being captured by
fishers, it has not been classified as overexploited or subjected to fishery overexploitation,
thus no closed season or other regulation has been established (INAPESCA, 2018); this
lack of regulation could place populations at risk in the future (Costello et al., 2012).

The gray snapper presents a wide distribution from North Carolina, United States to
southern Brazil, in the countries where it is found it represents an important reef fishery
resource because of its high quality meat and market value (Claro & Lindeman, 2008).
The gray snapper is a predator that feeds on a wide variety of organisms in different
habitats including estuaries, mangroves and seagrass beds, whereof changes in their
populations have great impacts in other elements of the community (Claro & Lindeman,
2008; Rocha & Molina, 2008). Migratory movements of adult individuals are mainly local
and sexual maturity occurs when they are 1 year old reaching a total length between
260 and 280 mm. The pelagic larval period of this species is 25–26 days and larval
settlement has been recorded between 30 and 40 days after hatching (Claro & Lindeman,
2008). Its large geographic range and month-long larval duration indicate that connectivity
among populations may be widespread.

Despite its importance as a fisheries species, there is relatively little knowledge about the
stock structure of gray snapper, however stocks appear to be declining in some places.
Commercial landings in the US South Atlantic region (North Carolina to Florida) have
been declining since the 1950’s and populations in the Florida Keys are thought to be
potentially over-fished (Ault, Bohnsack & Meester, 1998). In Cuba, gray snapper is
abundant; however, fisheries landings have declined over the past 30 years as have
spawning aggregations (Claro et al., 2009). In Mexico, there is currently no information
about stock structure and gray snappers are caught in a mixed stock fishery (FAO, 2011;
SAGARPA, 2012), the health of which is not well known. There are few population
genetics studies for the gray snapper and only one study related to genetic connectivity
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exists (Gold et al., 2009). The authors looked at genetic structure at a scale of 2,400 km in
the north of the Gulf of Mexico and the U.S. Atlantic using microsatellites, reporting the
existence of genetically different populations and a decrease in their effective size from
east to west presumably driven by ocean currents. They recommended that these
populations be treated as independent stocks for effective management of the fishery.
However, there have been no studies of genetic structure or connectivity of gray snapper in
the southern Gulf of Mexico or Mexican Caribbean.

In Mexico, we hypothesize that there may be genetic differences between the
populations of gray snapper in the Mexican Caribbean and the southern Gulf of Mexico.
Prior studies have shown that there is genetic differentiation between these major basins in
other taxa. Blacktip sharks (Carcharhinus limbatus), a low dispersal species, show
strong genetic differentiation between the Mesoamerican Barrier Reef System and the
southern Gulf of Mexico (Keeney et al., 2005). The bicolor damselfish (Stegastes partitus), a
high dispersal reef fish (Hogan et al., 2012), has shown evidence of a weak restriction
in gene flow between the Mexican Caribbean and southern Gulf of Mexico (Villegas
Sánchez et al., 2014). Similarly, the lionfish (Pterois volitans), the most studied invasive
species, has been reported as having significant genetic differentiation between both
regions, which suggests a phylogeographic break (Labastida-Estrada et al., 2019).
The objective of this study is to determine the diversity and genetic connectivity among
seven subpopulations of gray snapper in the southern Gulf of Mexico and Mexican
Caribbean Sea.

MATERIALS AND METHODS
Study area
Two regions were studied: (1) Gulf of Mexico, with the subpopulations Campeche (C),
Puerto de Veracruz (PV) and Tuxpan (TX); (2) Mexican Caribbean Sea, with the
subpopulations Bahia de Chetumal (BC), Xahuayxol (X), Punta Herrero (PH) and
Chiquilá (CH) (Fig. 1). Our seven sampling sites are distributed along approximately
1,950 km of coast between the Caribbean Sea and southern Gulf of Mexico. The Gulf of
Mexico region possesses an extensive continental shelf with a diversity of ecosystems like
wetlands, the largest area of mangroves in Mexico, coastal dunes and coral reefs with a
tropical and subtropical climate (Lara-Lara et al., 2008). The Mexican Caribbean region
with a narrow continental shelf is located in the Southeast of Mexico, with a warm
subhumid climate and an annual average temperature of 26 �C and a mean annual
precipitation of 1,300 mm (Lara-Lara et al., 2008).

Fish sampling and sample storage
Muscular tissue was taken from the base of the caudal fin of 348 organisms captured by
fishermen (50 samples per site, except for the X site, with 48 samples; SEMARNAT
approved the field study with the number: 23/K4-0002/05/18). The sampling was carried
out during November and December 2016 for the Mexican Caribbean Sea region, and
during the same months 2017 for the Southern Gulf of Mexico region. Such periods were
chosen in order to only catch resident individuals so as not to bias the estimates of
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gene flow, given that the migration of the gray snapper occurs from May to October
(Claro & Lindeman, 2008; Espinoza Ávalos, 2009). All samples were preserved in 95%
ethanol and stored at −5 �C for transportation and laboratory storage prior to DNA
extraction.

DNA isolation
DNA was isolated with the Qiagen DNeasy Blood & Tissue Kit following manufacturer’s
protocols. DNA concentration and quality was verified using a spectrophotometer
(Thermo Scientific NanoDropTM 2000, Waltham, MA, USA).

Molecular markers
Microsatellites are commonly used DNA markers in genetic diversity studies because they
present greater number of polymorphs (allelic variation) per locus than other markers.
This feature makes them more sensitive to changes in size, structure and dispersion rate of
populations (Goldstein & Schlötterer, 1999). Additionally, microsatellites are co-dominant
markers which allow to distinguish between homozygous and heterozygous individuals
(Estoup et al., 1998; Goldstein & Schlötterer, 1999).

Eight microsatellite primers were selected from published literature of phylogenetically
closely related species to L. griseus, which were selected for their high levels of
polymorphism and their ability to amplify in L. griseus. Seven loci were developed from the
red snapper (Lutjanus campechanus) while one locus (Ra1) was developed from the
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Figure 1 Geographic location of the seven sampling sites. Full-size DOI: 10.7717/peerj.8485/fig-1
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vermillion snapper (Rhombloplites aurorubens) (Gold, Pak & Richardson, 2001; Renshaw
et al., 2007).

Genotyping
Genomic DNA was amplified by polymerase chain reactions carried out in a total volume
of 10 µL, the solution contained 5.40 µL of H2O, 2.0 µL of green buffer, 0.8 µL of
MgCl2, 0.125 µL dNTP, 0.25 µL of primer forward, 0.30 µL of primer reverse, 0.04 of
Taq-polymerase and 1 µL (5 ng) of DNA extract. The Eppendorf thermocycler was
programed with an initial denaturing cycle at 95 �C for 2 min, followed by 45 cycles of
a denaturing step at 95 �C for 30 s, followed by an annealing step (temperature varied
depending on the microsatellite; Table 1) for a period of 30 s, and a final elongation step at
72 �C for 40 s.

Allele sizes were estimated using a DNA fragment analyzer (ABI 3730xl DNA).
We used ABI DS-33 dye set with G5 filter set. Forward primers were dye labeled with
either 6-FAM, VIC, NED or PET dye labels; GS-600 standard set was used with LIZ dye.
This protocol allowed the detection of several PCR products at the same time by

Table 1 Genetic diversity of the gray snapper (Lutjanus griseus) in the southern Gulf of Mexico.

Sites Lca20
58 �C

Lca43
56 �C

Prs260
56 �C

Ra1
58 �C

Lca107
48 �C

Prs137
54 �C

Prs275
54 �C

Prs328
54 �C

Mean

C Na 5 2 7 9 8 9 4 3 5.875

AE 3.814 1.259 5.300 2.312 2.970 5.545 2.784 2.220 3.275

Ho 0.720 0.186 0.837 0.542 0.327 0.531 0.500 0.600 0.530

He 0.745 0.208 0.820 0.573 0.670 0.828 0.647 0.555 0.631

FIS 0.034 0.106 −0.021 0.056 0.515 0.362 0.229 −0.082 0.150

Fa 0.012 0.042 0.022 0.019 0.236 0.176 0.112 0.045 0.083

PV Na 5 2 11 8 6 11 5 4 6.500

AE 3.295 1.350 5.938 2.140 2.828 5.598 2.860 2.261 3.284

Ho 0.574 0.265 0.660 0.449 0.378 0.522 0.740 0.500 0.511

He 0.704 0.262 0.840 0.538 0.654 0.830 0.657 0.563 0.631

FIS 0.186 −0.013 0.216 0.167 0.425 0.374 −0.128 0.114 0.168

Fa 0.087 0.012 0.104 0.073 0.190 0.179 0.074 0.050 0.096

TX Na 4 2 9 9 8 8 6 4 6.250

AE 3.465 1.227 5.128 2.211 3.952 3.468 3.149 2.318 3.115

Ho 0.796 0.147 0.700 0.531 0.479 0.362 0.520 0.520 0.507

He 0.719 0.187 0.813 0.553 0.755 0.719 0.689 0.574 0.626

FIS −0.109 0.218 0.140 0.041 0.368 0.500 0.247 0.095 0.188

Fa 0.062 0.079 0.067 0.043 0.177 0.242 0.117 0.047 0.104

Ht 0.720 0.217 0.819 0.552 0.693 0.796 0.667 0.559 0.628

FIS 0.026 0.079 0.103 0.077 0.425 0.399 0.108 0.033 0.156

Notes:
Values in bold indicate significant deviations with respect to the Hardy Weinberg Equilibrium after applying the false
discovery rate. Numbers below primer names are the annealing temperatures.
Na, Number of alleles; AE, number of effective alleles; Ho, observed heterozygosity; He, expected heterozygosity; FIS,
fixation index; Fa, frequency of null alleles; Ht, total heterozygosity; C, Campeche; PV, Puerto de Veracruz; TX, Tuxpan.
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fluorescence emission. Fragment sizes were estimated using GeneMarker� software
(SoftGenetics, State College, PA, USA).

Polymorphism analysis and genetic diversity
Using the Microsatellite Toolkit software (Park, 2008), the Polymorphic information
content (PIC) was calculated, which is an indicator of the marker quality and the degree of
polymorphism in genetic cartography studies. Values of PIC higher than 0.5 indicate
that the marker is highly informative, values from 0.25 to 0.5 are related to markers
moderately informative and values below 0.25 indicate that the marker is slightly
informative (Botstein et al., 1980). Genetic diversity was calculated as the number of alleles
(Na) and effective number of alleles (AE); the latter defined as the alleles with the capacity
of passing to the next generation (Kimura & Crow, 1964). Observed heterozygosity
(Ho), expected heterozygosity (He) and total heterozygosity (Ht) were also calculated.
Heterozygosity is a measure used to know the diversity of a locus and is defined as the
probability that upon selecting two loci, both will be different (Cabrero & Camacho, 2002).
These analyses were carried out with the GenAlex 6.5 software (Peakall & Smouse,
2012). The frequency of null alleles (Fa) was also estimated, considering that markers
exceeding a 0.2 value should be excluded from further analyses (Dakin & Avise, 2004).
This analysis was carried out using the MicroChecker 2.2 software (Van Oosterhout et al.,
2004).

Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD)
Wright’s Fixation Index (FIS) was used to test if the allelic frequencies conformed to the
HWE (Cockerham & Weir, 1984). The FIS and p values were calculated in the Arlequin
3.5 software (Excoffier & Lischer, 2010). LD between loci pairs was evaluated considering
all individuals as a single subpopulation. LD indicates the association between loci
pairs given that some alleles don’t segregate in an independent manner. This was carried
out using the Arlequin 3.5 software (Excoffier & Lischer, 2010) and the false discovery rate
(Benjamini & Yekutieli, 2001) was applied to multiple tests of HWE and LD.

Genetic structure
Genetic differences between subpopulation pairs were evaluated using the Wright Index
(FST) (Cockerham & Weir, 1984). Given that in the present study no subpopulation had a
mean of He higher than 0.9, it was not necessary to standardize FST, as the range of
this index tends to becomes very small when He is large (Meirmans & Hedrick, 2011).
The RST index was estimated given that it is analogous to the FST index, nevertheless,
this index is the one that best reflects the mutation pattern of the microsatellites (Slatkin,
1995). This index was estimated between subpopulation pairs. The RST were calculated
using the Arlequin 3.5 software (Excoffier & Lischer, 2010).

The effective population size (Ne) and the number of effective migrants per generation
(Nm) were estimated using the population parameter theta (θ) and the migration
parameter (M) was calculated between subpopulation pairs. The analyses were carried out
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using the Maximum Likelihood Estimation with ten short chains and one long chain with
50,000 and 500,000 genealogies respectively at a constant mutation rate using the Migrate
3.6 software (Beerli, 2016).

To measure the degree of genetic among subpopulations at different hierarchic levels
(between regions, among subpopulations and among individuals and within individuals)
an Analysis of Molecular Variance (AMOVA) was carried out using Arlequin 3.5 software
(Excoffier & Lischer, 2010).

Isolation-by-distance
An association between genetic difference (FST) and the geographic distance can indicate
restricted gene flow. We tested for this association with the Mantel test (Aguirre-Planter,
2007) using the GenAlex 6.5 software (Peakall & Smouse, 2012).

RESULTS
Genetic diversity
A total of 73 different alleles were recorded. The markers that resulted with the highest Na

values were Prs260, Ra1, Lca107 and Prs137 (with 15, 13, 10 and 11 alleles, respectively).
Based on the PIC results, six microsatellites were considered to be highly informative
given that they exceed the 0.5 value, locus Prs320 (0.469) was medium level and locus
Lca43 (0.239) was poorly informative (Table 2).

Mean number of effective alleles (AE) varied among subpopulations, between
3.115 (TX) and 3.384 (X). Higher values were observed in the Mexican Caribbean Sea
subpopulations. He mean values for the Gulf of Mexico varied between 0.626 and 0.631
(Table 1), with the highest mean values in subpopulations C and PV (He = 0.631 both).
He mean values observed in the Mexican Caribbean Sea region ranged between 0.641
and 0.655 (Table 2), with the highest mean values in subpopulations X and PH (0.650 and
0.655, respectively). Ht values were similar for the Gulf of Mexico and the Mexican
Caribbean Sea, with mean values of 0.628 and 0.647 respectively.

Genetic structure
Microsatellites that showed a significant deviation to the HWE in at least one
subpopulation were Lca107, Prs137, Prs260 and Prs275 (Tables 1 and 2). In the LD
results, no marker showed a significant LD after applying the false discovery rate from a
total of 28 comparisons, meaning that the eight microsatellites were inherited in an
independent manner. The mean frequency of null alleles for each subpopulation was
between 0.045 and 0.104 (Tables 1 and 2) with no marker exceeding 0.2 of the null alleles.
Given this, no marker or subpopulation was excluded from the diversity and genetic
structure analyses.

Pairwise values of FST ranged between 0.003 and 0.008 (Table 3), which indicates
that the difference in the allelic frequencies between subpopulations are minimal.
The highest values were between CH and both BC and TX (0.008). In subpopulation
pairwise comparison, the FST and RST (Table 3) showed no significant difference.
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In the genetic flow estimation usingNm values a variation from 4.1 to 25.2 was observed.
High levels of connectivity were observed in all sites (Table 3).

Ne values varied from 1,922 and 3,799 individuals where the highest values were
observed in X and PH with 3,799 and 3,686 respectively (Table 4). Per generation
migration rates (M) ranged between 1.3 and 11.2. Highest values were observed in the pairs
CH–C (8.5), C–PV (10.0), and PV–TX (11.2) (Table 4).

The highest variation registered by AMOVA was within individuals (PV% = 98.22).
The FIS value was 0.017, which suggests that the subpopulations present in the studied
regions constitute a panmictic population. The FCT and FSC values indicated no genetic
structure (Table 5).

Table 2 Genetic diversity of the gray snapper (Lutjanus griseus) in the Mexican Caribbean Sea.

Sites PIC Lca20
0.661

Lca43
0.239

Prs260
0.807

Ra1
0.561

Lca107
0.659

Prs137
0.774

Prs275
0.602

Prs328
0.469

Mean
0.597

BC Na 4 3 10 11 7 8 5 3 6.375

AE 3.208 1.446 5.654 2.407 3.480 5.013 2.939 2.224 3.296

Ho 0.766 0.326 0.833 0.612 0.837 0.776 0.708 0.510 0.671

He 0.696 0.312 0.832 0.591 0.720 0.809 0.667 0.556 0.648

FIS −0.102 −0.047 −0.002 −0.037 −0.164 0.042 −0.063 0.083 −0.036

Fa 0.057 0.041 0.007 0.037 0.126 0.010 0.040 0.041 0.045

CH Na 4 2 8 10 6 7 5 4 5.750

AE 3.476 1.403 5.020 2.666 2.807 4.754 2.944 2.262 3.167

Ho 0.766 0.348 0.813 0.592 0.548 0.689 0.708 0.500 0.620

He 0.720 0.290 0.809 0.631 0.651 0.799 0.667 0.564 0.641

FIS −0.065 −0.200 −0.004 0.063 0.161 0.139 −0.062 0.114 0.018

Fa 0.037 0.192 0.007 0.028 0.093 0.064 0.036 0.057 0.064

PH Na 4 5 11 9 7 8 5 4 6.625

AE 3.309 1.491 6.394 2.900 3.103 4.469 2.744 2.328 3.342

Ho 0.705 0.370 0.796 0.580 0.619 0.600 0.694 0.571 0.617

He 0.706 0.333 0.852 0.662 0.686 0.786 0.642 0.576 0.655

FIS 0.002 −0.112 0.067 0.125 0.099 0.239 −0.082 0.008 0.043

Fa 0.006 0.062 0.024 0.059 0.045 0.118 0.047 0.005 0.046

X Na 5 2 10 9 6 8 4 3 5.875

AE 3.700 1.402 6.011 2.515 2.926 5.193 3.137 2.192 3.384

Ho 0.766 0.265 0.851 0.673 0.500 0.804 0.531 0.500 0.611

He 0.738 0.290 0.843 0.609 0.671 0.816 0.688 0.550 0.650

FIS −0.039 0.085 −0.010 −0.108 0.259 0.015 0.231 0.091 0.066

Fa 0.029 0.035 0.013 0.052 0.121 0.005 0.107 0.041 0.050

Ht 0.712 0.303 0.833 0.619 0.679 0.799 0.666 0.564 0.647

FIS −0.062 −0.080 0.003 0.004 0.070 0.096 −0.002 0.063 0.012

Notes:
Values in bold indicate significant deviations with respect to the Hardy Weinberg Equilibrium after applying the false
discovery rate. Numbers below primer names are Polymorphic information content (PIC).
Na, number of alleles; AE, number of effective alleles; Ho, observed heterozygosity; He, expected heterozygosity; FIS,
fixation index; Fa, frequency of null alleles; Ht, total heterozygosity; BC, Bahia de Chetumal; CH, Chiquilá; PH, Punta
Herrero; X, Xahuayxol.
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Isolation-by-distance
The coefficient of determination from the Mantel test was 0.0221 and the coefficient of
correlations was 0.149 (p = 0.517), therefore, we found no relationship between the genetic
and geographic distances.

Table 3 Pairwise values of FST, RST indexes between subpopulations and number of effective
migrants per generations (Nm).

Spop FST RST Nm

p SE±

C PV 0.006 0.432 0.006 11.5

C TX 0.006 0.648 0.005 5.6

C BC 0.005 0.620 0.005 5.7

C CH 0.007 0.630 0.005 16.9

C PH 0.006 0.736 0.005 6.1

C X 0.006 0.375 0.004 6.8

PV TX 0.005 0.804 0.004 16.7

PV BC 0.005 0.410 0.005 6.3

PV CH 0.005 0.398 0.005 8.9

PV PH 0.006 0.162 0.003 17.0

PV X 0.003 0.759 0.004 7.8

TX BC 0.006 0.881 0.003 4.5

TX CH 0.008 0.315 0.004 5.2

TX PH 0.007 0.407 0.005 4.1

TX X 0.007 0.328 0.004 6.6

BC CH 0.008 0.200 0.004 14.9

BC PH 0.005 0.664 0.005 13.2

BC X 0.006 0.121 0.003 8.1

CH PH 0.005 0.333 0.005 13.3

CH X 0.003 0.671 0.005 10.1

PH X 0.005 0.099 0.003 25.2

Note:
Spop, subpopulations; p, p-value; SE, the standard error; C, Campeche; PV, Puerto de Veracruz; TX, Tuxpan; BC, Bahia de
Chetumal; CH, Chiquilá; PH, Punta Herrero; X, Xahuayxol.

Table 4 Values of the migration parameter M. In the diagonal cross section appear estimations of
effective population sizes (Ne).

C+ PV+ TX+ BC+ CH+ PH+ X+

C 2,439 10.0 2.2 1.9 8.5 3.2 1.7

PV 2.2 1,975 11.2 2.9 3.1 3.4 3.0

TX 2.8 6.4 3,058 1.9 3.0 1.7 2.8

BC 3.7 4.0 2.1 2,549 7.3 6.8 2.0

CH 11.2 8.4 1.9 9.7 1,922 5.2 3.0

PH 2.0 9.7 1.3 4.3 6.3 3,686 8.4

X 3.4 3.5 2.1 4.0 5.1 8.4 3,799

Note:
+, receiving subpopulation; C, Campeche; PV, Puerto de Veracruz; TX, Tuxpan; BC, Bahia de Chetumal; CH, Chiquilá;
PH, Punta Herrero; X Xahuayxol.
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DISCUSSION
The main objective of this study was to evaluate stock structure, connectivity, and to
estimate genetic diversity among seven subpopulations of gray snapper (L. griseus) in two
regions of the Mexican Atlantic: the Gulf of Mexico and the Mexican Caribbean Sea.
We found no significant genetic differences between basins or among subpopulations
(AMOVA: between regions and among subpopulations). Similarly, estimations of FST and
RST between subpopulation pairs were all not significant. This lack of genetic difference
indicates high genetic connectivity among all subpopulations of L. griseus along this
~1,950 km stretch of coastline. This result is also supported by the Mantel Test (p > 0.05),
which didn’t show an association between genetic differences and geographic distances.
In all cases, the number of migrants per generation (Nm) entering any given subpopulation
was greater than four, this indicates that there is unrestricted gene flow and that the
populations behave like a panmictic population, as theoretically with the migration of a
single organism (Nm = 1) allele fixation is avoided (Slatkin, 1995). However, our estimates
of M appear to be greater within basins than between basins, and in the Gulf of Mexico
region there appears to be a distinct directionality to migration, with greater M-values
between neighboring subpopulation pairs going west compared to east (Table 4; Table S1).
This suggests that despite the fact that FST based estimates of gene flow show no
regionalization, there may be some subtle patterns of reduced connectivity between basins
and perhaps a distinct directionality of gene flow in the Gulf of Mexico.

The fact that we found that connectivity may be slightly restricted between the Mexican
Caribbean and southern Gulf of Mexico is aligned with findings from previous studies of
connectivity between the regions. Blacktip sharks (C. limbatus) are known to show
strong genetic differentiation between the Mesoamerican Barrier Reef System (Caribbean)
and the southern Gulf of Mexico (Keeney et al., 2005). Additionally, bicolor damselfish
(S. partitus) also shows evidence of a weak restriction in gene flow between the Mexican
Caribbean and southern Gulf of Mexico (Villegas Sánchez et al., 2014). Our finding here
of generally greater migration rates among subpopulations within regions than across
regions further supports these studies.

Ocean currents and the biology of L. griseusmay play an important role in connectivity
among the subpopulations. A particle tracking model of a closely related species Lutjanus
analis virtual larvae carried out by Martínez, Carrillo & Marinone (2019) suggests that
the marine protected areas of the Mesoamerican Reef network are all highly connected

Table 5 AMOVA results.

df SS PV% F-statistics

Between regions 1 0.722 0.17 FCT = 0

Among subpopulations 5 8.248 0 FSC = 0

Among individuals 341 560.754 1.94 FIS = 0.019

Within individuals 348 550.500 98.22 FIT = 0.017

695 1,120.224

Note:
df, degrees of freedom; SS, sum of squares; PV%, percent variance.
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through ocean current. This species has a similar life cycle as L. griseus, therefore the
results of this project support the findings by these authors. The Yucatan current (average
speed of 1.5 m/s), which later becomes the Loop Current (Athié et al., 2011), can export
fish larvae from the Caribbean up to the Gulf of Mexico (Carrillo et al., 2015). Possibly
these ocean dynamics favor the dispersion of L. griseus larvae. In adults, migrations are
present but these are mainly local, with registered distances between 35 and 122 km
(Claro & Lindeman, 2008), and these movements are typically between inshore habitats
and shelf habitats rather than among reefs. So it is unlikely that adult movements alone are
resulting in high levels of gene flow observed in this study.

In terms of the apparent directionality of gene flow in the southern Gulf of Mexico,
studies of oceanographic connectivity in the southern Gulf of Mexico indicate that
east-gene flow from Campeche Bank to Veracruz and Tuxpan reefs is low and that
connectivity is stronger going west to east (Sanvicente-Añorve et al., 2014). The pattern of
migration observed in this study appears to contradict these previous findings (Fig. 2).
However, ocean currents in this region are complex with the presence of eddies and a
seasonal shifts in direction within the inner shelf with summer months showing flux
from east to west and winter months showing flux from west to east (Salas-Monreal et al.,
2017). The summer period of greater east to west connectivity also coincides generally
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Figure 2 Directionality of migration in the Caribbean and the Gulf of Mexico between adjacent sites.
Based on the results obtained from Migrate, lines represent migration between points; thicker lines
represent stronger levels of genetic flow and the values correspond to MLE. Abbreviations: Campeche
(C), Puerto de Veracruz (PV), Tuxpan (TX), Bahia de Chetumal (BC), Chiquilá (CH), Punta Herrero
(PH) and Xahuayxol (X). Full-size DOI: 10.7717/peerj.8485/fig-2
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with gray snapper spawning season (Domeier, Koenig & Coleman, 1996). The pattern of
east-to-west migration observed here is a feasible explanation.

The highest migration rates were between CH–C and C–PV. According to this result,
Campeche can be an important point for the connectivity between the two regions. It is
important to mention that this Mexican state has the largest extent of mangroves
(Lara-Lara et al., 2008), and it has been shown that mangroves are the principal habitats
for larvae and juveniles of L. griseus, even though they also use seagrass beds at times
(Claro & Lindeman, 2008). For successful sea dispersion, it is essential that larvae find an
adequate habitat for recruitment (Cowen, 2006). Thus, if the habitat is fragmented or
destroyed, the connectivity can be limited (Jones, Srinivasan & Almany, 2007). We also
found high migration rates between subpopulations that were apparently counter to the
flow of main currents (e.g., C–CH, CH–BC and PH–X). This could be due to displacing
reproductive aggregations that occur between the months of June and August around the
new moon on the shelf border with a duration period of 8–10 days (Claro & Lindeman,
2008). Moreover, it has been reported periods of a coastal countercurrent over the shelf
(Carrillo et al., 2017) that could promote migrations as it was found in our results.

The effective population sizes estimated from Migrate (θ) were large, however, they
must be considered with some caution, especially when interpreting for management
and conservation issues. The mutation rate that is, considered for the Ne calculation can
create a bias with different values with several orders of magnitude. It is suggested that
the values of Ne should only be taken as comparative ones between sampled sites rather
than a true point estimate (Beerli, 2016).

Genetic diversity in these populations was high (Ht general average = 0.640; PIC general
average = 0.597). According to the PIC, the microsatellites used are highly informative
and polymorphic (Botstein et al., 1980). The number of alleles per microsatellite varied
between 5 (Lca43) and 15 (Prs260), with a general mean of 6.17 (n = 8); previous studies of
L. griseus have reported means of 5.43 (n = 14) (Renshaw et al., 2007) and 7.0 (n = 14)
(Gold et al., 2009), similar to the values reported in this study. These subpopulations
appear to be similar in diversity to those of the U.S. Gulf of Mexico and southern Florida.

In this study, deviations to the HWE were observed for several loci in some
subpopulations with mean values of FIS varying from 0.066 (X) to 0.188 (TX), which
suggests a heterozygote deficit not previously reported for L. griseus. MicroChecker
indicated that the most possible cause for the significant values in the FIS index could be the
presence of null alleles. Null alleles are produced when there is a mutation in one of the
primer binding sites of the microsatellites; this prevents annealing with the designed
primer preventing the amplification of one of the alleles, resulting in a false homozygote
(Estoup et al., 1998; Chapuis & Estoup, 2007). Such condition is frequent in microsatellites
given their high levels of polymorphism. This has been reported in various species
especially in populations with high effective size (Neff & Gross, 2001; Chapuis & Estoup,
2007). Additionally, fish have a high mutation rate in comparison with other classes
(reptiles, birds, amphibians and mammals), because they have larger microsatellites
and length is an important factor that influences mutation rate (Neff & Gross, 2001).
There are ecological explanations for deviations from HWE including inbreeding and
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genetic drift. The deficiency in this case is unlikely to be explained by inbreeding due
to the reproductive habits of L. griseus, given that they form aggregations and in
these, gametes are simultaneously released to be fertilized (Claro & Lindeman, 2008).
However, heterozygote excesses have been explained by sweepstakes recruitment in
marine organisms with small pelagic larvae period and highly variable adult reproductive
success (Hedgecock, 1994) which can lead to instantaneous genetic drift.

CONCLUSIONS
The high levels of genetic diversity, similar to those observed in other gray snapper
populations from the northern Gulf of Mexico, as well as the high levels of gene flow in
general, suggest that L. griseus constitutes a single genetic population in the Mexican
Caribbean and the southern Gulf of Mexico. The absence of population bottlenecks or
disturbances on its connectivity across this large region should be taken into account to
define a proper management for the stock. More work is needed to verify the connectivity
and the apparent unidirectionality in gene flow in the southern Gulf of Mexico (east-to-
west). The next priority for understanding gray snapper populations in the Western
Atlantic is to determine the degree of connectivity between Mexican populations and the
northern Gulf of Mexico and between Mexico and Cuba.
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