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Preliminary observations on the mandibles of palaemonoid
shrimp (Crustacea: Decapoda: Caridea: Palaemonoidea)

Christopher W Ashelby, Sammy De Grave, Magnus L Johnson

The mandibles of caridean shrimps have been widely studied in the taxonomy and
functional biology of the group. Within the Palaemonoidea the mandibles reach a high
level of structural diversity reflecting the diverse lifestyles within the superfamily.
However, the majority of studies have been restricted to light microscopy, with the
ultrastructure at finer levels poorly known. This study investigates the mandible of nine
species belonging to six of the recognised families of the Palaemonoidea using SEM and
analyses the results in a phylogenetic and dietary framework. The results of the study
indicate that little phylogenetic information is conveyed by the structure of the mandible,
but that its form is influenced by primary food sources of each species. With the exception
of Anchistioides antiguensis, all species examined possessed cuticular structures at the
distal end of the pars molaris. Five types of cuticular structures are recognised herein,
each with a unique form, but variable in number, placement and arrangement. Each type
is presumed to have a different function which is likewise related to diet.
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Introduction

Decapod crustaceans display a wide variety of modified mouthparts that serve both mechanical
and sensory functions and have attracted the attention of taxonomists, systematicists and functional
biologists for decades (e.g. Borradaile, 1917; Fujino & Miyake, 1968; Roberts, 1968; Caine, 1975;
Coombs & Allen, 1978; Schembri, 1982; Felgenhauer & Abele, 1985; Garm & Heeg, 2001; Garm,
Hallberg & Hoeg, 2003; Garm, 2004). The semi-rigid, robust mandible has usually been attributed a
solely mechanical function in the breaking down of food prior to ingestion, but a recent study of larval
Palaemon elegans Rathke, 1837 demonstrated that it possesses a variety of sensillia (Geiselbrecht &
Melzer, 2013), suggesting that it may be more complex than previously thought. Indeed, Borradaile
(1917) in his pioneering work on the structure and function of the mouthparts of palaemonid prawns
concluded that “the mandible of the Crustacea is an exceedingly complicated, varied and interesting
organ, presenting many problems and worthy of a great deal more attention than it has received”.
Nearly a century on and the caridean mandible, although superficially described in numerous
taxonomic works, remains poorly studied at a structural level and very few studies have focussed on
the detailed morphology and potential evolutionary drivers in relation to the form of the mandible.
Recent investigations have added to our knowledge of the mandible across a range of crustacean taxa
but have largely focussed on larvae (e.g. Heral & Saudray, 1979; Casanova, De Jong & Moreau, 2002;
Tziouveli, Bastos-Gomez & Bellwood, 2011; Geiselbrecht & Melzer, 2013) or are restricted to a single
or a small number of species within a single genus or family (e.g. Fujino & Miyake, 1968; Caine,
1975; Coombs & Allen, 1978; Mielke, 1984; Felgenhauer & Abele, 1985; Hobbs, 1991; Moore,
Rainbow & Larson, 1993; Richter, 2004; Arndt, Berge & Brandt, 2005; Mekhanikova, 2010). Within
the Palaemonoidea, the two most extensive studies on mandibles focus on the genus Palaemon, using
light microscopy to examine its structure and function (Borradaile, 1917 — as Leander) and
interspecific variation (Fujino & Miyake, 1968).

Within the infraorder Caridea, the mandible is variously developed (Burukovsky, 1986) but is
frequently comprised of a pars incisivus (incisor process) and pars molaris (molar process) and may be
provided with a palp or not. Both the pars incisivus and the pars molaris are variable in form ranging
from truncated to elongate, straight to markedly curved, narrow to flared, widely separated to barely
separated and many gradations in between (Burukovsky, 1986). The distal portions of both processes

are often provided with acute or rounded lobes (‘teeth’) or ridges but may be flattened. Either the pars
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incisivus or the pars molaris may be reduced or absent or they may be fused together. Due to this
diversity in the development and form, features of the mandible have been used in the taxonomy of
caridean shrimps, particularly in families where few characters exist to differentiate genera and species,
such as in Palaemonidae. Additionally, several classifications of the Caridea have, in part, also been
underpinned by features of the mandible (Thompson, 1967; Christofferson, 1990; Chace, 1992).

In many decapods mastication largely occurs mainly in the gastric mill (Caine, 1975).
Patwardhan (1934) expressed an opinion that many carideans lack a complex gastric mill and thus the
mouthparts are correspondingly more developed, although more recent studies (e.g. Felgenhauer &
Abele, 1983) demonstrate the presence of a gastric mill in a number of caridean families. Regardless,
the mandible is involved in the initial breakdown of food and therefore has a large functional
significance and thus its’ form may provide insights into the diet or feeding mode of the species.
Indeed, species that have particular dietary regimes or feeding mechanisms tend to have
correspondingly specialised mouthparts (Caine, 1975). During feeding the pars incisivus is believed to
be mostly used in cutting and slicing of food particles into more manageable portions whilst the pars
molaris is usually thought to have a grinding function (Bauer, 2004), although Felgenhauer & Abele
(1985) found that the mandible of atyid prawns, that do possess a gastric mill, was not used for
crushing food.

Whilst previous studies on shrimps have investigated mouthpart morphology of a single genus
or species (Borradaile, 1917; Fujino & Miyake, 1968) or between genera belonging to the same family
(Felgenhauer & Abele, 1985), only the study of Storch, Bluhm & Arntz (2001) on three Antarctic
shrimps has used SEM to investigate differences across families. The present, SEM based, study was
conceived to investigate the ultrastructure of the mandible in nine species belonging to nine different
genera, across six out of seven families from the superfamily Palaemonoidea, thus covering a diversity
of form and ecology, to evaluate the potential phylogenetic significance within the superfamily and the

relationship between diet and structure.
Material and Methods
De Grave & Fransen (2011) listed eight families included within the superfamily

Palaemonoidea with the Palaemonidae further split into two subfamilies: the Palaemoninae and the

Pontoniinae. However, the family Kakaducarididae has been recently synonymised with the
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77 Palaemonidae (see Short, Humphrey & Page, 2013) leaving seven valid families. Three of these

78 families are monogeneric (Anchistioididae, Desmocarididae and Typhlocarididae) whilst the highest
79  diversity of both morphology and lifestyle is found in the subfamily Pontoniinae. No members of the
80 Typhlocarididae were available for destructive examination via SEM and references to the morphology
81 of the mandible in Typhlocaris are based on descriptions in the literature (Calman, 1909; Parisi, 1921;
82 Caroli, 1923; 1924; Tsurnamal, 2008). Despite several attempts to process left mandibles of

83  Euryrhynchus, none survived the sonication stage intact and therefore observations are based on the
84  right mandible only. All specimens studied are held in the Zoological Collection of the Oxford

85  University Museum of Natural History (OUMNH.ZC) with details included in Table 1.

86 The methods used for preparation of tissue follow those established by Martin, Liu & Striley
87 (2007) and De Grave & Goulding (2011). Mandibles were carefully dissected from specimens stored
88 in 75% ethanol. After removal mandibles were passed through a graded ethanol series to distilled

89  water, subjected to brief (5-15 seconds) sonication using a light surfactant, then re-hydrated in graded
90 ethanol to 100%, with drying done via the HMDS (hexamethyldisilazane) method. Dried specimens
91 were coated with a gold-palladium mixture in a Polaron ES000 coating unit and observed in a JEOL

92  JSM-5510 microscope.

93 Terminology of the teeth on the pars molaris refers to their position in situ (see Fujino &

94  Miyake, 1968), with setal definitions following Garm (2004).

95

96 Results

97

98 Salient features of each mandible structure are outlined in Tables 2-5 and illustrated in Figs. 1-

99  7; only comparative remarks are detailed below.
100 The most common form of mandible of those species studied is bipartite, with a well developed
101 pars incisivus and pars molaris (Table 2). Only in Hymenocera picta (Tables 2 and 3; Fig. 4D) is the
102 pars incisivus absent whilst in Gnathophyllum elegans (Tables 2 and 3; Fig. 5A) it is reduced to a
103 vestigial process. In all other species the structure of the pars incisivus is similar (Table 3) being
104 flattened and provided with teeth distally. In Pontonia pinnophylax, a series of denticles is also present
105 along the posterior margin (Table 3; Figs. 3A and 3C).
106 A mandibular palp is present only in Palaemon macrodactylus (Table 2) and Macrobrachium

107  nipponense (Table 2; Fig. 2C). In both these species the structure of the palp is similar, being three
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segmented (but see Fujino & Miyake, 1968 for discussion on variation in this character in P.
macrodactylus), with the distal segment being more slender and slightly longer than the basal and
penultimate segments. Distally-serrulate setae are present (Fig. 1D) on all segments of the palp but
most numerous on the distal segment.

A great diversity of form is present in the pars molaris. In all species examined, the pars
molaris is well developed and ranges from rounded (P. macrodactylus, M. nipponense, Periclimenaeus
caraibicus, H. picta), oval (G. elegans, Desmocaris bislineata, Euryrhynchus wrzesniowskii), slightly
squared (P. pinnophylax, Anchistioides antiguensis right) to roughly triangular (4. antiguensis left) in
cross-section. Most are roughly parallel sided but those of H. picta and G. elegans are strongly curved,
that of D. bislineata has convex lateral margins and in A. antiguensis the pars molaris is strongly flared
distally. Teeth are present distally on most mandibles (Palaemon, Figs. 1A and 1E; Macrobrachium,
Figs. 2A and 2C-D; Pontonia, Figs. 3B and 3D; Anchistioides, Figs. TD-F; Hymenocera, Figs. 4E-F;
Gnathophyllum, Fig. 5D), whilst in others these are fused to form lip-like structures (Euryrhynchus,
Figs. 7A-B; Periclimenaeus, Figs. 4A-C) and in Desmocaris no teeth are present and the distal end is a
ridged plate (Figs. 6A-B and 6D-F). The form of the teeth is highly variable with spine-like teeth
being present in Hymenocera (Figs. 4E-F), a blade like tooth being present in Gnathophyllum (Fig. 5D)
and more lobate teeth present in the other species. The lobate teeth may be reduced to low mounds or
massively produced with the tips entire or bifid as well as all gradations in between. Significant
differences in the arrangement and structure of the teeth are also noted between the left and right
mandibles. Typically four teeth are present although in some species these are modified such that they
are difficult to discern.

In addition to the teeth and cusps mentioned above, the distal end of the pars molaris of most
mandibles examined here were found to be covered, to a greater or lesser degree, by numerous
filamentous structures, which are flexible to semi-rigid and frequently developed into rows (Figs. 1B-
C, 1F, 2A-B, 3E, 3F, 4B-C, 4E-F, 5A-D, 6A-F and 7A-C). The individual filaments do not conform to
any described form of seta nor to the definitions of setae in Watling (1989) or Garm (2004), in
particular lacking a complete basal articulation and a continuous lumen. The arrangement, placement
and ultra-structure of these cuticular structures (CS) is highly variable, but can be broadly classified
into five types.

Type I CS are semi rigid, parallel sided or slightly tapered distally and between 40 and 60 pm
long and 3-6 um wide and tend to form rows. They are found in Palaemon (Figs. 1B-C and 1F),
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Macrobrachium (Figs. 2A-B and 2D), Pontonia (Figs. 3B and 3D-F) and Euryrhynchus (Figs. 7A-C).
In Euryrhynchus shorter structures are also present (Fig. 7C), but these appear structurally similar to
Type I and are herein regarded as the same type.

Type II CS are found only in Periclimenaeus. These appear more rigid and slightly stouter than
Type I structures and form tufts rather than rows (Figs. 4B-C).

Type III CS are found in Gnathophyllum. They are approximately 60 um long and 5 um wide,
highly flexible, taper strongly distally with a “feathered” inner margin and have a weak constriction
basally (Figs. SA-D). They form a dense covering over the entirety of the distal end of the pars
molaris.

Type IV CS (Figs. 4E-F) are very similar to Type III differing chiefly in lacking a feathered
inner margin and a weak basal constriction. They are exclusively found in Hymenocera.

Type V CS are unique to Desmocaris and are the most highly modified. They comprise about
12 finger-like projections arising from a basal column (Figs. 6B-D and 6F). No cuticular structures
were observed on the mandibles of Anchistioides antiguensis. The details of the positioning and
arrangement of the structures are presented in Table 5 and the figures referred to therein.

These cuticular structures have been noted in several light microscopy studies or taxonomic
descriptions (e.g. Borradaile, 1917; Fujino & Miyake, 1968; Felgenhauer & Abele, 1985; Storch,
Bluhm & Arntz, 2001; Fransen, 2006), where the elements have typically been referred to as setae or
bristles, but no detailed study of these features has been conducted to date. In some species setules are

also present on the disto-lateral margins (Figs. 4F, 6B-C and 6E-F).
Discussion

The ecology of palaemonoid shrimp ranges from freshwater to marine habitats and from free-
living species to obligate, or loose, associations with a variety of other invertebrates including
cnidarians, echinoderms, molluscs and ascidians. The diversity of lifestyles and feeding strategies
within palaemonoid shrimps has resulted in a large range of morphological adaptations, including the
mouthparts and they therefore provide an ideal model group to propose hypotheses related to the
evolution of these structures. The hypotheses addressed here were that the structure of the mandible
should convey information on the species’ diet and/or may potentially shed light on the phylogenetic

relationships of the taxa.
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Whilst there is considerable variation in the mandible of palaemonoid shrimps noted in the
literature, the most common form of mandible across the superfamily is with both a well-developed
pars inscisivus and pars molaris, with a mandibular palp being absent more often than present.

When present, the pars incisivus is of fairly constant form, differing only in its robustness and
the number of distal teeth, this latter character often being also variable between the left and right
mandibles. The pars incisivus of Pontonia is the most unusual of those investigated here in bearing a
row of small denticles on the posterior border. These denticles are also present in most species of the
closely related genera Ascidonia, Dactylonia, Odontonia but not in Bruceonia (see Fransen, 2002) but
are not described in any other palaemonoid shrimp.

The gross morphology of the pars molaris is far more variable between genera than a review of
the literature would suggest. This may be partly due to oversights in descriptions or because frequently
only one mandible is described and illustrated or simply the limitations of light microscopy. The right
and left pars molaris in most cases showed significant differences in structure and are often configured
such that there is a rough interlocking between the two sides when closed as also noted by Borradaile
(1917). More startling is the wide degree of variation and intricacies in design of the cuticular
structures. As mentioned, the presence of ‘setae’ or ‘bristles’ on the pars molaris has been noted in
previous studies. However, these cursory mentions do not hint at the diversity in form, placement and

arrangement witnessed in comparatively few species examined here.
Types of mandible and their presumptive function

Based on the form of the mandible herein examined, six types (Types A-F) can be recognised,
which appear to relate to feeding mode or diet, although five of these types apply to single species only
and the link with specialised food resources would require greater taxon coverage to include other

species that share similar diets.

Type A mandible: Well developed pars incisivus and pars molaris; pars molaris distally cuspidate;
with Type I CS; encountered in Palaemon macrodactylus, Macrobrachium nipponense, Euryrhynchus
wrzesniowskii and Pontonia pinnophylax (Figs. 1, 2, 3 & 7A-C).

Palaemon macrodactylus is largely carnivorous with a preference for mysid and amphipod

crustaceans (Sitts & Knight, 1979; Siegfried, 1982; Gonzéalez-Ortegon et al., 2010; Ashelby,
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unpublished data). The specific, natural diet of Macrobrachium nipponense has not been studied but it
is likely that, as with most Macrobrachium, it is omnivorous with a tendency towards carnivory
(Jayachandran & Joseph, 1989; Mantel & Dudgeon, 2004; Short, 2004). The diet of the congeneric M.
hainanense (Parisi, 1919) is dominated by insect larvae and gastropod molluscs (Mantel & Dudgeon,
2004) and a similar diet may be assumed for M. nipponense. Although the diet of Euryrhynchus
wrzesniowskii has not been studied, Kensley & Walker (1982) provide some information on the diet of
the related E. amazoniensis Tiefenbacher, 1978, whilst Walker (2009) also gave information on the diet
of this species and E. burchelli Calman, 1907. Both species feed on a diverse prey range and can be
regarded as omnivorous with a preference for live insect larvae. The diet of Pontonia pinnophylax is
unclear. Pontonia inhabit lamellibranch bivalve, gastropod or ascidian hosts (Fransen, 2002; Marin &
Anker, 2008). Richardson et al. (1997) concluded that the most likely food sources of P. pinnophylax
were pseudofaeces (mucous-bound suspended particles rejected as food by the bivalve) or material
collecting in the mantle cavity. Similarly, Aucoin & Himmelman (2010) observed Pontonia mexicana
Guérin-Méneville, 1855 feeding on matter in mucus strings. Gut content analysis has revealed the
presence of detrital material, plant material and crustacean exuviae (Richardson et al., 1997). Finally,
Kennedy et al. (2001) concluded that Pontonia assimilated similar food to their bivalve hosts based on
similar stable isotope carbon measurements.

The hard-bodied, relatively large prey consumed by Palaemon, Macrobrachium and
Euryrhynchus would require breaking down prior to ingestion. This suggests the requirement for a
grinding mandible and the application of force. The cuspidate nature of the pars molaris of the Type A
mandible is supportive of such a grinding function. The abraded nature of many of the cuticular
structures (particularly evident in Figs. 1B-C) also supports this view. It would also be necessary for
the shrimp to sense the prey between the mandibles to know what force is being applied to the prey,
when the prey had been ground enough to ingest or when exoskeletons or shells of the prey had been
broken. This is the presumed function of the Type I CS in the Type A mandible. Type I CS are most
similar to microtrichia, which are common in crustaceans, particularly in amphipods (e.g. Steele &
Oshel, 1987; Oshel, Steel & Steel, 1988; Olyslager & Williams, 1993; Wong & Williams, 2009;
Zimmer, Araujo & Bond-Buckup, 2009; Mekhanikova et al., 2012) and have also been noted in larval
decapods (e.g. Pohle & Telford, 1981; Tziouveli, Bastos-Gomez & Bellwood, 2011). Typically
microtrichia are thought to have a sensory function (Olyslager & Williams, 1993; Wong & Williams,
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2009) and usually arise from a socket and terminate in a pore. A socket and pore are not evident in the
images used here but this may be due to the abraded nature of many of the structures (see Figs. 1B-C).

It is not clear how the presumed diet of Pontonia links to this mandible type. Assuming a
pseudofaeces or mucus diet is correct, there would not be the same requirement for grinding or
mechanosensory structures. Similarly De Jong-Moreau, Casanova & Casanova (2001) noted that
mandibular structure does not always reflect diet.

Based on examination of stomach content, Tsurnamel (2008) suggested that Typhlocaris
ayyloni feeds on bacterial mats and some small crustaceans. Feeding on bacterial mats may require
specialised feeding structures; however, Figure 2F in Tsurnamel (2008) shows a mandible of very
similar appearance to that of Macrobrachium and Palaemon which instead suggests a similar diet.
This is further supported by the sensitivity of Typhlocaris to vibration (Tsurnamel, 2008) which would
aid in prey detection. This suggests that small crustaceans may form the greater proportion of the diet
of Typhlocaris. Whether cuticular structures are present is not evident from the figures or descriptions

in any Typhlocaris species.

Type B mandible: Well developed pars incisivus and pars molaris; pars molaris distally cuspidate;
lacking cuticular structures; only encountered in Anchistioides antiguensis (Figs. 7D-F). It differs from
the Type A mandible chiefly through the lack of cuticular structures. The pars molaris is also distally
flared in which is one of the defining characteristics of the family Anchistioididae.

The only evidence as to the diet of Anchistioides was provided by Wheeler & Brown (1936)
who report the presence of ‘worm setae’ in the stomachs of two specimens of A. antiguensis. The lack
of any sensory apparatus may support preying on softer bodies animals which would require less force

to break down.

Type C mandible: Well developed pars incisivus and pars molaris; pars molaris asymmetrical with 2
acute ridges on right and tricuspid on left; with Type II CS; only encountered in Periclimenaeus
caraibicus (Figs. 4A-C). There is a considerable degree of variation in the mouthparts of
Periclimenaeus spp. reported in the literature and thus this type of mandible may not be standard for
the genus as a whole. In literature (see Holthuis, 1951; Holthuis, 1952 for examples) variation in the
development of the pars incisivus is noted as well as variation in the development or presence of

cuticular structures but this latter difference may again be attributable to oversight in the descriptions
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and figures due to difficulties observing this feature under light microscopy. The ecological and
perhaps phylogenetic significance of variation in features of the mandible amongst Periclimenaeus
species warrants further investigation.

Duris et al. (2011) report that Periclimenaeus caraibicus feeds on the host sponges, noting the
presence of spicules in the stomach and that the shrimp takes on the colour of the host sponge through
assimilation of the sponge’s pigments. The form of the mandible witnessed here is also suggestive of a
specialised diet. The multidentate, serrated form of the pars incisivus would aid in the shredding of
sponge fragments, whilst the acute nature of the ridges of the right pars molaris may also aid in
tearing. The sponge fragments may then be transferred into the groove of the right pars molaris into
which the teeth of the left pars molaris can interlock to grind the sponge down. The groove may also
help align unbroken spicules such that they enter the mouth in the correct orientation. The function
and placement of the Type II CS in this mandible is difficult to explain. They appear similar in form to
Type I CS and may therefore also be assumed to have a similar sensory function but their placement in
discrete tufts may suggest a slightly different function. It is speculated that these tufts of cuticular
structures are the vestiges of those found in Pontonia (see Figs. 3E-F) and that they only have limited
functionality.

Sponge feeding cannot be presumed to be a generalised diet for Periclimenaeus as some other
members of this genus are associates of compound ascidians (Fransen, 2006) and so presumably have

different feeding ecology which may be reflected in the form of their mandible, as discussed above.

Type D mandible: Pars incisivus strongly reduced to vestigial spine-like process; pars molaris with
single blade-like tooth distally; with Type III CS; only encountered in Gnathophyllum elegans (Fig. 5).
Type D mandibles are highly modified and display a number of unusual features, most notably the
reduction of the pars incisivus and the dense covering of Type III CS.

Little information is available on the diet of Gnathophyllum. Both Winkler (1973) and Bruce
(1982) speculate that Gnathophyllum are predatory on echinoderms, however this hypothesis has not
been confirmed. However, the highly modified form of all their mouthparts is suggestive a specialised
food resource. During feeding, shrimps use the anterior mouthparts (maxillae and maxillipeds) to hold
and manipulate food (Bauer, 2004). The operculate, calcified nature of the anterior mouthparts may
not be able to manipulate food in the same way as the more flexible mouthparts found in most of the
other genera examined here. The strongly reduced pars incisivus is suggestive that there is not a

requirement for tearing or shredding of food items and the lack of a grinding surface on the pars
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molaris indicates that there is no requirement for breaking down food. Furthermore, the mandibles of
Gnathophyllum are exceedingly small in relation to the body size of the shrimp and would be unlikely
to be able to deal with large food items. Finally, the Type III CS appear highly flexible and cilia-like.
These various adaptations would suggest that rather than large food items, Gnathophyllum feed on
small particulate matter, mucus or fluids or perhaps echinoderm tube-feet and that the Type III CS are
involved in movement of these food resources.

Although some species of Gnathophyllidae are commensal with echinoderms (Bruce, 1982),
Gnathophyllum elegans is considered free living. However, Gnathophyllum spp. do seem to form
loose associations with echinoderms (S. De Grave, pers. obs.) and Bruce (1982) reports that G.
americanum Guérin-Méneville, 1855 has been observed using its outer maxillipeds to browse on the
extended papulae on the dorsal surface of asteroids. This, combined with the modifications to the
mandible further supports the idea that Gnathophyllum feed on mucus or mucus entrapped particles, as
has also been suggested by Bruce (1982) for some other echinoderm associates such as Zenopontonia
rex (Kemp, 1922) [as Periclimenes imperator Bruce, 1967], Lipkemenes lanipes (Kemp, 1922), Z.
soror (Nobili, 1904) and Periclimenes pectiniferus Holthuis, 1952.

Type E mandible: Pars incisivus absent; pars molaris bearing two recurved spine-like teeth distally;
with Type IV CS; encountered only in Hymenocera picta (Figs. 4D-F).

This type of mandible is differentiated from the Type D mandible through the complete absence
of the pars incisivus, the presence of two recurved teeth on each mandible rather than a single blade-
like tooth, and by the form and arrangement of the cuticular structures. As in the Type D mandible the
pars molaris lacks a grinding surface.

Hymenocera and Gnathophyllum are so similar in the form of the mandible as well as their
other mouthparts (a factor that has lead to their previous inclusion in a single family) that it would be
reasonable to assume a similar diet. However, Wickler (1973) noted that Hymenocera feed exclusively
on starfish, particularly Nardoa and Linkia spp piercing the epidermis with their first pereiopods before
extracting internal tissues.

The sparse arrangement of cuticular structures would also not be as effective at moving mucus
or particles as those in the Type D mandible of Grathophyllum. It seems likely, therefore, that the
Type E mandible is a further development of the Type D mandible in response to a dietary switch in

Hymenocera (or its ancestors) from merely removing mucus from the echinoderms to actually
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predating on them. The paired teeth of the right pars molaris apparently interlink with those of the left

and may take on the slicing role normally attributed to the pars incisivus.

Type F mandible: Well developed pars incisivus and pars molaris; pars molaris distally flattened and
ridged; with Type V CS; only encountered in Desmocaris bislineata.

Type V CS are the most highly developed of all the cuticular structures noted in this study.
They in turn dictate the form of this mandible type as the finger-like projections together form the
ridged surface of the pars molaris. They appear to be flexible and may be regarded as shorter versions
of the cilia-like Type III CS. A particulate or detritivorous diet may therefore be expected. This is
consistent with the information provided by Powell (1977) who states that ‘normal feeding activity
involves exploration of the surface of dead leaves etc....most of the food probably consists of fine
particles...captive shrimps recoil from contact with live animals such as naidid oligochaetes and
chironomid larvae; however they eagerly consume dead ones and therefore do not seem to be restricted
to microphagy’. Although a strong pars incisivus is present for initial tearing, the Type F mandible
does not have obvious grinding function and it is unclear how these carrion prey items would be
broken down prior to ingestion. Another possible function for the elaborate arrangement of cuticular

structures in this mandible type is that they may help to filter particular matter.
Systematic considerations

The form of the mandible was considered by Thompson (1967) to be of significant importance
in the phylogeny of the Caridea, with the ancestral state considered to be a fused pars molaris and pars
incisivus, combined with a 3-segmented palp. Indeed, the recognition of several families, including
some incorporated in this study, has partially been justified by the form of the mandible. The ridged
nature of the pars molaris, which is presumed to be a primitive feature (Sollaud, 1911; Borradaile,
1917) is one of the characters used to define the family Desmocarididae (Borradaile, 1915; Powell,
1977) and the presence of a distally flared molar process of the mandible is one of the defining
characteristics of the family Anchistioididae (Chace, 1992). However, Fransen & De Grave (2009)
concluded that whilst the form of mandible is of considerable value in the identification of carideans,
its phylogenetic significance at the family level is uncertain. The inclusion of relatively few species in
this study, encompassing less than 1% of palaemonoid diversity, albeit from the majority of

palaemonoid families, will not uncover the complete range of forms of the mandible likely to be found
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in this group, meaning that the results of this study should be regarded as indicative rather than
absolute. Furthermore, the analysis of a single character in isolation cannot hope to resolve systematic
relationships, rather an integrative approach, including novel characters and possibly also molecular
data is advised (Li et al., 2011). Nevertheless some preliminary observations on the structure of the
mandible in relation to currently accepted phylogenies can be made.

The six mandibular types proposed here do not reflect currently accepted relationships within
the Palaemonoidea. As many of the groupings are based on single taxa they may actually imply
species specific differences or, perhaps reflect over-splitting of mandibular types in this study.

The closely related genera Palaemon and Macrobrachium have the same general structure of
the mandible (Type A); however, the other genera with this form of mandible are more difficult to
explain from a phylogenetic point of view. Pontonia shares a greater affinity to Gnathophyllum,
Hymenocera and Periclimenaeus (Mitsuhashi et al., 2007; Bracken, De Grave & Felder, 2009, Gan et
al., 2015) than to Palaemon or Macrobrachium whilst Euryrhynchus, considered to be an ancient
lineage (De Grave, 2007), represents a sister group to Desmocaris (see Bracken, De Grave & Felder,
2009). Palaemon and Macrobrachium both also possess a mandibular palp. The traditional view of
the mandibular palp is that the presence of a three segmented mandibular palp represents the primitive
condition in Caridea (Thomson, 1967) with a reduction in the number of segments and subsequent loss
in more derived lineages. However, the presence or absence of a mandibular palp has been
demonstrated to convey very limited phylogenetic information and is not a consistent character in
Palaemonidae, varying even within a species (Ashelby et al., 2012; De Grave & Ashelby, 2013).

Although classified into two different mandible types here (Type D and Type E), the mandibles
of Gnathophyllum and Hymenocera are linked through the reduction of the pars incivivus, a feature
that is variable in the gnathophyllid genus Gnathophylloides (see Chace & Bruce, 1993). Mitsuhashi et
al. (2007), Bracken, De Grave & Felder (2009) and Gan et al, 2015 based on a molecular phylogeny
demonstrated that Hymenoceridae and Gnathophyllidae represent a derived lineage within the
Pontoniinae. The mouthparts present many of the definitive morphological characters of this lineage.
The gradual reduction of the pars incisivus witnessed in the Gnathophyllidae and Hymenoceridae is
also a feature demonstrated in several Pontoniinae taxa indicating the potential plasticity of this
character within the subfamily. Reduction of the pars incisivus, although to a lesser degree, is also
noted in Calathaemon (ex-Kakaducarididae, now Palaemonidae). A gradual reduction of the pars

incisivus at family level is indicated by Burukovsky (1986) with Gnathophyllidae being intermediate in

Peer] reviewing PDF | (v2015:01:3770:0:1:NEW 10 Jan 2015)


John Short
Comment on Text
insert comma here

John Short
Comment on Text
insert comma after 'phylogeny'

Leila and John Short
Comment on Text
This is a bit ambiguous. I presume you mean in the current paper. Might be better to say "also occurs in Calathaemon". Otherwise cite reference e.g. Bruce and Short, 1993.

Calathaemon is also a monotypic genus so would be better to be more specific and refer to Calathaemon holthuisi (Strenth, 1976).

Leila and John Short
Comment on Text
Depends how you define closely related! Although they are both currently assigned to the Palaemoninae the molecular studies to date do not provide compelling evidence of a sister taxa relationship. It would be safer to say "The two genera Palaemon and Macrobrachium, currently assigned to the Palaemoninae," or something similar.   


388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

Peer]

form between Palaemonidae and Crangonidae. However, these latter families, and the
Eugonatonotidae in which the pars incisivus is also absent, are not closely related (Mitsuhashi et al.,
2007; Bracken, De Grave & Felder, 2009; Li et al., 2011) suggesting that the loss of the pars incisivus
has occurred independently several times in the evolution of the Caridea.

This study has demonstrated that the form of the mandible is much more complex than
previously thought. The traditional view that the pars molaris is used solely for the grinding of food
seems a gross oversimplification and in some species (e.g. G. elegans, H. picta) the arrangement and
form of the teeth would suggest that it does not grind at all. The form and arrangement of cuticular
structures at the distal end of the pars molaris shows a particularly high degree of variation. The five
types of cuticular structures recognised in this study are presumed to have different functions related to
food sources, which is contrary to the findings of Storch, Bluhm & Arntz (2001) who found no link
between the morphology of the mouthparts and food items.

Some evidence of evolutionary relationships is conveyed through the broad structure of the
mandible but the detailed structures witnessed in this study do not reflect the evolutionary relationships
in the Palaemonoidea suggested by previous phylogenetic reconstructions (Mitsuhashi et al., 2007;
Bracken, De Grave & Felder, 2009; Li et al., 2011). This preliminary study thus suggests that the
structure of the mandible is more related to function in relation to diet, than evolutionary relationships.
With such a diversity of lifestyles represented by the Palaemonoidea, particularly within the subfamily
Pontoniinae, further studies including many other genera are however required to fully unravel the

diversity of mandible morphology within the superfamily.
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Table 1: Species and provenance of specimens examined via SEM in this study.

Table 2. Summary of the features of the mandibles examined in this study. + = present, - = absent, v

= vestigial.

Table 3. Details of the pars incisivus of each species examined.

Table 4. Details of the distal ends of the pars molaris of each species examined. u.o.t.= upper outer

tooth, u.i.t. = upper inner tooth, Li.t. = lower inner tooth.

Table 5. Details of the mandibular cuticle structures of each species examined. u.o.t. = upper outer

tooth, u.i.t. = upper inner tooth, l.0.t. = lower outer tooth, l.i.t. = lower inner tooth.
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Table 1: Species and provenance of specimens examined via SEM in this study.

Species

Accession Number

Family Palaemonidae
Subfamily Palaemoninae

Palaemon macrodactylus Rathbun, 1902

Macrobrachium nipponense (De Haan, 1849)

Subfamily Pontoniinae

Pontonia pinnophylax (Otto, 1821)
Periclimenaeus caraibicus Holthuis, 1951
Gnathophyllidae

Gnathophyllum elegans (Risso, 1816)
Hymenoceridae

Hymenocera picta Dana, 1852
Desmocarididae

Desmocaris bislineata Powell, 1977
Euryrhynchidae

Euryrhynchus wrzesniowskii Miers, 1877
Anchistioididae

Anchistioides antiguensis (Schmitt, 1924)

OUMNH.ZC 2006-01-0039
OUMNH.ZC 2012-01-0060

OUMNH.ZC 2008-11-0081
OUMNH.ZC 2009-01-0101

OUMNH.ZC 2011-09-0005

OUMNH.ZC 2010-04-0017

OUMNH.ZC 2009-19-0001

OUMNH.ZC 2006-21-0001

OUMNH.ZC 2007-14-0001

Peer] reviewing PDF | (v2015:01:3770:0:1:NEW 10 Jan 2015)



38
39
40
41
42
43
44
45
46
47
48
49
50
51

PeerJ Reviewing Manuscript

Table 2. Summary of the features of the mandibles examined in this study. + = present, - = absent, v
= vestigial.

Pars Pars Cuticular  Mandibular

molaris incisivus  structures palp
Palaemon macrodactylus + + Type 1 +
Macrobrachium nipponense + + Type I +
Pontonia pinnophylax + + Type | -
Periclimenaeus caraibicus + + Type 11 -
Gnathophyllum elegans + +/v Type 111 -
Hymenocera picta + - Type IV -
Desmocaris bislineata + + Type V -
Euryrhynchus wrzesniowskii + + Type | -
Anchistioides antiguensis + + - -
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52 Table 3. Details of the pars incisivus of each species examined.
Right Left
Form Anterior Posterior Teeth Form Anterior Posterior Teeth
margin margin margin margin
About twice as tall Strongly Straight to 3, apprm'umately About twice as tall Straight to 4, widely-spaced, triangular, outer
Palaemon macrodactylus . - equal, widely-spaced, - Strongly convex - h .
as wide convex slightly concave riangular as wide slightly concave teeth slightly larger than inner teeth.
Macrobrachium Sféﬁ? g?%iﬁo Stronel 2, approximately Very broad, wider 3, very robust, triangular, anterior
nipponense portion, narrowing convegx Y Concave equal, widely-spaced, than long in middle Strongly convex Straight most tooth acute, remaining teeth
Fig. 2C strongly distally triangular. portion with rounded tip.
Elongate, slender, . . . Elongate, slender, .
Pontonia pinnophylax equal in length to rsg;agl}gﬂh; P S;rrzll%;t,v:ﬁﬁghly ?é;:ﬁig%;gr;sgter equal in length to Straight roughly IS);rra;ﬁ};lt,‘JﬁEghly 5, triangular, acute, posterior-most the
Figs. 3A and 3C pars molaris, arallel with anterior with broader than inner pars molaris, parallel with anterior with five largest, remaining teeth
1g8. i strongly curved pos rr seven denticles - strongly curved posterior denticles approximately equal size.
distally. P : distally.
Distally damaged in
Slender, ribbon-like, Straight . present specimen, Laminar in form, . .
Periclimenaeus slightly twisted and roughly S;rrill%;t;??hghly detail from Holthuis slightly curved and Convex Concave glset':tilnmarogsl?e:)ig(;zﬂly E?rl;ne(iiei;i th 11
raibi slightly shorter than arallel with parat 1951): Small acute slightly shorter than perng p Y
caraibicus gty p anterior gty small, acute teeth
pars molaris poserior teeth present distally, pars molaris. ’ :
about 10 in number.
Gnathophyllum elegans . .
. Vestigial - - - Vestigial - - -
Fig. 5SA & &
Hymenocera picta Absent - - - Absent - - -
Etlllrgshrt:l}(;lsahr?srt Zrbgllftn 4, approximately Sl i {0
?esmicarls bislineata 3.5 times as long as f(l)lrllg\}/:iy Slightly concave  equal, widely-spaced, g:ft 1:1%}1;1 trln agf;g!;r Slightly convex Slightly concave :’ :‘[:)é);o?rli:;atlelllzrequal, Rdels
ig. 6 wide, slightly curved triangular . sty P 2 g
) in median part.
inwards.
Elongate, slender,
about 3.5 times as Straight . 4, widely-spaced,
Euryrhynchus long as wide, roughly R el triangular, anterior- .
g . . . parallel with R Not Examined - - -
wrzesniowskii parallel sided, parallel with . most slightly larger
: : anterior A
slightly curved poserior than remaining three.
inwards.
Broad, about 3 times Broad, about 3
as long as wide, 3, widely-spaced, times as long as 3. widely-spaced. triancular. acute
Anchistioides antiguensis  slightly twisted. Slightly Sliehtly concave  ‘riangular, acute, outer  wide, slightly Stronely convex  Straight to teeth dis)t,allp outer tw ogbro;; der and
Equal to, or slightly convex ety two broader and longer  twisted. Equal to, gy slightly concave. Ve

53

Figs. 7D and 7F

longer than pars
molaris.

than median tooth.

or slightly longer
than pars molaris.

longer than the median tooth.
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Table 4. Details of the distal ends of the pars molaris of each species examined. u.o.t.= upper outer

tooth, u.i.t. = upper inner tooth, l.i.t. = lower inner tooth.

Right Left
Palaemon macrodactylus ~ Quadricuspid Quadricuspid
(Fig. 1A) (Fig. 1E)
Macrobrachium nipponense Quadricuspid Quadricuspid
(Fig. 2A) (Figs. 2C-D)
Pontonia pinnophylax Quadricuspid, Quadricuspid, teeth
with deep concavity flattened
(Fig. 3B) (Fig. 3C)
Periclimenaeus caraibicus  Bifid, 2 acute ridges Tricuspid
(Figs. 4A-B) (Fig. 4C)
Gnathophyllum elegans Single blade like tooth Single blade like tooth
(Fig. 5A) (Fig. 5D)
Hymenocera picta 2 recurved, spine-like teeth 2 recurved, spine-like teeth
(Fig. 4E) (Fig. 4F)
Desmocaris bislineata Ridged Ridged
(Fig. 6B) (Figs. 6D-F)
Euryrhynchus wrzesniowskii 2 lobate ridges Not examined
(Figs. 7A-B)
Anchistioides antiguensis ~ Quadricuspid Tricuspid, u.o.t. and u.i.t.
(Fig. 7E) fused, wing-like, l.i.t.

bifid (Fig. 7F)
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Table 5. Details of the mandibular cuticle structures of each species examined. u.o.t. = upper outer

tooth, u.i.t. = upper inner tooth, l.0.t. = lower outer tooth, l.i.t. = lower inner tooth.

Right

Left

Palaemon macrodactylus
Figs. 1B-C (Right)
Fig. 1F (Left)

Macrobrachium nipponense
Figs. 2A-B (Right)
Fig. 2D (Left)

Pontonia pinnophylax
Figs. 3B and 3F (Right)
Figs. 3D-E (Left)

Periclimenaeus caraibicus
Fig. 4B (Right)
Fig. 4C (Left)

Gnathophyllum elegans
Figs. SA-C (Right)
Fig. 5D (Left)

Type L.
Well-developed, row
along inner margin of
l.o.t, feebly developed

Trow on u.o.t.

Type 1.
Well-developed row
along inner margin of

l.o.t. and u.o.t.

Type L.

Confined to the
concavity in pars
molaris tip. Arranged
in a semicircle, in a

rosette-like fashion.

Type II.

Present as a spine-like

tuft in position of u.o.t.

Type I11.
Very well developed

consisting of a single
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Type I

In three discrete regions: row
along inner margin of L.i.t.,
small tuft on outer margin of
lo.t., well-developed row on
outer margin between l.o.t.

and u.o.t.

Type 1.

Well developed row along
inner margin of u.i.t. and as
a small tuft on the outer
margin between the l.i.t. and

l.o.t.

Type L.

Well developed row, curled
around outer and inner
margin of u.i.t., between l.i.t.
and l.o.t. and along posterior

margin.

Type II.
Three distinct tufts one
between u.i.t. and Li.t., and

two on outer margin of Li.t.

As right mandible
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row that curls around to

Table 5. cont.

Right Left
cover the entirety of the
distal surface.
Hymenocera picta Type IV. As right mandible
Fig. 4E (Right) Scattered
Fig. 4F (Left)
Desmocaris bislineata Type V. Type V.
Figs. 6B-C (Right) Arranged into12 equally Ridges broader than those

Figs. 6D-F (Left)

Euryrhynchus wrzesniowskii

Figs. 7A-C (Right)

Anchistioides antiguensis

spaced ridges giving a
scalloped appearance.
Median ridges longest

and inner ridges notably

shorter than outer ridges.

Type L.
Arranged in a transverse
row.

Absent

on right mandible, with

rounded tips.

Not Examined

Absent
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Figure 1. Palaemonidae (Palaemoninae): Palaemon macrodactylus, A) pars molaris of right
mandible; B) Type I cuticular structures of right mandible; C) detail of Type I cuticular structures of
right mandible; D) distally serrulate setae of mandible palp of right mandible; E) pars molaris of left
mandible; F) lateral row of Type I cuticular structures of left mandible. Scale bars indicate 200 pm
(A), 100 pm (E), 10 um (C and D) or 20 um (B and F). u.o.t. = upper outer tooth, u.i.t. = upper inner
tooth, l.0.t. = lower outer tooth, l.i.t. = lower inner tooth.

Figure 2. Palaemonidae (Palaemoninae): Macrobrachium nipponense, A) pars molaris of right
mandible; B) Type I cuticular structures of right mandible; C) left mandible; D) pars molaris of left
mandible. Scale bars indicate 500 pm (C), 100 um (A and D) or 50 um (B). u.o.t. = upper outer tooth,
u.i.t. = upper inner tooth, l.0.t. = lower outer tooth, 1.i.t. = lower inner tooth.

Figure 3. Palaemonidae (Pontoniinae): Pontonia pinnophylax, A) pars incisivus of right mandible
(denticles indicated by white arrow); B) pars molaris of right mandible; C) pars incisivus of left
mandible (denticles indicated by white arrow); D) pars molaris of left mandible; E) Type I cuticular
structures of left mandible; F) Type I cuticular structures of right mandible. Scale bars indicate 100 um
(B and D), 50 um (C) or 20 um (A, E and F).

Figure 4. Palaemonidae (Pontoniinae): Periclimenaeus caraibicus, A) pars molaris of right mandible;
B) pars molaris of right mandible (spine-like tuft of Type II cuticular structures indicated by white
arrow); C) pars molaris of left mandible. Hymenoceridae: Hymenocera picta, D) right mandible; E)
distal end of pars molaris of right mandible; F) distal end of pars molaris of left mandible. Scale bars
indicate 20 um (A and B), 100 um (D), 50 um (C, E and F).

Figure 5. Gnathophyllidae: Grathophyllum elegans, A) pars molaris of right mandible; B) Type III
cuticular structures of right mandible; C) detail of Type III cuticular structures of right mandible; D)
pars molaris of left mandible. Scale bars indicate 20 pum (B), 10 um (C), 100 pum (A and D).

Figure 6. Desmocarididae: Desmocaris bislineata, A) Right mandible; B) pars molaris of right
mandible; C) detail of Type V cuticular structures of right mandible; D) pars molaris of left mandible;
E) distal end of pars molaris of left mandible; F) distal end of pars molaris of left mandible. Scale
bars indicate 100 um (A, B and D), 20 um (C), 50 um (E and F).

Figure 7. Euryrhynchidae: Euryrhynchus wrzesniowskii, A) pars molaris of right mandible; B) pars
molaris of right mandible; C) Type I cuticular structures of right mandible. Anchistioididae:
Anchistioides antiguensis, D) right mandible; E) pars molaris of right mandible; F) left mandible.
Scale bars indicate 10 um (C), 100 um (A, B, D, E and F). u.o.t. = upper outer tooth, u.i.t. = upper
inner tooth, l.o.t. = lower outer tooth, Li.t. = lower inner tooth.
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Figure 1. Palaemonidae (Palaemoninae): Palaemon macrodactylus, A) pars molaris of right
mandible; B) Type I cuticular structures of right mandible; C) detail of Type I cuticular structures of
right mandible; D) distally serrulate setae of mandible palp of right mandible; E) pars molaris of left
mandible; F) lateral row of Type I cuticular structures of left mandible. Scale bars indicate 200 pm
(A), 100 pm (E), 10 um (C and D) or 20 um (B and F). u.o.t. = upper outer tooth, u.i.t. = upper inner
tooth, l.o.t. = lower outer tooth, Li.t. = lower inner tooth.
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Figure 2. Palaemonidae (Palaemoninae): Macrobrachium nipponense, A) pars molaris of right
mandible; B) Type I cuticular structures of right mandible; C) left mandible; D) pars molaris of left
mandible. Scale bars indicate 500 pm (C), 100 um (A and D) or 50 um (B). u.o.t. = upper outer tooth,
u.i.t. = upper inner tooth, l.o.t. = lower outer tooth, L.i.t. = lower inner tooth.
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Figure 3. Palaemonidae (Pontoniinae): Pontonia pinnophylax, A) pars incisivus of right mandible
(denticles indicated by white arrow); B) pars molaris of right mandible; C) pars incisivus of left
mandible (denticles indicated by white arrow); D) pars molaris of left mandible; E) Type I cuticular
structures of left mandible; F) Type I cuticular structures of right mandible. Scale bars indicate 100 pm
(B and D), 50 um (C) or 20 um (A, E and F).
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Figure 4. Palaemonidae (Pontoniinae): Periclimenaeus caraibicus, A) pars molaris of right mandible;
B) pars molaris of right mandible (spine-like tuft of Type II cuticular structures indicated by white
arrow); C) pars molaris of left mandible. Hymenoceridae: Hymenocera picta, D) right mandible; E)
distal end of pars molaris of right mandible; F) distal end of pars molaris of left mandible. Scale bars
indicate 20 um (A and B), 100 pum (D), 50 um (C, E and F).
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207
208 Figure 5. Gnathophyllidae: Gnathophyllum elegans, A) pars molaris of right mandible; B) Type III
209  cuticular structures of right mandible; C) detail of Type III cuticular structures of right mandible; D)
210  pars molaris of left mandible. Scale bars indicate 20 pm (B), 10 um (C), 100 pum (A and D).
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Figure 6. Desmocarididae: Desmocaris bislineata, A) Right mandible; B) pars molaris of right
mandible; C) detail of Type V cuticular structures of right mandible; D) pars molaris of left mandible;
E) distal end of pars molaris of left mandible; F) distal end of pars molaris of left mandible. Scale
bars indicate 100 um (A, B and D), 20 um (C), 50 pum (E and F).
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Figure 7. Euryrhynchidae: Euryrhynchus wrzesniowskii, A) pars molaris of right mandible; B) pars
molaris of right mandible; C) Type I cuticular structures of right mandible. Anchistioididae:
Anchistioides antiguensis, D) right mandible; E) pars molaris of right mandible; F) left mandible.
Scale bars indicate 10 um (C), 100 um (A, B, D, E and F). u.o.t. = upper outer tooth, u.i.t. = upper
inner tooth, l.o.t. = lower outer tooth, Li.t. = lower inner tooth.
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