Preliminary observations on the mandibles of palaemonoid shrimp (Crustacea: Decapoda: Caridea: Palaemonoidea)

Christopher W Ashelby, Sammy De Grave, Magnus L Johnson

The mandibles of caridean shrimps have been widely studied in the taxonomy and functional biology of the group. Within the Palaemonoidea the mandibles reach a high level of structural diversity reflecting the diverse lifestyles within the superfamily. However, the majority of studies have been restricted to light microscopy, with the ultrastructure at finer levels poorly known. This study investigates the mandible of nine species belonging to six of the recognised families of the Palaemonoidea using SEM and analyses the results in a phylogenetic and dietary framework. The results of the study indicate that little phylogenetic information is conveyed by the structure of the mandible, but that its form is influenced by primary food sources of each species. With the exception of *Anchistioides antiguensis*, all species examined possessed cuticular structures at the distal end of the *pars molaris*. Five types of cuticular structures are recognised herein, each with a unique form, but variable in number, placement and arrangement. Each type is presumed to have a different function which is likewise related to diet.

2	Preliminary observations on the mandibles of palaemonoid shrimp (Crustacea: Decapoda:
3	Caridea: Palaemonoidea)
4	
5	By: Christopher W. Ashelby ^{1, 3)*} , Sammy De Grave ²⁾ and Magnus L. Johnson ³⁾
6	
7	1) APEM Ltd., 7 Diamond Centre, Works Road, Letchworth Garden City, SG6 1LW, United Kingdom
8	²⁾ Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom.
9	³⁾ CEMS, University of Hull, Scarborough Campus, Filey Road, Scarborough, YO11 3AZ, United
10	Kingdom.
11	
12	*Corresponding Author email: <u>c.ashelby@apemltd.co.uk</u> .

Introduction

	_
1	4
1	()

Decapod crustaceans display a wide variety of modified mouthparts that serve both mechanical
and sensory functions and have attracted the attention of taxonomists, systematicists and functional
biologists for decades (e.g. Borradaile, 1917; Fujino & Miyake, 1968; Roberts, 1968; Caine, 1975;
Coombs & Allen, 1978; Schembri, 1982; Felgenhauer & Abele, 1985; Garm & Høeg, 2001; Garm,
Hallberg & Høeg, 2003; Garm, 2004). The semi-rigid, robust mandible has usually been attributed a
solely mechanical function in the breaking down of food prior to ingestion, but a recent study of larval
Palaemon elegans Rathke, 1837 demonstrated that it possesses a variety of sensillia (Geiselbrecht &
Melzer, 2013), suggesting that it may be more complex than previously thought. Indeed, Borradaile
(1917) in his pioneering work on the structure and function of the mouthparts of palaemonid prawns
concluded that "the mandible of the Crustacea is an exceedingly complicated, varied and interesting
organ, presenting many problems and worthy of a great deal more attention than it has received".
Nearly a century on and the caridean mandible, although superficially described in numerous
taxonomic works, remains poorly studied at a structural level and very few studies have focussed on
the detailed morphology and potential evolutionary drivers in relation to the form of the mandible.
Recent investigations have added to our knowledge of the mandible across a range of crustacean taxa
but have largely focussed on larvae (e.g. Heral & Saudray, 1979; Casanova, De Jong & Moreau, 2002;
Tziouveli, Bastos-Gomez & Bellwood, 2011; Geiselbrecht & Melzer, 2013) or are restricted to a single
or a small number of species within a single genus or family (e.g. Fujino & Miyake, 1968; Caine,
1975; Coombs & Allen, 1978; Mielke, 1984; Felgenhauer & Abele, 1985; Hobbs, 1991; Moore,
Rainbow & Larson, 1993; Richter, 2004; Arndt, Berge & Brandt, 2005; Mekhanikova, 2010). Within
the Palaemonoidea, the two most extensive studies on mandibles focus on the genus Palaemon, using
light microscopy to examine its structure and function (Borradaile, 1917 - as Leander) and
interspecific variation (Fujino & Miyake, 1968).
Within the infraorder Caridea, the mandible is variously developed (Burukovsky, 1986) but is
frequently comprised of a pars incisivus (incisor process) and pars molaris (molar process) and may be
provided with a palp or not. Both the pars incisivus and the pars molaris are variable in form ranging
from truncated to elongate, straight to markedly curved, narrow to flared, widely separated to barely
separated and many gradations in between (Burukovsky, 1986). The distal portions of both processes
are often provided with acute or rounded lobes ('teeth') or ridges but may be flattened. Either the pars

46	incisivus or the pars molaris may be reduced or absent or they may be fused together. Due to this
47	diversity in the development and form, features of the mandible have been used in the taxonomy of
48	caridean shrimps, particularly in families where few characters exist to differentiate genera and species
49	such as in Palaemonidae. Additionally, several classifications of the Caridea have, in part, also been
50	underpinned by features of the mandible (Thompson, 1967; Christofferson, 1990; Chace, 1992).
51	In many decapods mastication largely occurs mainly in the gastric mill (Caine, 1975).
52	Patwardhan (1934) expressed an opinion that many carideans lack a complex gastric mill and thus the
53	mouthparts are correspondingly more developed, although more recent studies (e.g. Felgenhauer &
54	Abele, 1983) demonstrate the presence of a gastric mill in a number of caridean families. Regardless,
55	the mandible is involved in the initial breakdown of food and therefore has a large functional
56	significance and thus its' form may provide insights into the diet or feeding mode of the species.
57	Indeed, species that have particular dietary regimes or feeding mechanisms tend to have
58	correspondingly specialised mouthparts (Caine, 1975). During feeding the pars incisivus is believed to
59	be mostly used in cutting and slicing of food particles into more manageable portions whilst the pars
60	molaris is usually thought to have a grinding function (Bauer, 2004), although Felgenhauer & Abele
61	(1985) found that the mandible of atyid prawns, that do possess a gastric mill, was not used for
62	crushing food.
63	Whilst previous studies on shrimps have investigated mouthpart morphology of a single genus
64	or species (Borradaile, 1917; Fujino & Miyake, 1968) or between genera belonging to the same family
65	(Felgenhauer & Abele, 1985), only the study of Storch, Bluhm & Arntz (2001) on three Antarctic
66	shrimps has used SEM to investigate differences across families. The present, SEM based, study was
67	conceived to investigate the ultrastructure of the mandible in nine species belonging to nine different
68	genera, across six out of seven families from the superfamily Palaemonoidea, thus covering a diversity
69	of form and ecology, to evaluate the potential phylogenetic significance within the superfamily and the
70	relationship between diet and structure.
71	
72	Material and Methods
73	
74	De Grave & Fransen (2011) listed eight families included within the superfamily
75	Palaemonoidea with the Palaemonidae further split into two subfamilies: the Palaemoninae and the

Pontoniinae. However, the family Kakaducarididae has been recently synonymised with the

77	Palaemonidae (see Short, Humphrey & Page, 2013) leaving seven valid families. Three of these
78	families are monogeneric (Anchistioididae, Desmocarididae and Typhlocarididae) whilst the highest
79	diversity of both morphology and lifestyle is found in the subfamily Pontoniinae. No members of the
80	Typhlocarididae were available for destructive examination via SEM and references to the morphology
81	of the mandible in <i>Typhlocaris</i> are based on descriptions in the literature (Calman, 1909; Parisi, 1921;
82	Caroli, 1923; 1924; Tsurnamal, 2008). Despite several attempts to process left mandibles of
83	Euryrhynchus, none survived the sonication stage intact and therefore observations are based on the
84	right mandible only. All specimens studied are held in the Zoological Collection of the Oxford
85	University Museum of Natural History (OUMNH.ZC) with details included in Table 1.
86	The methods used for preparation of tissue follow those established by Martin, Liu & Striley
87	(2007) and De Grave & Goulding (2011). Mandibles were carefully dissected from specimens stored
88	in 75% ethanol. After removal mandibles were passed through a graded ethanol series to distilled
89	water, subjected to brief (5-15 seconds) sonication using a light surfactant, then re-hydrated in graded
90	ethanol to 100%, with drying done via the HMDS (hexamethyldisilazane) method. Dried specimens
91	were coated with a gold-palladium mixture in a Polaron E5000 coating unit and observed in a JEOL
92	JSM-5510 microscope.
93	Terminology of the teeth on the pars molaris refers to their position in situ (see Fujino &
94	Miyake, 1968), with setal definitions following Garm (2004).
95	
96	Results
97	
98	Salient features of each mandible structure are outlined in Tables 2-5 and illustrated in Figs. 1-
99	7; only comparative remarks are detailed below.
100	The most common form of mandible of those species studied is bipartite, with a well developed
101	pars incisivus and pars molaris (Table 2). Only in Hymenocera picta (Tables 2 and 3; Fig. 4D) is the
102	pars incisivus absent whilst in Gnathophyllum elegans (Tables 2 and 3; Fig. 5A) it is reduced to a
103	vestigial process. In all other species the structure of the pars incisivus is similar (Table 3) being
104	flattened and provided with teeth distally. In Pontonia pinnophylax, a series of denticles is also present
105	along the posterior margin (Table 3; Figs. 3A and 3C).
106	A mandibular palp is present only in Palaemon macrodactylus (Table 2) and Macrobrachium

nipponense (Table 2; Fig. 2C). In both these species the structure of the palp is similar, being three

108 segmented (but see Fujino & Miyake, 1968 for discussion on variation in this character in P. 109 macrodactylus), with the distal segment being more slender and slightly longer than the basal and 110 penultimate segments. Distally-serrulate setae are present (Fig. 1D) on all segments of the palp but 111 most numerous on the distal segment. 112 A great diversity of form is present in the pars molaris. In all species examined, the pars 113 molaris is well developed and ranges from rounded (P. macrodactylus, M. nipponense, Periclimenaeus 114 caraibicus, H. picta), oval (G. elegans, Desmocaris bislineata, Euryrhynchus wrzesniowskii), slightly squared (P. pinnophylax, Anchistioides antiguensis right) to roughly triangular (A. antiguensis left) in 115 116 cross-section. Most are roughly parallel sided but those of *H. picta* and *G. elegans* are strongly curved, 117 that of D. bislineata has convex lateral margins and in A. antiguensis the pars molaris is strongly flared 118 distally. Teeth are present distally on most mandibles (*Palaemon*, Figs. 1A and 1E; *Macrobrachium*, 119 Figs. 2A and 2C-D; Pontonia, Figs. 3B and 3D; Anchistioides, Figs. 7D-F; Hymenocera, Figs. 4E-F; 120 Gnathophyllum, Fig. 5D), whilst in others these are fused to form lip-like structures (Euryrhynchus, 121 Figs. 7A-B; *Periclimenaeus*, Figs. 4A-C) and in *Desmocaris* no teeth are present and the distal end is a 122 ridged plate (Figs. 6A-B and 6D-F). The form of the teeth is highly variable with spine-like teeth 123 being present in *Hymenocera* (Figs. 4E-F), a blade like tooth being present in *Gnathophyllum* (Fig. 5D) 124 and more lobate teeth present in the other species. The lobate teeth may be reduced to low mounds or 125 massively produced with the tips entire or bifid as well as all gradations in between. Significant 126 differences in the arrangement and structure of the teeth are also noted between the left and right 127 mandibles. Typically four teeth are present although in some species these are modified such that they 128 are difficult to discern. 129 In addition to the teeth and cusps mentioned above, the distal end of the pars molaris of most 130 mandibles examined here were found to be covered, to a greater or lesser degree, by numerous 131 filamentous structures, which are flexible to semi-rigid and frequently developed into rows (Figs. 1B-132 C, 1F, 2A-B, 3E, 3F, 4B-C, 4E-F, 5A-D, 6A-F and 7A-C). The individual filaments do not conform to 133 any described form of seta nor to the definitions of setae in Watling (1989) or Garm (2004), in 134 particular lacking a complete basal articulation and a continuous lumen. The arrangement, placement and ultra-structure of these cuticular structures (CS) is highly variable, but can be broadly classified 135 136 into five types. 137 Type I CS are semi rigid, parallel sided or slightly tapered distally and between 40 and 60 µm

long and 3-6 µm wide and tend to form rows. They are found in *Palaemon* (Figs. 1B-C and 1F),

139	Macrobrachium (Figs. 2A-B and 2D), Pontonia (Figs. 3B and 3D-F) and Euryrhynchus (Figs. 7A-C).
140	In Euryrhynchus shorter structures are also present (Fig. 7C), but these appear structurally similar to
141	Type I and are herein regarded as the same type.
142	Type II CS are found only in Periclimenaeus. These appear more rigid and slightly stouter than
143	Type I structures and form tufts rather than rows (Figs. 4B-C).
144	Type III CS are found in <i>Gnathophyllum</i> . They are approximately 60 μm long and 5 μm wide,
145	highly flexible, taper strongly distally with a "feathered" inner margin and have a weak constriction
146	basally (Figs. 5A-D). They form a dense covering over the entirety of the distal end of the pars
147	molaris.
148	Type IV CS (Figs. 4E-F) are very similar to Type III differing chiefly in lacking a feathered
149	inner margin and a weak basal constriction. They are exclusively found in <i>Hymenocera</i> .
150	Type V CS are unique to Desmocaris and are the most highly modified. They comprise about
151	12 finger-like projections arising from a basal column (Figs. 6B-D and 6F). No cuticular structures
152	were observed on the mandibles of Anchistioides antiguensis. The details of the positioning and
153	arrangement of the structures are presented in Table 5 and the figures referred to therein.
154	These cuticular structures have been noted in several light microscopy studies or taxonomic
155	descriptions (e.g. Borradaile, 1917; Fujino & Miyake, 1968; Felgenhauer & Abele, 1985; Storch,
156	Bluhm & Arntz, 2001; Fransen, 2006), where the elements have typically been referred to as setae or
157	bristles, but no detailed study of these features has been conducted to date. In some species setules are
158	also present on the disto-lateral margins (Figs. 4F, 6B-C and 6E-F).
159	
160	Discussion
161	
162	The ecology of palaemonoid shrimp ranges from freshwater to marine habitats and from free-
163	living species to obligate, or loose, associations with a variety of other invertebrates including
164	cnidarians, echinoderms, molluscs and ascidians. The diversity of lifestyles and feeding strategies
165	within palaemonoid shrimps has resulted in a large range of morphological adaptations, including the
166	mouthparts and they therefore provide an ideal model group to propose hypotheses related to the
167	evolution of these structures. The hypotheses addressed here were that the structure of the mandible
168	should convey information on the species' diet and/or may potentially shed light on the phylogenetic

relationships of the taxa.

Whilst there is considerable variation in the mandible of palaemonoid shrimps noted in the literature, the most common form of mandible across the superfamily is with both a well-developed *pars inscisivus* and *pars molaris*, with a mandibular palp being absent more often than present.

When present, the *pars incisivus* is of fairly constant form, differing only in its robustness and the number of distal teeth, this latter character often being also variable between the left and right mandibles. The *pars incisivus* of *Pontonia* is the most unusual of those investigated here in bearing a row of small denticles on the posterior border. These denticles are also present in most species of the closely related genera *Ascidonia*, *Dactylonia*, *Odontonia* but not in *Bruceonia* (see Fransen, 2002) but are not described in any other palaemonoid shrimp.

The gross morphology of the *pars molaris* is far more variable between genera than a review of the literature would suggest. This may be partly due to oversights in descriptions or because frequently only one mandible is described and illustrated or simply the limitations of light microscopy. The right and left *pars molaris* in most cases showed significant differences in structure and are often configured such that there is a rough interlocking between the two sides when closed as also noted by Borradaile (1917). More startling is the wide degree of variation and intricacies in design of the cuticular structures. As mentioned, the presence of 'setae' or 'bristles' on the *pars molaris* has been noted in previous studies. However, these cursory mentions do not hint at the diversity in form, placement and arrangement witnessed in comparatively few species examined here.

Types of mandible and their presumptive function

Based on the form of the mandible herein examined, six types (Types A-F) can be recognised, which appear to relate to feeding mode or diet, although five of these types apply to single species only and the link with specialised food resources would require greater taxon coverage to include other species that share similar diets.

- Type A mandible: Well developed pars incisivus and pars molaris; pars molaris distally cuspidate;
 with Type I CS; encountered in Palaemon macrodactylus, Macrobrachium nipponense, Euryrhynchus
 wrzesniowskii and Pontonia pinnophylax (Figs. 1, 2, 3 & 7A-C).
- 199 Palaemon macrodactylus is largely carnivorous with a preference for mysid and amphipod
 200 crustaceans (Sitts & Knight, 1979; Siegfried, 1982; González-Ortegón et al., 2010; Ashelby,

201 unpublished data). The specific, natural diet of *Macrobrachium nipponense* has not been studied but it 202 is likely that, as with most *Macrobrachium*, it is omnivorous with a tendency towards carnivory 203 (Jayachandran & Joseph, 1989; Mantel & Dudgeon, 2004; Short, 2004). The diet of the congeneric M. 204 hainanense (Parisi, 1919) is dominated by insect larvae and gastropod molluscs (Mantel & Dudgeon. 205 2004) and a similar diet may be assumed for M. nipponense. Although the diet of Euryrhynchus 206 wrzesniowskii has not been studied, Kensley & Walker (1982) provide some information on the diet of 207 the related E. amazoniensis Tiefenbacher, 1978, whilst Walker (2009) also gave information on the diet 208 of this species and E. burchelli Calman, 1907. Both species feed on a diverse prey range and can be regarded as omnivorous with a preference for live insect larvae. The diet of *Pontonia pinnophylax* is 209 210 unclear. *Pontonia* inhabit lamellibranch bivalve, gastropod or ascidian hosts (Fransen, 2002; Marin & 211 Anker, 2008). Richardson et al. (1997) concluded that the most likely food sources of P. pinnophylax 212 were pseudofaeces (mucous-bound suspended particles rejected as food by the bivalve) or material 213 collecting in the mantle cavity. Similarly, Aucoin & Himmelman (2010) observed *Pontonia mexicana* 214 Guérin-Méneville, 1855 feeding on matter in mucus strings. Gut content analysis has revealed the 215 presence of detrital material, plant material and crustacean exuviae (Richardson et al., 1997). Finally, 216 Kennedy et al. (2001) concluded that *Pontonia* assimilated similar food to their bivalve hosts based on 217 similar stable isotope carbon measurements. 218 The hard-bodied, relatively large prey consumed by Palaemon, Macrobrachium and 219 Euryrhynchus would require breaking down prior to ingestion. This suggests the requirement for a 220 grinding mandible and the application of force. The cuspidate nature of the pars molaris of the Type A 221 mandible is supportive of such a grinding function. The abraded nature of many of the cuticular 222 structures (particularly evident in Figs. 1B-C) also supports this view. It would also be necessary for 223 the shrimp to sense the prey between the mandibles to know what force is being applied to the prey, 224 when the prey had been ground enough to ingest or when exoskeletons or shells of the prey had been 225 broken. This is the presumed function of the Type I CS in the Type A mandible. Type I CS are most 226 similar to microtrichia, which are common in crustaceans, particularly in amphipods (e.g. Steele & 227 Oshel, 1987; Oshel, Steel & Steel, 1988; Olyslager & Williams, 1993; Wong & Williams, 2009; Zimmer, Araujo & Bond-Buckup, 2009; Mekhanikova et al., 2012) and have also been noted in larval 228 229 decapods (e.g. Pohle & Telford, 1981; Tziouveli, Bastos-Gomez & Bellwood, 2011). Typically 230 microtrichia are thought to have a sensory function (Olyslager & Williams, 1993; Wong & Williams,

231	2009) and usually arise from a socket and terminate in a pore. A socket and pore are not evident in the
232	images used here but this may be due to the abraded nature of many of the structures (see Figs. 1B-C).
233	It is not clear how the presumed diet of Pontonia links to this mandible type. Assuming a
234	pseudofaeces or mucus diet is correct, there would not be the same requirement for grinding or
235	mechanosensory structures. Similarly De Jong-Moreau, Casanova & Casanova (2001) noted that
236	mandibular structure does not always reflect diet.
237	Based on examination of stomach content, Tsurnamel (2008) suggested that Typhlocaris
238	ayyloni feeds on bacterial mats and some small crustaceans. Feeding on bacterial mats may require
239	specialised feeding structures; however, Figure 2F in Tsurnamel (2008) shows a mandible of very
240	similar appearance to that of Macrobrachium and Palaemon which instead suggests a similar diet.
241	This is further supported by the sensitivity of <i>Typhlocaris</i> to vibration (Tsurnamel, 2008) which would
242	aid in prey detection. This suggests that small crustaceans may form the greater proportion of the diet
243	of Typhlocaris. Whether cuticular structures are present is not evident from the figures or descriptions
244	in any Typhlocaris species.
245	
246	Type B mandible: Well developed pars incisivus and pars molaris; pars molaris distally cuspidate;
247	lacking cuticular structures; only encountered in Anchistioides antiguensis (Figs. 7D-F). It differs from
248	the Type A mandible chiefly through the lack of cuticular structures. The pars molaris is also distally
249	flared in which is one of the defining characteristics of the family Anchistioididae.
250	The only evidence as to the diet of Anchistioides was provided by Wheeler & Brown (1936)
251	who report the presence of 'worm setae' in the stomachs of two specimens of A. antiguensis. The lack
252	of any sensory apparatus may support preying on softer bodies animals which would require less force
253	to break down.
254	
255	Type C mandible: Well developed pars incisivus and pars molaris; pars molaris asymmetrical with 2
256	acute ridges on right and tricuspid on left; with Type II CS; only encountered in Periclimenaeus
257	caraibicus (Figs. 4A-C). There is a considerable degree of variation in the mouthparts of
258	Periclimenaeus spp. reported in the literature and thus this type of mandible may not be standard for
259	the genus as a whole. In literature (see Holthuis, 1951; Holthuis, 1952 for examples) variation in the
260	development of the pars incisivus is noted as well as variation in the development or presence of
261	cuticular structures but this latter difference may again be attributable to oversight in the descriptions

and figures due to difficulties observing this feature under light microscopy. The ecological and perhaps phylogenetic significance of variation in features of the mandible amongst *Periclimenaeus* species warrants further investigation.

Duris et al. (2011) report that *Periclimenaeus caraibicus* feeds on the host sponges, noting the presence of spicules in the stomach and that the shrimp takes on the colour of the host sponge through assimilation of the sponge's pigments. The form of the mandible witnessed here is also suggestive of a specialised diet. The multidentate, serrated form of the *pars incisivus* would aid in the shredding of sponge fragments, whilst the acute nature of the ridges of the right *pars molaris* may also aid in tearing. The sponge fragments may then be transferred into the groove of the right *pars molaris* into which the teeth of the left *pars molaris* can interlock to grind the sponge down. The groove may also help align unbroken spicules such that they enter the mouth in the correct orientation. The function and placement of the Type II CS in this mandible is difficult to explain. They appear similar in form to Type I CS and may therefore also be assumed to have a similar sensory function but their placement in discrete tufts may suggest a slightly different function. It is speculated that these tufts of cuticular structures are the vestiges of those found in *Pontonia* (see Figs. 3E-F) and that they only have limited functionality.

Sponge feeding cannot be presumed to be a generalised diet for *Periclimenaeus* as some other members of this genus are associates of compound ascidians (Fransen, 2006) and so presumably have different feeding ecology which may be reflected in the form of their mandible, as discussed above.

Type D mandible: Pars incisivus strongly reduced to vestigial spine-like process; pars molaris with
 single blade-like tooth distally; with Type III CS; only encountered in Gnathophyllum elegans (Fig. 5).
 Type D mandibles are highly modified and display a number of unusual features, most notably the

reduction of the pars incisivus and the dense covering of Type III CS.

Little information is available on the diet of *Gnathophyllum*. Both Winkler (1973) and Bruce (1982) speculate that *Gnathophyllum* are predatory on echinoderms, however this hypothesis has not been confirmed. However, the highly modified form of all their mouthparts is suggestive a specialised food resource. During feeding, shrimps use the anterior mouthparts (maxillae and maxillipeds) to hold and manipulate food (Bauer, 2004). The operculate, calcified nature of the anterior mouthparts may not be able to manipulate food in the same way as the more flexible mouthparts found in most of the other genera examined here. The strongly reduced *pars incisivus* is suggestive that there is not a requirement for tearing or shredding of food items and the lack of a grinding surface on the *pars*

294	molaris indicates that there is no requirement for breaking down food. Furthermore, the mandibles of
295	Gnathophyllum are exceedingly small in relation to the body size of the shrimp and would be unlikely
296	to be able to deal with large food items. Finally, the Type III CS appear highly flexible and cilia-like.
297	These various adaptations would suggest that rather than large food items, Gnathophyllum feed on
298	small particulate matter, mucus or fluids or perhaps echinoderm tube-feet and that the Type III CS are
299	involved in movement of these food resources.
300	Although some species of Gnathophyllidae are commensal with echinoderms (Bruce, 1982),
301	Gnathophyllum elegans is considered free living. However, Gnathophyllum spp. do seem to form
302	loose associations with echinoderms (S. De Grave, pers. obs.) and Bruce (1982) reports that G.
303	americanum Guérin-Méneville, 1855 has been observed using its outer maxillipeds to browse on the
304	extended papulae on the dorsal surface of asteroids. This, combined with the modifications to the
305	mandible further supports the idea that Gnathophyllum feed on mucus or mucus entrapped particles, as
306	has also been suggested by Bruce (1982) for some other echinoderm associates such as Zenopontonia
307	rex (Kemp, 1922) [as Periclimenes imperator Bruce, 1967], Lipkemenes lanipes (Kemp, 1922), Z.
308	soror (Nobili, 1904) and Periclimenes pectiniferus Holthuis, 1952.
309	
310	Type E mandible: Pars incisivus absent; pars molaris bearing two recurved spine-like teeth distally;
311	with Type IV CS; encountered only in Hymenocera picta (Figs. 4D-F).
312	This type of mandible is differentiated from the Type D mandible through the complete absence
313	of the pars incisivus, the presence of two recurved teeth on each mandible rather than a single blade-
314	like tooth, and by the form and arrangement of the cuticular structures. As in the Type D mandible the
315	pars molaris lacks a grinding surface.
316	Hymenocera and Gnathophyllum are so similar in the form of the mandible as well as their
317	other mouthparts (a factor that has lead to their previous inclusion in a single family) that it would be
318	reasonable to assume a similar diet. However, Wickler (1973) noted that <i>Hymenocera</i> feed exclusively
319	on starfish, particularly Nardoa and Linkia spp piercing the epidermis with their first pereiopods before
320	extracting internal tissues.
321	The sparse arrangement of cuticular structures would also not be as effective at moving mucus
322	or particles as those in the Type D mandible of <i>Gnathophyllum</i> . It seems likely, therefore, that the
323	Type E mandible is a further development of the Type D mandible in response to a dietary switch in
324	Hymenocera (or its ancestors) from merely removing mucus from the echinoderms to actually

predating on them. The paired teeth of the right *pars molaris* apparently interlink with those of the left and may take on the slicing role normally attributed to the *pars incisivus*.

Type F mandible: Well developed *pars incisivus* and *pars molaris*; *pars molaris* distally flattened and ridged; with Type V CS; only encountered in *Desmocaris bislineata*.

Type V CS are the most highly developed of all the cuticular structures noted in this study. They in turn dictate the form of this mandible type as the finger-like projections together form the ridged surface of the *pars molaris*. They appear to be flexible and may be regarded as shorter versions of the cilia-like Type III CS. A particulate or detritivorous diet may therefore be expected. This is consistent with the information provided by Powell (1977) who states that 'normal feeding activity involves exploration of the surface of dead leaves etc...most of the food probably consists of fine particles...captive shrimps recoil from contact with live animals such as naidid oligochaetes and chironomid larvae; however they eagerly consume dead ones and therefore do not seem to be restricted to microphagy'. Although a strong *pars incisivus* is present for initial tearing, the Type F mandible does not have obvious grinding function and it is unclear how these carrion prey items would be broken down prior to ingestion. Another possible function for the elaborate arrangement of cuticular structures in this mandible type is that they may help to filter particular matter.

Systematic considerations

The form of the mandible was considered by Thompson (1967) to be of significant importance in the phylogeny of the Caridea, with the ancestral state considered to be a fused *pars molaris* and *pars incisivus*, combined with a 3-segmented palp. Indeed, the recognition of several families, including some incorporated in this study, has partially been justified by the form of the mandible. The ridged nature of the *pars molaris*, which is presumed to be a primitive feature (Sollaud, 1911; Borradaile, 1917) is one of the characters used to define the family Desmocarididae (Borradaile, 1915; Powell, 1977) and the presence of a distally flared molar process of the mandible is one of the defining characteristics of the family Anchistioididae (Chace, 1992). However, Fransen & De Grave (2009) concluded that whilst the form of mandible is of considerable value in the identification of carideans, its phylogenetic significance at the family level is uncertain. The inclusion of relatively few species in this study, encompassing less than 1% of palaemonoid diversity, albeit from the majority of palaemonoid families, will not uncover the complete range of forms of the mandible likely to be found

357 in this group, meaning that the results of this study should be regarded as indicative rather than 358 absolute. Furthermore, the analysis of a single character in isolation cannot hope to resolve systematic 359 relationships, rather an integrative approach, including novel characters and possibly also molecular data is advised (Li et al., 2011). Nevertheless some preliminary observations on the structure of the 360 361 mandible in relation to currently accepted phylogenies can be made. 362 The six mandibular types proposed here do not reflect currently accepted relationships within 363 the Palaemonoidea. As many of the groupings are based on single taxa they may actually imply 364 species specific differences or, perhaps reflect over-splitting of mandibular types in this study. The closely related genera *Palaemon* and *Macrobrachium* have the same general structure of 365 366 the mandible (Type A); however, the other genera with this form of mandible are more difficult to 367 explain from a phylogenetic point of view. *Pontonia* shares a greater affinity to *Gnathophyllum*, 368 Hymenocera and Periclimenaeus (Mitsuhashi et al., 2007; Bracken, De Grave & Felder, 2009, Gan et 369 al., 2015) than to Palaemon or Macrobrachium whilst Euryrhynchus, considered to be an ancient lineage (De Grave, 2007), represents a sister group to Desmocaris (see Bracken, De Grave & Felder, 370 371 2009). Palaemon and Macrobrachium both also possess a mandibular palp. The traditional view of 372 the mandibular palp is that the presence of a three segmented mandibular palp represents the primitive 373 condition in Caridea (Thomson, 1967) with a reduction in the number of segments and subsequent loss 374 in more derived lineages. However, the presence or absence of a mandibular palp has been 375 demonstrated to convey very limited phylogenetic information and is not a consistent character in 376 Palaemonidae, varying even within a species (Ashelby et al., 2012; De Grave & Ashelby, 2013). 377 Although classified into two different mandible types here (Type D and Type E), the mandibles 378 of Gnathophyllum and Hymenocera are linked through the reduction of the pars incivivus, a feature 379 that is variable in the gnathophyllid genus *Gnathophylloides* (see Chace & Bruce, 1993). Mitsuhashi et al. (2007), Bracken, De Grave & Felder (2009) and Gan et al. 2015 based on a molecular phylogeny 380 381 demonstrated that Hymenoceridae and Gnathophyllidae represent a derived lineage within the 382 Pontoniinae. The mouthparts present many of the definitive morphological characters of this lineage. 383 The gradual reduction of the pars incisivus witnessed in the Gnathophyllidae and Hymenoceridae is 384 also a feature demonstrated in several Pontoniinae taxa indicating the potential plasticity of this character within the subfamily. Reduction of the pars incisivus, although to a lesser degree, is also 385 386 noted in *Calathaemon* (ex-Kakaducarididae, now Palaemonidae). A gradual reduction of the *pars* 387 incisivus at family level is indicated by Burukovsky (1986) with Gnathophyllidae being intermediate in

form between Palaemonidae and Crangonidae. However, these latter families, and the
Eugonatonotidae in which the pars incisivus is also absent, are not closely related (Mitsuhashi et al.,
2007; Bracken, De Grave & Felder, 2009; Li et al., 2011) suggesting that the loss of the pars incisivus
has occurred independently several times in the evolution of the Caridea.

This study has demonstrated that the form of the mandible is much more complex than previously thought. The traditional view that the *pars molaris* is used solely for the grinding of food seems a gross oversimplification and in some species (e.g. *G. elegans*, *H. picta*) the arrangement and form of the teeth would suggest that it does not grind at all. The form and arrangement of cuticular structures at the distal end of the *pars molaris* shows a particularly high degree of variation. The five types of cuticular structures recognised in this study are presumed to have different functions related to food sources, which is contrary to the findings of Storch, Bluhm & Arntz (2001) who found no link between the morphology of the mouthparts and food items.

Some evidence of evolutionary relationships is conveyed through the broad structure of the mandible but the detailed structures witnessed in this study do not reflect the evolutionary relationships in the Palaemonoidea suggested by previous phylogenetic reconstructions (Mitsuhashi et al., 2007; Bracken, De Grave & Felder, 2009; Li et al., 2011). This preliminary study thus suggests that the structure of the mandible is more related to function in relation to diet, than evolutionary relationships. With such a diversity of lifestyles represented by the Palaemonoidea, particularly within the subfamily Pontoniinae, further studies including many other genera are however required to fully unravel the diversity of mandible morphology within the superfamily.

Acknowledgements

Some of the photos used in the present study (Figs. 1B-D) were taken during a summer OUMNH EPA/Cephalosporin funded internship of J. Howe, who is thanked for allowing their usage. Unicomarine Ltd. partially supported the work of the first author.

References

417	Arndt CE, Berge J, Brandt A. 2005. Mouthpart-atlas of arctic sympagic amphipods — trophic niche
418	separation based on mouthpart morphology and feeding ecology. Journal of Crustacean Biology
419	25(3): 401–412.
420	Ashelby CW, Page TJ, De Grave S, Hughes JM, Johnson ML. 2012. Regional scale speciation reveals
421	multiple invasions of freshwater in Palaemoninae (Decapoda). Zoologica Scripta 41(3): 293-306
422	Ashelby CW, De Grave S, Johnson M. 2013. The global invader <i>Palaemon macrodactylus</i> : an
423	interrogation of records and a synthesis of data. Crustaceana 86(5): 594-624.
424	Aucoin S, Himmelman JH. 2010. A first report on the shrimp <i>Pontonia</i> sp. and other potential
425	symbionts in the mantle cavity of the penshell Pinna carnea in the Dominican Republic.
426	Symbiosis 50: 135–141.
427	Bauer RT. 2004. Remarkable Shrimps: Adaptations and Natural History of the Carideans. Animal
428	natural history series 7. Norman: University of Oklahoma Press.
429	Borradaile LA. 1915. Notes on Carides. The Annals and Magazine of Natural History 8(15): 205-213
430	Borradaile LA. 1917. On the structure and function of the mouth parts of palaemonid prawns.
431	Proceedings of the Zoological Society of London 1917: 37-71.
432	Bracken HD, De Grave S, Felder DL. 2009. Phylogeny of the infraorder Caridea based on
433	mitochondrial and nuclear genes (Crustacea: Decapoda). In: Martin JW, Crandall KA, Felder
434	DL. (Eds) Decapod Crustacean Phylogenetics. Crustacean Issues Vol. 18: 281-305. Boca
435	Raton: CRC Press.
436	Bruce AJ. 1982. Papers from the Echinoderm Conference. 12. The shrimps associated with Indo-west
437	Pacific echinoderms, with the description of a new species in the genus Periclimenes Costa, 1844
438	(Crustacea: Pontoniinae). Australian Museum Memoir 16: 191–216,
439	Bruce AJ. 1986. Observation on the family Gnathophyllidae Dana, 1852 (Crustacea: Decapoda).
440	Journal of Crustacean Biology 6: 463–470.
441	Burukovsky RN. 1986. Evolutionary aspects of trophic adaptation genesis in shrimps. In:
442	Sokolova MN. (ed.). Feeding of marine invertebrates in natural conditions. 10-22.
443	Shirshov Institute of Oceanology, Academy of Science of the USSR. Moscow:1-114. (In
444	Russian).

445	Caine EA. 1975. Feeding and masticatory structures of selected Anomura (Crustacea). <i>Journal of</i>
446	Experimental Marine Biology and Ecology 18: 277-301.
447	Calman WT. 1909. On a blind prawn from the Sea of Galilee (<i>Typhlocaris galilea</i> g. et sp. n.).
448	Transactions of the Linnean Society of London (2) Zoology 11: 93-97.
449	Caroli E. 1923. Di una specie italiana di Typhlocaris (T. salentina n. sp.) con osservazioni
450	morofologiche e biologiche sul genere. Bolletino della Società di Naturalisti in Napoli 35: 265-
451	267.
452	Caroli E. 1924. Sulla presenza della <i>Typhlocaris</i> (<i>T. salentina</i> n. sp.) in terra d'Otranto. Contributo
453	alla conoscenza del genere. Annuario del Museo Zoologico della R. Università di Napoli (Nuova
454	<i>Serie)</i> 5: 1-20.
455	Casanova B, De Jong L, Moreau X. 2002. Carapace and mandibles ontogeny in the Dendrobranchiata
456	(Decapoda), Euphausiacea, and Mysidacea (Crustacea): a phylogenetic interest. <i>Canadian</i>
457	Journal of Zoology 80: 296-306.
458	Chace FA, Jr. 1992. On the classification of the Caridea (Decapoda). Crustaceana 63: 70-80.
459	Chace FA, Jr., Bruce AJ. 1993. The caridean shrimps (Crustacea: Decapoda) of the <i>Albatross</i>
460	Philippine Expedition, 1907-1910, Part 6: Superfamily Palaemonoidea. Smithsonian
461	Contributions to Zoology 543: 1-152.
462	Christoffersen ML. 1990. A new superfamily classification of the Caridea (Crustacea: Pleocyemata)
463	based on phylogenetic pattern. Zeitschrift für Zoologische Systematik und Evolutionsforschung
464	28: 94-106.
	Coombs EF, Allen JA. 1978. The functional morphology of the feeding appendages and gut of
466	Hippolyte varians (Crustacea: Natantia). Zoological Journal of the Linnean Society 64: 261-282.
467	De Grave S. 2007. A new species of Euryrhynchus Miers, with a discussion of the systematic position
468	of the Euryrhynchidae Holthuis (Crustacea, Decapoda). Zoologischer Anzeiger 246: 193-203.
469	De Grave S, Fransen CHJM. 2011. Carideorum catalogus: the recent species of the dendrobranchiate,
470	stenopodidean, procarididean and caridean shrimps (Crustacea: Decapoda). Zoologische
471	Mededilingen, Leiden 85(9): 195-589 figs 1-59.

472	De Grave S, Goulding LYD. 2011. Comparative morphology of the pereiopod 1 carpo-propodal (P1-
473	CP) antennal flagellar grooming brush in caridean shrimps (Crustacea, Decapoda). Zoologischer
474	Anzeiger 250: 280–301.
475	De Grave S, Ashelby CW. 2013. A re-appraisal of the systematic status of selected genera in
476	Palaemoninae (Crustacea: Decapoda: Palaemonidae). Zootaxa 3734(3): 331-344.
477	De Jong-Moreau L, Casanova B, Casanova JP. 2001. Detailed comparative morphology of the peri-
478	oral structures of the Mysidacea and Euphausiacea (Crustacea): an indication for the food
479	preference. Journal of the Marine Biological Association of the United Kingdom 81: 235-241.
480	Ďuriš Z, Horká I, Juračka PJ, Petrusek A, Sandford F. 2011. These squatters are not innocent: the
481	evidence of parasitism in sponge-inhabiting shrimps. PLoS ONE 6(7): e21987.
482	Felgenhauer BE, Abele LG. 1983. Phylogenetic relationships among shrimp-like decapods. In:
483	Schram FR. (Ed.), Crustacean Phylogeny Rotterdam. A.A. Balkema, pp. 291–311.
484	Felgenhauer BE, Abele LG. 1985. Feeding structures of two atyid shrimps, with comments on
485	caridean phylogeny. Journal of Crustacean Biology 5(3): 397-419.
486	Fransen CHJM. 2002. Taxonomy, phylogeny, historical biogeography, and historical ecology of the
487	genus <i>Pontonia</i> Latreille (Crustacea, Decapoda, Caridea, Palaemonidae). Zoologische
488	Verhandelingen, Leiden 336: 1-433, figures 1-257, plates 1-19.
489	Fransen CHJM. 2006. On Pontoniinae (Crustacea, Decapoda, Palaemonidae) collected from ascidians.
490	Zoosystema 28(3): 713-746.
491	Fransen CHJM, De Grave S. 2009. Evolution and radiation of shrimp-like decapods: an overview.
492	In: Martin JW, Crandall KA, Felder DL. (Eds.) Decapod Crustacean Phylogenetics.
493	Crustacean Issues 18: 245-259.
494	Fryer G. 1977. Studies on the functional morphology and ecology of the atyid prawns of Dominica.
495	Philosophical Transactions of the Royal Society of London (B) 279: 57-129.
496	Fujino T, Miyake S. 1968. On the mandible of the genus <i>Palaemon</i> of Japanese Palaemonid shrimps
497	with discussion on its taxonomical value. <i>Ohmu</i> 1: 191-200.

Gan Z, Li X, Kou Q, Chan T-Y, Chu KH, Huang H. 2015. Systematic status of the caridean families

Gnathophyllidae Dana and Hymenoceridae Ortmann (Crustacea: Decapoda): a further

498

500	examination based on molecular and morphological data. Chinese Journal of Oceanology and
501	Limnology 33: 149-158.
502	Garm A. 2004. Revising the definition of the crustacean seta and setal classification systems based on
503	examinations of the mouthpart setae of seven species of decapods. Zoological Journal of the
504	Linnean Society 142: 233-252.
505	Garm A, Høeg JT. 2001. Function and functional groupings of the complex mouth apparatus of the
506	squat lobsters Munida sarsi Huus and M. tenuimana G.O. Sars (Crustacea: Decapoda).
507	Biological Bulletin 200: 281-297.
508	Garm A, Hallberg E, Høeg JT. 2003. Role of maxilla 2 and its setae during feeding in the shrimp
509	Palaemon adspersus (Crustacea: Decapoda). Biological Bulletin 204: 126-137.
510	Geiselbrecht H, Melzer RR. 2013. How do mandibles sense? - The sensory apparatus of larval
511	mandibles in Palaemon elegans Rathke, 1837 (Decapoda, Palaemonidae). Arthropod Structure
512	and Development 42(1): 1-16.
513	González-Ortegón E, Cuesta JA, Pascual E, Drake P. 2010. Assessment of the interaction between the
514	white shrimp, Palaemon longirostris, and the exotic oriental shrimp, Palaemon macrodactylus, in
515	a European estuary (SW Spain). Biological Invasions 12(6): 1731-1745.
516	Heral M, Saudray Y. 1979. Regimes alimentaires et modifications des structures mandibulaires chez
517	les larves, postlarves et adultes de Palaemonetes varians (Leach) (Decapoda, Palaemonidae)
518	etudiees a l'aide du microscope electronique a balayage. Revue des Travaux de l'Institut des
519	Peches Maritimes 43(4): 353-359.
520	Hobbs HH, Jr. 1991. A new generic assignment for a South American crayfish (Decapoda:
521	Parastacidae) with revised diagnoses of the South American genera and comments on the
522	Parastacid mandible. Proceedings of the Biological Society of Washington 104: 800–811.
523	Holthuis LB. 1951. A general revision of the Palaemonidae (Crustacea Decapoda Natantia) of the
524	Americas. I. The subfamilies Euryrhynchinae and Pontoniinae. Allan Hancock Foundation
525	Publications Occasional Papers 11: 1-332.
526	Holthuis LB. 1952. The Decapoda of the Siboga Expedition, Part XI: The Palaemonidae collected by
527	the Siboga and Snellius Expeditions, with remarks on other species, part II: Subfamily
528	Pontoniinae. Siboga-Expeditie Monographs 39a(10): 1-254.

529	Jayachandran KV, Joseph NI. 1989. Food and feeding habits of the slender river prawn,
530	Macrobrachium idella (Hilgendorf, 1898) (Decapoda, Palaemonidae). Mahasagar 22: 121-129
531	Jimoh AA, Clarke EO, Whenu OO, Adeoye HB. 2011. Food and feeding habits of the African river
532	prawn (Macrobrachium vollenhovenii, Herklots, 1857) in Epe Lagoon, southwest Nigeria.
533	International Journal of Fisheries and Aquaculture 3(1): 10-15.
534	Kennedy H, Richardson CA, Duarte CM, Kennedy DP. 2001. Diet and association of Pontonia
535	pinnophylax occurring in Pinna nobilis: insights from stable isotope analysis. Journal of the
536	Marine Biological Association of the United Kingdom 81: 177-178.
537	Kensley B, Walker I. 1982. Palaemonid shrimps from the Amazon Basin, Brazil (Crustacea:
538	Decapoda: Natantia). Smithsonian Contributions to Zoology 362: 1-28.
539	Li CP, De Grave S, Chan T-Y, Lei HC, Chu KH. 2011. Molecular systematics of caridean shrimps
540	based on five nuclear genes: Implications for superfamily classification. Zoologischer Anzeiger
541	250(4): 270-279.
542	Mantel SK, Dudgeon D. 2004. Dietary variation in a predatory shrimp Macrobrachium hainanense
543	(Palaemonidae) in Hong Kong forest streams. Archiv für Hydrobiologie 160(3): 305–328.
544	Marin I, Anker A. 2008. A new species of <i>Pontonia</i> Latreille, 1829 (Crustacea, Decapoda,
545	Palaemonidae) associated with sea squirts (Tunicata, Ascidiacea) from the Pacific coast of
546	Panama. Zoosystema 30(2): 501-515.
547	Martin JW, Liu EM, Striley D. 2007. Morphological observations on the gills of dendrobranchiate
548	shrimps. Zoologischer Anzeiger 246: 115–125.
549	Mekhanikova IV. 2010. Morphology of mandible and lateralia in six endemic amphipods
550	(Amphipoda, Gammaridea) from Lake Baikal, in relation to feeding. Crustaceana 83(7): 865-
551	887.
552	Mekhanikova IV, Andreev DS, Belozerova OY, Mikhlin YL, Lipko SV, Klimenkov IV, Akimov VV,
553	Kargin VF, Mazurova YV, Tauson VL, Likhoshway YV. 2012. Specific Features of Mandible
554	Structure and Elemental Composition in the Polyphagous Amphipod Acanthogammarus
555	grewingkii Endemic to Lake Baikal. PLoS ONE 7(8): 1-9. e43073.
556	doi:10.1371/journal.pone.0043073

557558	Mielke W. 1984. Some Remarks on the Mandible of the Harpacticoida (Copepoda). <i>Crustaceana</i> 46(3): 257-260.
559560561	Mitsuhashi M, Sin YW, Lei HC, Chan T-Y, Chu KH. 2007. Systematic status of the caridean families Gnathophyllidae Dana and Hymenoceridae Ortmann (Crustacea: Decapoda): a preliminary examination based on nuclear rDNA sequences. <i>Invertebrate Systematics</i> 21: 613-622.
562563564565	Moore PG, Rainbow PS, Larson RJ. 1993. The mesopelagic shrimp <i>Notostomus robustus</i> Smith (Decapoda: Oplophoridae) observed in situ feeding on the medusan <i>Atolla wyville</i> i Haeckel in the Northwest Atlantic, with notes on gut contents and mouthpart morphology. <i>Journal of Crustacean Biology</i> 13: 690-696.
566567	Olyslager NJ, Williams DD. 1993. Function of the type II microtrich sensilla on the lotic amphipod, <i>Gammarus pseudolimnaeus</i> Bousfield. <i>Hydrobiologia</i> 259: 17-31.
568569570571	Oshel PE, Steele VJ, Steele DH. 1988. Comparative SEM Morphology of Amphipod Microtrich Sensilla. <i>Crustaceana</i> Supplement No. 13, [Studies on Amphipoda (Proceedings of the VIth International Colloquium on Amphipod Crustaceans, Ambleteuse, France, 28 June-3 July 1985)]: 100-106.
572573	Parisi B. 1921. Un nuovo crostaceo cavernicolo: Typhlocaris lethaea n. sp. Atti della Società Italiana di Scienze naturali e del Museo Civico di Storia naturale di Milano 59: 241-248.
574575	Patwardhan SS. 1934. On the structure and mechanism of the gastric mill in Decapoda. V Caridea. Proceedings of the Indian Academy of Sciences (B) 1: 693-704.
576577578	Pohle G, Telford M. 1981. Morphology and classification of decapod crustacean larval setae: a scanning electron microscope study of <i>Dissodactylus crinitichelis</i> Moreira, 1901 (Brachyura: Pinnotheridae). <i>Bulletin of Marine Science</i> 31(3): 736-752.
579580581	Powell CB. 1977. A revision of the African freshwater shrimp genus <i>Desmocaris</i> Sollaud, with ecological notes and description of a new species (Crustacea Decapoda Palaemonidae). <i>Revue de Zoologie Africaine</i> 91(3): 649–674.
582 583 584	Richardson CA, Kennedy H, Duarte CM, Proud SV. 1997. The occurrence of <i>Pontonia pinnophylax</i> (Decapoda: Natantia: Pontoninae) in <i>Pinna nobilis</i> (Mollusca: Bivalvia: Pinnidae) from the Mediterranean. <i>Journal of the Marine Biological Association of the United Kingdom</i> 77: 1227-
585	1230.

586	Richter S. 2004. A comparison of the mandibular gnathal edges in branchiopod crustaceans:
587	implications for the phylogenetic position of the Laevicaudata. Zoomorphology 123: 31-44.
588	Roberts MH. 1968. Functional morphology of the mouth-parts of the hermit crabs, <i>Pagurus</i>
589	longicarpus and Pagurus pollicaris. Chesapeake Science 9: 9-20.
590	Schembri PJ. 1982. The functional morphology of the feeding and grooming appendages of <i>Ebalia</i>
591	tuberosa (Pennant) (Crustacea: Decapoda: Leucosiidae). Journal of Natural History 16(4): 467-
592	480.
593	Short JW. 2004. A revision of Australian river prawns, <i>Macrobrachium</i> (Crustacea: Decapoda:
594	Palaemonidae). <i>Hydrobiologia</i> 525: 1-100.
595	Short J, Humphrey C, Page T. 2013. Systematic revision and reappraisal of the Kakaducarididae
596	Bruce (Crustacea: Decapoda: Caridea) with the description of three new species of
597	Leptopalaemon Bruce & Short. Invertebrate Systematics 27: 87-117.
598	Siegfried CA. 1982. Trophic relations of Crangon franciscorum Stimpson and Palaemon
599	macrodactylus Rathbun - predation on the opossum shrimp, Neomysis mercedis Holmes.
600	Hydrobiologia 89(2): 129-139.
601	Sitts RM, Knight AW. 1979. Predation by the estuarine shrimps Crangon franciscorum Stimpson and
602	Palaemon macrodactylus Rathbun. Biological Bulletin 156: 356-368.
603	Sollaud E. 1911. <i>Desmocaris trispinosus</i> (= <i>Palæmonetes trispinosus</i> Aurivillius), type d'un nouveau
604	genre, à nombreux charactères ancestraux de Décapodes palémonides. Comptes Rendus
605	hebdomadaires des Séances de l'Académie des Sciences 152: 913-916.
606	Steele VJ, Oshel PE. 1987. The ultrastructure of an integumental mictrotrich sensillum in <i>Gammarus</i>
607	setosus (Amphipoda). Journal of Crustacean Biology 7(1): 45-59.
608	Storch V, Bluhm BA, Arntz WE. 2001. Microscopic anatomy and ultrastructure of the digestive
609	system of three Antarctic shrimps (Crustacea: Decapoda: Caridea). <i>Polar Biology</i> 24: 604-614.
610	Thompson JR. 1967. Comments on phylogeny of section Caridea (Decapoda: Natantia) and the
611	phylogenetic importance of the Oplophoroidea. Proceedings of Symposium on Crustacea - Part
612	1: 314-326.
613	Tsurnamal M. 2008. A new species of the stygobiotic blind prawn <i>Typhlocaris</i> Calman, 1909
614	(Decapoda, Palaemonidae, Typhlocaridinae) from Israel. Crustaceana 81: 487-501.

615	Tziouveli V, Bastos-Gomez B, Bellwood O. 2011. Functional morphology of mouthparts and
616	digestive system during larval development of the cleaner shrimp Lysmata amboinensis (de Man,
617	1888). Journal of Morphology 272: 1080–1091.
618	Walker I. 2009. Omnivory and resource-sharing in nutrient-deficient Rio Negro waters: Stabilization
619	of biodiversity? Acta Amazonica 39(3): 617 – 626.
620	Watling L. 1989. A classification system for crustacean setae based on the homology concept. In:
621	Felgenhauer B, Watling L, Thistle AB, eds. Functional morphology of feeding and grooming in
622	Crustacea. Rotterdam: A.A. Balkema, 15–26.
623	Wheeler JFG, Brown FA. 1936. The periodic swarming of Anchistioides antiguensis (Schmitt)
624	(Crustacea Decapoda) at Bermuda. Journal of the Linnean Society of London. Zoology 39: 413-
625	428.
626	Wickler W. 1973. Biology of Hymenocera picta Dana. Micronesica 9(2): 225-230.
627	Wong JCY, Williams DD. 2009. Comparison of the structure and presumptive function of Type II
628	microtrichs and associated cuticular microstructures in species of Gammarus (Amphipoda,
629	Crustacea) from different habitats. Zoomorphology 128(4): 315-325.
630	Zimmer A, Araujo PB, Bond-Buckup G. 2009. Diversity and arrangement of the cuticular structures
631	of Hyallela (Crustacea: Amphipoda: Dogielinotidae) and their use in taxonomy. Zoologia 26(1):
632	127-142.
633	

Table 1(on next page)

Tables

Table 2. Summary of the features of the mandibles examined in this study. += present, -= absent, +=

Table 1: Species and provenance of specimens examined via SEM in this study.

2

3

4

14

5 = vestigial.
 6
 7 Table 3. Details of the *pars incisivus* of each species examined.
 9 Table 4. Details of the distal ends of the pars molaris of each species examined. u.o.t.= upper outer
 10 tooth, u.i.t. = upper inner tooth, l.i.t. = lower inner tooth.
 11
 12 Table 5. Details of the mandibular cuticle structures of each species examined. u.o.t. = upper outer
 13 tooth, u.i.t. = upper inner tooth, l.o.t. = lower outer tooth, l.i.t. = lower inner tooth.

16 **Table 1:** Species and provenance of specimens examined via SEM in this study.

17

18	Species	Accession Number
19	Family Palaemonidae	
20	Subfamily Palaemoninae	
21	Palaemon macrodactylus Rathbun, 1902	OUMNH.ZC 2006-01-0039
22	Macrobrachium nipponense (De Haan, 1849)	OUMNH.ZC 2012-01-0060
23	Subfamily Pontoniinae	
24	Pontonia pinnophylax (Otto, 1821)	OUMNH.ZC 2008-11-0081
25	Periclimenaeus caraibicus Holthuis, 1951	OUMNH.ZC 2009-01-0101
26	Gnathophyllidae	
27	Gnathophyllum elegans (Risso, 1816)	OUMNH.ZC 2011-09-0005
28	Hymenoceridae	
29	Hymenocera picta Dana, 1852	OUMNH.ZC 2010-04-0017
30	Desmocarididae	
31	Desmocaris bislineata Powell, 1977	OUMNH.ZC 2009-19-0001
32	Euryrhynchidae	
33	Euryrhynchus wrzesniowskii Miers, 1877	OUMNH.ZC 2006-21-0001
34	Anchistioididae	
35	Anchistioides antiguensis (Schmitt, 1924)	OUMNH.ZC 2007-14-0001
36		

PeerJ reviewing PDF | (v2015:01:3770:0:1:NEW 10 Jan 2015)

Table 2. Summary of the features of the mandibles examined in this study. += present, -= absent, v
 = vestigial.

40

41		Pars	Pars	Cuticular	Mandibular
42		molaris	incisivus	structures	palp
43	Palaemon macrodactylus	+	+	Type I	+
44	Macrobrachium nipponense	+	+	Type I	+
45	Pontonia pinnophylax	+	+	Type I	-
46	Periclimenaeus caraibicus	+	+	Type II	-
47	Gnathophyllum elegans	+	$+/_{ m V}$	Type III	-
48	Hymenocera picta	+	-	Type IV	-
49	Desmocaris bislineata	+	+	Type V	-
50	Euryrhynchus wrzesniowskii	+	+	Type I	-
51	Anchistioides antiguensis	+	+	-	-

Table 3. Details of the *pars incisivus* of each species examined.

	Right				Left			
	Form	Anterior margin	Posterior margin	Teeth	Form	Anterior margin	Posterior margin	Teeth
Palaemon macrodactylus	About twice as tall as wide	Strongly	Straight to slightly concave	3, approximately equal, widely-spaced, triangular.	About twice as tall as wide	Strongly convex	Straight to slightly concave	4, widely-spaced, triangular, outer teeth slightly larger than inner teeth.
Macrobrachium nipponense Fig. 2C	Height equal to width of basal portion, narrowing strongly distally	Strongly convex	Concave	2, approximately equal, widely-spaced, triangular.	Very broad, wider than long in middle portion	Strongly convex	Straight	3, very robust, triangular, anterior most tooth acute, remaining teeth with rounded tip.
Pontonia pinnophylax Figs. 3A and 3C	Elongate, slender, equal in length to pars molaris, strongly curved distally.	Straight, roughly parallel with posterior	Straight, roughly parallel with anterior with seven denticles	4, triangular, outer teeth larger and broader than inner teeth.	Elongate, slender, equal in length to pars molaris, strongly curved distally.	Straight roughly parallel with posterior	Straight, roughly parallel with anterior with five denticles	5, triangular, acute, posterior-most the largest, remaining teeth approximately equal size.
Periclimenaeus caraibicus	Slender, ribbon-like, slightly twisted and slightly shorter than pars molaris	Straight roughly parallel with poserior	Straight roughly parallel with anterior	Distally damaged in present specimen, detail from Holthuis (1951): Small acute teeth present distally, about 10 in number.	Laminar in form, slightly curved and slightly shorter than pars molaris.	Convex	Concave	Distal margin broadly rounded, tapering posteriorally, armed with 11 small, acute teeth.
Gnathophyllum elegans Fig. 5A	Vestigial	-	-	-	Vestigial	-	-	-
Hymenocera picta	Absent	-	-	-	Absent	-	-	-
Desmocaris bislineata Fig. 6A	Slightly shorter than pars molaris, about 3.5 times as long as wide, slightly curved inwards.	Slightly convex	Slightly concave	4, approximately equal, widely-spaced, triangular	Similar to that of the right mandible, but slightly broader in median part.	Slightly convex	Slightly concave	4, approximately equal, widely-spaced, triangular
Euryrhynchus wrzesniowskii	Elongate, slender, about 3.5 times as long as wide, parallel sided, slightly curved inwards.	Straight roughly parallel with poserior	Straight roughly parallel with anterior	4, widely-spaced, triangular, anterior- most slightly larger than remaining three.	Not Examined	•	•	•
Anchistioides antiguensis Figs. 7D and 7F	Broad, about 3 times as long as wide, slightly twisted. Equal to, or slightly longer than pars molaris.	Slightly convex	Slightly concave	3, widely-spaced, triangular, acute, outer two broader and longer than median tooth.	Broad, about 3 times as long as wide, slightly twisted. Equal to, or slightly longer than pars molaris.	Strongly convex	Straight to slightly concave.	3, widely-spaced, triangular, acute, teeth distally, outer two broader and longer than the median tooth.

Table 4. Details of the distal ends of the pars molaris of each species examined. u.o.t.= upper outer tooth, u.i.t. = upper inner tooth, l.i.t. = lower inner tooth.

_	_
•	h
J	u

57		Right	Left
58	Palaemon macrodactylus	Quadricuspid	Quadricuspid
59		(Fig. 1A)	(Fig. 1E)
60	Macrobrachium nipponense	Quadricuspid	Quadricuspid
61		(Fig. 2A)	(Figs. 2C-D)
62	Pontonia pinnophylax	Quadricuspid,	Quadricuspid, teeth
63		with deep concavity	flattened
64		(Fig. 3B)	(Fig. 3C)
65	Periclimenaeus caraibicus	Bifid, 2 acute ridges	Tricuspid
66		(Figs. 4A-B)	(Fig. 4C)
67	Gnathophyllum elegans	Single blade like tooth	Single blade like tooth
68		(Fig. 5A)	(Fig. 5D)
69	Hymenocera picta	2 recurved, spine-like teeth	2 recurved, spine-like teeth
70		(Fig. 4E)	(Fig. 4F)
71	Desmocaris bislineata	Ridged	Ridged
72		(Fig. 6B)	(Figs. 6D-F)
73	Euryrhynchus wrzesniowskii	2 lobate ridges	Not examined
74		(Figs. 7A-B)	
75	Anchistioides antiguensis	Quadricuspid	Tricuspid, u.o.t. and u.i.t.
76		(Fig. 7E)	fused, wing-like, l.i.t.
77			bifid (Fig. 7F)

79 **Table 5.** Details of the mandibular cuticle structures of each species examined. u.o.t. = upper outer tooth, u.i.t. = upper inner tooth, l.o.t. = lower outer tooth, l.i.t. = lower inner tooth.

	Right	Left
Palaemon macrodactylus	Type I.	Type I
Figs. 1B-C (Right)	Well-developed, row	In three discrete regions: row
Fig. 1F (Left)	along inner margin of	along inner margin of l.i.t.,
	l.o.t, feebly developed	small tuft on outer margin of
	row on u.o.t.	l.o.t., well-developed row on
		outer margin between l.o.t.
		and u.o.t.
Macrobrachium nipponense	Type I.	Type I.
Figs. 2A-B (Right)	Well-developed row	Well developed row along
Fig. 2D (Left)	along inner margin of	inner margin of u.i.t. and as
	l.o.t. and u.o.t.	a small tuft on the outer
		margin between the l.i.t. and
		l.o.t.
Pontonia pinnophylax	Type I.	Type I.
Figs. 3B and 3F (Right)	Confined to the	Well developed row, curled
Figs. 3D-E (Left)	concavity in pars	around outer and inner
	molaris tip. Arranged	margin of u.i.t., between l.i.t.
	in a semicircle, in a	and l.o.t. and along posterior
	rosette-like fashion.	margin.
Periclimenaeus caraibicus	Type II.	Type II.
Fig. 4B (Right)	Present as a spine-like	Three distinct tufts one
Fig. 4C (Left)	tuft in position of u.o.t.	between u.i.t. and l.i.t., and
		two on outer margin of l.i.t.
Gnathophyllum elegans	Type III.	As right mandible
Figs. 5A-C (Right)	Very well developed	
Fig. 5D (Left)	consisting of a single	

109		row that curls around to	
110	Table 5. cont.		
111		Right	Left
112		cover the entirety of the	
113		distal surface.	
114	Hymenocera picta	Type IV.	As right mandible
115	Fig. 4E (Right)	Scattered	
116	Fig. 4F (Left)		
117	Desmocaris bislineata	Type V.	Type V.
118	Figs. 6B-C (Right)	Arranged into 12 equally	Ridges broader than those
119	Figs. 6D-F (Left)	spaced ridges giving a	on right mandible, with
120		scalloped appearance.	rounded tips.
121		Median ridges longest	
122		and inner ridges notably	
123		shorter than outer ridges.	
124	Euryrhynchus wrzesniowskii	Type I.	Not Examined
125	Figs. 7A-C (Right)	Arranged in a transverse	
126		row.	
127	Anchistioides antiguensis	Absent	Absent
128			

Table 2(on next page)

Figures

Figure 1. Palaemonidae (Palaemoninae): *Palaemon macrodactylus*, A) *pars molaris* of right mandible; B) Type I cuticular structures of right mandible; C) detail of Type I cuticular structures of right mandible; D) distally serrulate setae of mandible palp of right mandible; E) *pars molaris* of left mandible; F) lateral row of Type I cuticular structures of left mandible. Scale bars indicate 200 μm (A), 100 μm (E), 10 μm (C and D) or 20 μm (B and F). u.o.t. = upper outer tooth, u.i.t. = upper inner tooth, l.o.t. = lower outer tooth, l.i.t. = lower inner tooth.

Figure 2. Palaemonidae (Palaemoninae): *Macrobrachium nipponense*, A) *pars molaris* of right mandible; B) Type I cuticular structures of right mandible; C) left mandible; D) *pars molaris* of left mandible. Scale bars indicate 500 μ m (C), 100 μ m (A and D) or 50 μ m (B). u.o.t. = upper outer tooth, u.i.t. = upper inner tooth, l.o.t. = lower outer tooth, l.i.t. = lower inner tooth.

Figure 3. Palaemonidae (Pontoniinae): *Pontonia pinnophylax*, A) *pars incisivus* of right mandible (denticles indicated by white arrow); B) *pars molaris* of right mandible; C) *pars incisivus* of left mandible (denticles indicated by white arrow); D) *pars molaris* of left mandible; E) Type I cuticular structures of left mandible; F) Type I cuticular structures of right mandible. Scale bars indicate 100 μ m (B and D), 50 μ m (C) or 20 μ m (A, E and F).

Figure 4. Palaemonidae (Pontoniinae): *Periclimenaeus caraibicus*, A) *pars molaris* of right mandible; B) *pars molaris* of right mandible (spine-like tuft of Type II cuticular structures indicated by white arrow); C) *pars molaris* of left mandible. Hymenoceridae: *Hymenocera picta*, D) right mandible; E) distal end of *pars molaris* of right mandible; F) distal end of *pars molaris* of left mandible. Scale bars indicate 20 μm (A and B), 100 μm (D), 50 μm (C, E and F).

Figure 5. Gnathophyllidae: *Gnathophyllum elegans*, A) *pars molaris* of right mandible; B) Type III cuticular structures of right mandible; C) detail of Type III cuticular structures of right mandible; D) *pars molaris* of left mandible. Scale bars indicate 20 µm (B), 10 µm (C), 100 µm (A and D).

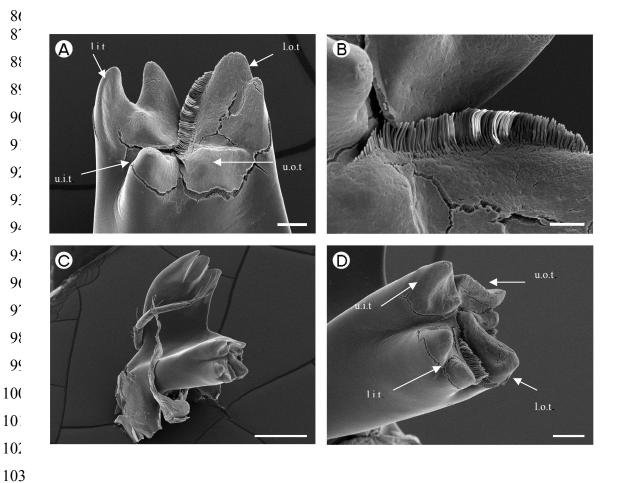

Figure 6. Desmocarididae: *Desmocaris bislineata*, A) Right mandible; B) *pars molaris* of right mandible; C) detail of Type V cuticular structures of right mandible; D) *pars molaris* of left mandible; E) distal end of *pars molaris* of left mandible; F) distal end of *pars molaris* of left mandible. Scale bars indicate 100 μm (A, B and D), 20 μm (C), 50 μm (E and F).

Figure 7. Euryrhynchidae: *Euryrhynchus wrzesniowskii*, A) *pars molaris* of right mandible; B) *pars molaris* of right mandible; C) Type I cuticular structures of right mandible. Anchistioididae: *Anchistioides antiguensis*, D) right mandible; E) *pars molaris* of right mandible; F) left mandible. Scale bars indicate 10 μ m (C), 100 μ m (A, B, D, E and F). u.o.t. = upper outer tooth, u.i.t. = upper inner tooth, l.o.t. = lower outer tooth, l.i.t. = lower inner tooth.

4² 4⁴

7: 7: 7:

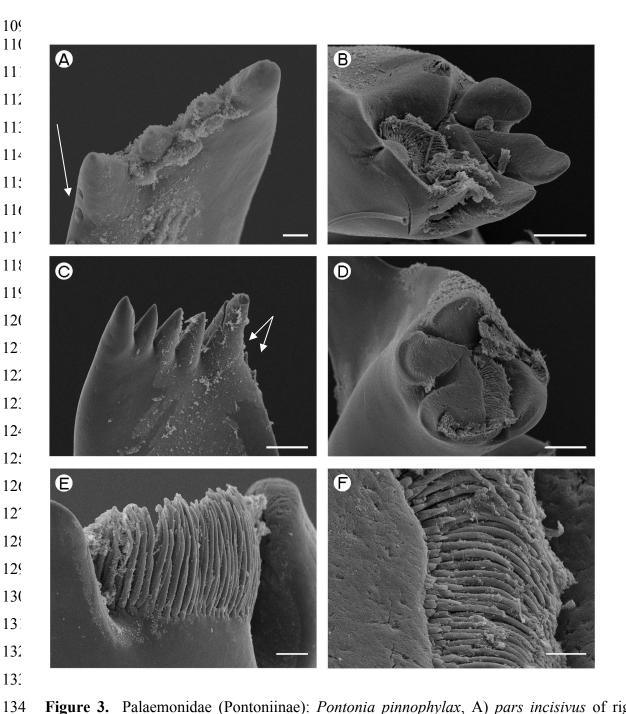

Figure 1. Palaemonidae (Palaemoninae): *Palaemon macrodactylus*, A) *pars molaris* of right mandible; B) Type I cuticular structures of right mandible; C) detail of Type I cuticular structures of right mandible; D) distally serrulate setae of mandible palp of right mandible; E) *pars molaris* of left mandible; F) lateral row of Type I cuticular structures of left mandible. Scale bars indicate 200 μ m (A), 100 μ m (E), 10 μ m (C and D) or 20 μ m (B and F). u.o.t. = upper outer tooth, u.i.t. = upper inner tooth, l.o.t. = lower outer tooth, l.i.t. = lower inner tooth.

Figure 2. Palaemonidae (Palaemoninae): *Macrobrachium nipponense*, A) *pars molaris* of right mandible; B) Type I cuticular structures of right mandible; C) left mandible; D) *pars molaris* of left mandible. Scale bars indicate 500 μ m (C), 100 μ m (A and D) or 50 μ m (B). u.o.t. = upper outer tooth, u.i.t. = upper inner tooth, l.o.t. = lower outer tooth, l.i.t. = lower inner tooth.

104

105

Figure 3. Palaemonidae (Pontoniinae): *Pontonia pinnophylax*, A) *pars incisivus* of right mandible (denticles indicated by white arrow); B) *pars molaris* of right mandible; C) *pars incisivus* of left mandible (denticles indicated by white arrow); D) *pars molaris* of left mandible; E) Type I cuticular structures of left mandible; F) Type I cuticular structures of right mandible. Scale bars indicate 100 μm (B and D), 50 μm (C) or 20 μm (A, E and F).

135

136

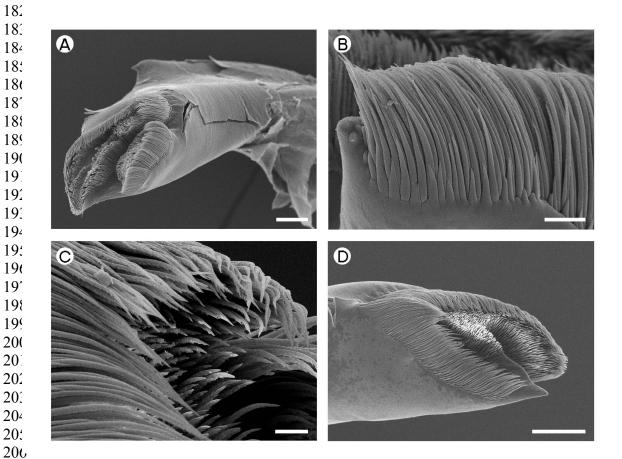
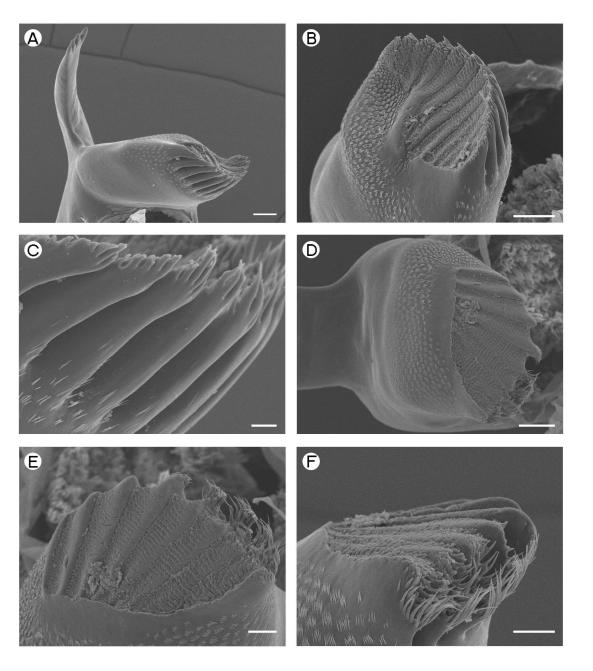


Figure 4. Palaemonidae (Pontoniinae): *Periclimenaeus caraibicus*, A) *pars molaris* of right mandible; B) *pars molaris* of right mandible (spine-like tuft of Type II cuticular structures indicated by white arrow); C) *pars molaris* of left mandible. Hymenoceridae: *Hymenocera picta*, D) right mandible; E) distal end of *pars molaris* of right mandible; F) distal end of *pars molaris* of left mandible. Scale bars indicate 20 μm (A and B), 100 μm (D), 50 μm (C, E and F).

176


177

178179

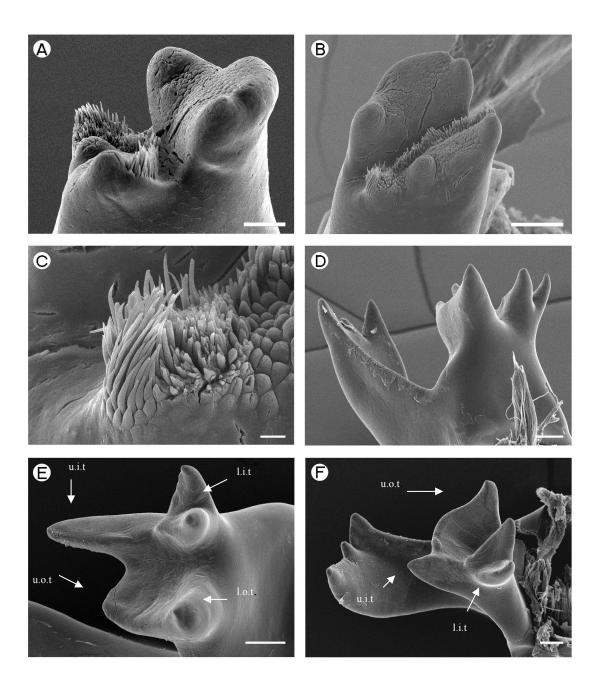


Figure 5. Gnathophyllidae: *Gnathophyllum elegans*, A) *pars molaris* of right mandible; B) Type III cuticular structures of right mandible; C) detail of Type III cuticular structures of right mandible; D) *pars molaris* of left mandible. Scale bars indicate 20 μm (B), 10 μm (C), 100 μm (A and D).

207 208

Figure 6. Desmocarididae: *Desmocaris bislineata*, A) Right mandible; B) *pars molaris* of right mandible; C) detail of Type V cuticular structures of right mandible; D) *pars molaris* of left mandible; E) distal end of *pars molaris* of left mandible; F) distal end of *pars molaris* of left mandible. Scale bars indicate 100 μm (A, B and D), 20 μm (C), 50 μm (E and F).

Figure 7. Euryrhynchidae: *Euryrhynchus wrzesniowskii*, A) *pars molaris* of right mandible; B) *pars molaris* of right mandible; C) Type I cuticular structures of right mandible. Anchistioididae: *Anchistioides antiguensis*, D) right mandible; E) *pars molaris* of right mandible; F) left mandible. Scale bars indicate 10 μm (C), 100 μm (A, B, D, E and F). u.o.t. = upper outer tooth, u.i.t. = upper inner tooth, l.o.t. = lower outer tooth, l.i.t. = lower inner tooth.