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ABSTRACT
Symbiotic bacteria, commonly called rhizobia, lead a saprophytic lifestyle in the soil and
form nitrogen-fixing nodules on legume roots. During their lifecycle, rhizobia have to
adapt to different conditions prevailing in the soils and within host plants. To survive
under these conditions, rhizobia fine-tune the regulatory machinery to respond rapidly
and adequately to environmental changes. Symbiotic bacteria play an essential role in
the soil environment from both ecological and economical point of view, since these
bacteria provide Fabaceae plants (legumes) with large amounts of accessible nitrogen
as a result of symbiotic interactions (i.e., rhizobia present within the nodule reduce
atmospheric dinitrogen (N2) to ammonia, which can be utilized by plants). Because
of its restricted availability in the soil, nitrogen is one of the most limiting factors for
plant growth. In spite of its high content in the atmosphere, plants are not able to
assimilate it directly in the N2 form. During symbiosis, rhizobia infect host root and
trigger the development of specific plant organ, the nodule. The aim of root nodule
formation is to ensure amicroaerobic environment, which is essential for proper activity
of nitrogenase, i.e., a key enzyme facilitating N2 fixation. To adapt to various lifestyles
and environmental stresses, rhizobia have developed several regulatory mechanisms,
e.g., reversible phosphorylation. This key mechanism regulates many processes in
both prokaryotic and eukaryotic cells. In microorganisms, signal transduction includes
two-component systems (TCSs), which involve membrane sensor histidine kinases
(HKs) and cognate DNA-binding response regulators (RRs). Furthermore, regula-
tory mechanisms based on phosphoenolopyruvate-dependent phosphotranspherase
systems (PTSs), as well as alternative regulatory pathways controlled by Hanks-type
serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) play an
important role in regulation of many cellular processes in both free-living bacteria and
during symbiosis with the host plant (e.g., growth and cell division, envelope biogenesis,
biofilm formation, response to stress conditions, and regulation of metabolism). In
this review, we summarize the current knowledge of phosphorylation systems in
symbiotic nitrogen-fixing bacteria, and their role in the physiology of rhizobial cells
and adaptation to various environmental conditions.
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INTRODUCTION
The soil is an environment, which hosts an extremely diverse community of organisms,
with high numbers of microorganisms (from 104 to 109 cells per gram of soil) (Poole,
Ramachandran & Terpolilli, 2018). The largest microbial variety is observed in the
rhizosphere, which is the soil surrounding the plant root. This zone is approximately
1-mm wide, and is the most intense area of biological and chemical activity, and thus
the most dynamically changing niche in the soil (Kannan, Sithara & Chandru, 2015).
Numerous compounds secreted by plant root (referred to as rhizodeposits), such as
water-soluble ions, low-molecular weight compounds, carbohydrates, amino acids,
organic acids, and other metabolic products cause biochemical changes in the soil
(Haldar & Sengupta, 2015). Plant root secretome and abiotic factors, such as climate,
low and high temperatures, humidity, pH, and light, influence the soil microbiome,
affecting its biodiversity and adaptability (e.g., Acidobacter bacteria predominate in the
soil under acidic conditions, while Proteobacteria, Acinobacteria, and Firmicutes prevail
at neutral and alkaline pH). Consequently, soil microorganisms have developed a
variety of metabolic strategies, including photosynthetic abilities, ammonia oxidation,
and atmospheric dinitrogen (N2) fixation. Among them, biological fixation of N2 is
extremely important not only for its ecological aspect, but also from an economical point
of view. Globally, approximately 200 million tons of N per year are introduced into the
environment viamicrobial fixation, an amount that is similar to that introduced by artificial
N fertilizers (Roca et al., 2013; Rascio & La Rocca, 2013). Further, 70% of biologically fixed
N2 comes from symbiotic systems, whereas only 30% comes from non-symbiotic N2

fixation. The non-symbiotic relationships involve heterotrophic bacteria living freely
in the soil environment, such as Azotobacter spp., Bacillus spp., Clostridium spp., and
Klebsiella spp., whose N2-fixing capacity varies from 10 to 20 kg N per hectare per year
(Kumar et al., 2015). Another example of N2 fixation on a similar scale as that mentioned
above is the associative N2 fixation conducted by microorganisms from Azospirillum
spp. These bacteria establish associations with several types of grasses and cereals, such
as wheat, oat, barley, rice, and maize (Fukami, Cerezini & Hungria, 2018). However, it
was recently determined that free-living fixation represents the dominant biological
source of N2 in many ecosystems, which lack of large numbers of symbiotic N2-fixers
(e.g., tropical evergreen forests, moist tundra and alpine tundra, and temperate grasslands)
(Reed et al., 2010; Reed, Cleveland & Townsend, 2011). Among microorganisms capable
of fixing atmospheric N2, bacteria establishing symbiotic interactions with leguminous
plants (Fabaceae) (e.g., pea, bean, soybean, clover, and alfalfa) play an important role
(Williams et al., 2008). These N2-fixing symbiotic bacteria, collectively called rhizobia,
belong to the large and diverse family Rhizobiaceae (order Rhizobiales, classes α- and
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β-Proteobacteria), which encompasses several genera (e.g., Rhizobium, Sinorhizobium,
Azorhizobium, Allorhizobium, Methylobacterium, Carbophilus, and Ciceribacter (α-
rhizobia); and Burkholderia and Cupriavidus (β-rhizobia)). Furthermore, bacteria from
two other families, Bradyrhizobiaceae (Bradyrhizobium spp.) and Phyllobacteriaceae
(Mesorhizobium spp.), possess N2-fixing symbiotic ability (Dresler-Nurmi et al., 2009;Weir,
2016). Currently, rhizobia are N2-fixing microorganisms that are the most studied and best
described on a molecular level. These bacteria can live as free-living soil microorganisms
and engage in symbiotic interactions with compatible host plants (Williams et al., 2008).
Rhizobia infect legume root and induce formation of special organs called nodules, inside
which they differentiate to bacteroids able to fix atmospheric N2. Thus, these bacteria
provide nitrogen forms that the host plant can assimilate and make the host independent
of the external input of this nutrient. For this reason, rhizobia play a significant role in the
environment from both an economic and ecological point of view.

Changes in the soil conditions, occurrence of competition in this ecological niche, and
various lifestyles of symbiotic bacteria require coordination of their cellular functions
in response to signals of both extracellular and intracellular origin. To adapt to these
different conditions, rhizobia have developed various strategies. These include numerous
post-translational modifications of proteins (PTMs), which are involved in several signal
transduction pathways (Kobir et al., 2011). PTMs affect a number of important protein
features, such as their structure, activity, surface charge, and stability. They also influence
their interactions with other molecules or subcellular location (Mijakovic, Grangeasse
& Turgay, 2016). By contrast with eukaryotic organisms, only a few types of PTMs
have been discovered in prokaryotes (e.g., glycosylation, methylation, phosphorylation,
and acetylation) that are involved in signal transduction and pathogenesis, and may
directly or indirectly change or abolish the interaction between proteins and other
cellular components. Among these PTMs, phosphorylation is the most frequent and
best-characterized modification (Kennelly, 2001; Kobir et al., 2011; Mijakovic, Grangeasse
& Turgay, 2016). The phosphate group covalently attached to proteins by bacterial kinases
is extremely reactive, which determines its biophysical properties, causing structural
perturbation and changes in protein functionality. Many amino acids in a protein can
act as potential acceptors of the phosphate group [including histidine (His), tyrosine
(Tyr), serine (Ser), threonine (Thr), and aspartic acid (Asp)] (Johnson & Lewis, 2001).
Based on the type of chemical bond formed with the phosphate group, amino acids can
be divided into several groups. The first type of bond is a simple phosphoamide bond,
when the phosphate group is attached to the hydroxyl residue of an amino acid (Ser, Thr,
and Tyr); this type of bond is extremely stable chemically, and is resistant to both acids
and hydroxylamine. The second type includes phosphorylation of basic amino acids [Arg,
His, and lysine (Lys)] involving the formation of phosphoamidic bond, which is resistant
to the action of base but is hydrolysable by acid and hydroxylamine. The third group
encompasses phosphate modification of acidic amino acids [i.e., Asp and glutamic (Glu)
acids], with acyl phosphate bond formation. The modifications of these amino acids are
relatively unstable. The literature data also indicate the phosphorylation of protein cysteine
(Cys) residues, with the formation of a phosphate phosphothiol bond (Cozzone, 1998;
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Mijakovic, Grangeasse & Turgay, 2016). Another important feature of phosphorylation
is its reversibility (i.e., dephosphorylation), catalyzed by bacterial phosphatases. The
phosphorylation/dephosphorylation cycle ensures precise regulation of many metabolic
pathways in microorganisms. Differences in the stability of chemical bonds involving the
phosphate group determine the ability to transfer phosphate group to the target proteins,
leading to changes in their biological functions (Mijakovic, Grangeasse & Turgay, 2016).
Based on recent data, three main phosphorylation mechanisms are present in prokaryotic
organisms: two-component signal transduction systems (TCSs), phosphoenolopyruvate
(PEP)-dependent phosphotransferase systems (PTSs), and phosphorylation of Ser, Thr,
or Tyr residues in proteins (Kobir et al., 2011). Moreover, Arg-kinases phosphorylating
proteins on this amino acid are known in bacteria (Mijakovic, Grangeasse & Turgay, 2016).
To date, protein phosphorylation in prokaryotic organisms has been extensively described
mainly in pathogenic bacteria. Until now, phosphorylation systems in symbiotic N2-fixing
bacteria and their role in the adaptation of these microorganisms to various environmental
conditions have not been an object of review reports. Therefore, in the present review, we
summarize the current knowledge of phosphorylation systems in symbiotic bacteria and
their role in rhizobial adaptation to various environmental conditions.

Experimental studies in rhizobia indicate that phosphorylation plays an essential
role in many physiological processes in these bacteria and their adaptation to various
environmental factors (e.g., exopolysaccharide and flagellum production, dicarboxylate
transport, catabolite repression, phosphate utilization, N2 fixation, and adaptation to pH
stress and microaerobic conditions) (Liu, Tian & Chen, 2015). We here present a concise
overview of phosphorylation mechanisms in rhizobia and outline the current knowledge
of the role of this PTM of proteins in cell signaling, coordination of vital functions, and
bacterial adaptation to environmental stress conditions.

SURVEY METHODOLOGY
In this review, we discussed the current literature data related to phosphorylation systems
in rhizobia, and their functions in physiology and adaptation of these bacteria to various
environmental conditions. References mentioned in the review were retrieved from
PubMed up to September 2019.We used search terms such as phosphorylation in symbiotic
bacteria, TCS system, PTS system, Hanks-type Ser/Thr kinases, Ser/Thr phosphatases,
rhizobia, and nitrogen-fixing symbiosis. The considered references provide information
about phosphorylation mechanisms in rhizobia, and their role in free-living bacteria
and during symbiosis with host plant. Grouping and classification of rhizobial response
regulators (RRs) were done based on conserved domains, according to papers of Galperin
(2006) andGalperin & Nikolskaya (2007). The RRs encoded by genomes of rhizobial species
have been counted and classified into individual families according to a type of their
effector domain (DNA-binding, RNA-binding, enzymatic, and other). Protein sequences
of ExoP and PssZ homologs were obtained from the NCBI public database. Alignment of
protein rhizobial ExoP and PssZ homologs was performed using EMBL-EBI, 2019 available
online (https://www.ebi.ac.uk/Tools/msa/clustalo/). To obtain theoretical models of three-
dimensional structures of ExoP and PssZ homologs, sequences of these proteins in FASTA
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format obtained from the NCBI database (http://www.ncbi.nlm.nih.gov/) and a protein
structure prediction server RaptorX (http://raptorx.uchicago.edu/) were used. Several
properties of ExoP and PssZ proteins were determined using Protein Molecular Weight
Calculator (http://www.sciencegateway.org/tools/proteinmw.htm/), Isoelectric Point
Calculator (http://isoelectric.org/calculate.php/), and program for secondary structure
prediction of proteins (http://www.cbs.dtu.dk/services/NetSurfP/). Sequence identity and
similarity were determined using BLAST program (https://blast.ncbi.nlm.nih.gov/Blast/).

TWO-COMPONENT SIGNAL TRANSDUCTION SYSTEMS
(TCSS)
TCSs are ubiquitous among bacteria. They occur exclusively in prokaryotes and archaea
(Wang, 2012). They allow themicroorganism to adapt to various environmental conditions,
such as changes in nutrient availability, soil pH, temperature, redox status, osmolality,
bacterial population density, and the presence of antibiotics and repellent plantmetabolites.
The number of TCS systems present in individual bacteria is closely correlated not only with
the size of the genome, but also with the ecological niche these bacteria occupy (Galperin,
2006; Gao, Mack & Stock, 2007). Typically, TCS-encoding genes account for approximately
1–2% of the microbial genome, although it depends on many factors. Among such factors,
the most important is the frequency of environmental changes in the ecological niche and
microbial lifestyle (e.g., pathogenic bacteria possess up to 200TCSs, whereas endosymbionts
have fewer TCSs) (Galperin, 2006; Gao, Mack & Stock, 2007). For an example, QseBC and
QseEF TCSs in enteric foodborne pathogens, such as enterohemorrhagic Escherichia coli
(EHEC) and Salmonella enterica serovar Typhimurium, are involved in modulation of the
expression of virulence genes in response to quorum sensing signals (i.e., autoinducer-3,
epinephrine, and norepinephrine) from the microbiota or the host (Lustri, Sperandio
& Moreira, 2017). Another TCS, KdpDE is involved in potassium homeostasis and
intracellular survival of pathogenic bacteria, including Staphylococcus aureus, EHEC,
S. typhimurium, and Yersinia pestis (Freeman, Dorus & Waterfield, 2013).

Understanding the molecular mechanisms of signal transduction pathways in the
soil nitrogen-fixing microorganisms could contribute to better use of these bacteria in
bioremediation and N2 fixation, which are important processes for the production of high-
quality crops (rendering them independent from artificial N fertilization and increasing
the amount of N available to plants). However, most studies currently focus on elucidation
of the roles of TCSs in pathogenic bacteria (Gao, Mack & Stock, 2007). Sequence analysis of
prokaryotic genomes demonstrated that TCSs exhibit unusual complexity and variability.
These systems are composed of histidine kinases (HKs), which are sensor proteins located
in the bacterial membrane, and RRs involved in the regulation of gene expression. The
majority of HKs and RRs of individual TCSs in microorganisms are encoded by genes,
which are located in the same operon and can be easily identified. However, over 15% of
genes coding for RRs in bacteria occur individually (not grouped in operons) (Schaller,
Shiu & Armitage, 2011). The architecture of TCS pathways in microorganisms can be
extremely diverse. One of the simplest models is a TCS in which one HK capturing the
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signal of extracellular origin and one RR, which is the most common transcription factor
(TF) that regulates the expression of a single target operon, are cognate (Fig. 1). Another
model involves one HK activating one RR protein and affecting the expression of many
different operons (even up to 30% of the bacterial genome, e.g., during bacterial entry
into a latent state or a metabolism change from aerobic to anaerobic). Other TCS systems
are also known, where one HK regulates many RRs or multiple HKs regulate only one RR
(Schaller, Shiu & Armitage, 2011). Four main steps in the signal transduction cascade via
TCSs can be distinguished: (I) signal detection, (II) sensor kinase activation, (III) phosphate
group transfer to a regulatory protein, and (IV) response generation (Zschiedrich, Keidel &
Szurmant, 2016) (Fig. 1).

HKs are homodimeric integral membrane proteins containing two transmembrane
helices and with the N-terminus located in the cytosol. The sensor domain of these proteins
is located between the transmembrane helices and shows a lowdegree of sequence similarity,
in contrast to the other domains. The sensor domain may be located in the cytosol, cell
membrane, or outside the cell, where it is involved in the recognition of extracellular signals
and changes in the bacterial envelope (Wang, 2012). HAMP domain, which is commonly
found also in other enzymes (named after the first letters of enzymes in which it occurs: His
kinases, adenylate cyclases, methyl-accepting proteins, and phosphatases), is C-terminal
to the second transmembrane helix. This domain connects the transmembrane helix 2
and His phosphorylation domain DHp (dimerization His phosphotransfer). It is the most
conserved portion of the HK, which contains His, and is a signature motif of this type of
enzyme. The DHp domain consists of two helices that form a hairpin-type structure, and
a His residue that is also a site of HK autophosphorylation, located within the first helix.
After ATP binding by the HK, the γ -phosphate group is transferred to histidine in the
DHp domain. The catalytic domain possesses five conserved motifs, designated as N, G1, F,
G2, and G3, which together with the H-frame are determinants for HK classification. The
catalytic and ATP-binding domain (CA) is located at the C-terminus of the protein. The
signaturemotifs within theHKs and phylogenetic analyses ofHKprotein sequences resulted
in the identification of 11 major families of enzymes involved in TCSs. Further, recently,
Karniol and Vierstra (Karniol & Vierstra, 2004) identified a new family of HKs, which share
homology with protein BphP2 of Agrobacterium tumefaciens, whose phytochrome-sensing
domain is involved in light perception. This type of HK lacks the F motif, although it does
contain conserved amino acid residues in other motifs (e.g., histidine in the N motif and a
tryptophan-X-glutamic acid motif in the G1 motif). Alterations of the above motifs were
also detected in other members of α- and β-Proteobacteria, including bacteria from the
Rhizobiaceae family (Karniol & Vierstra, 2004).

By contrast with HKs, RR proteins involved in the TCSs have only two domains, i.e., a
receiver domain located at the N-terminus of the protein, which is responsible for binding
the phosphate group, and an effector domain located at the C-terminus, which relays
the signal in the transduction cascade. The receiver domain of RRs has a specific type
of conservativeness in terms of its structure and sequence, while effector domains are
characterized by high sequence variability, reflecting their different cellular functions.
The vast majority of regulatory proteins of the TCS systems are TFs, which have different
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Figure 1 Model of signal transduction via the bacterial TCS system (based on data included in a study
byWang, 2012). TM, transmembrane domain; HAMP domain, name after the first letters of enzymes in
which it occurs, i.e., histidine kinases, adenylate cyclases, methyl-accepting proteins, and phosphatases;
CA, catalytic and ATP-binding domain; DHp, Dimerization Histidine phosphotransfer domain; H, histi-
dine; D, aspartic acid; P, phosphate residue.

Full-size DOI: 10.7717/peerj.8466/fig-1

effector domains responsible for DNA, RNA, protein, and enzyme binding. In the receiver
domain, an invariable Asp residue is present, which accepts the phosphate group coming
from a cognate HK. Conformational changes in RRs induced by phosphorylation are next
transferred to the effector domain, which consequently affects its activity (Gao, Mack &
Stock, 2007; Mitrophanov & Groisman, 2008; Wang, 2012). Further, autophosphorylation
regulates the duration of RR phosphorylated state, which translates into the half-life of
the molecule, ranging from a few seconds to even an hour (Gao, Mack & Stock, 2007).
Sequence analyses of bacterial genomes enabled structural and functional evaluation of
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Figure 2 Global classification of bacterial RRs occurring in α-Proteobacteria in respect to their reg-
ulatory functions. (A) Numbers of individual-type RRs (DNA-binding, RNA-binding, enzymatic pro-
teins, and of other cellular functions); (B) Numbers of chosen DNA-binding and (C) enzymatic RRs in α-
Proteobacteria (prepared using data present in NCBI (2007)).

Full-size DOI: 10.7717/peerj.8466/fig-2

the diversity of TCS RRs, which were grouped in a database and classified (the database
contains nearly 9000 RRs) (NCBI, 2007). The largest number of endosymbiotic bacteria
belong to the α-Proteobacteria; within this group, nearly 3530 RR proteins have been
identified. Among them, a significant majority are TFs, which bind DNA (83.46%), and
enzymes (7.90%) (Fig. 2).

Galperin (2006) and Galperin (2010) showed that TFs belonging to the families OmpR,
NarI, and NtrC account for almost 60% of all bacterial RRs. Similar, in α-Proteobacteria,
these TF families constitute 51.64% of RRs. The regulatory domains of these RRs are very
similar (from 20 to 30% sequence homology), and control the structure and function of
various effector domains. These regulatory domains exist in two different conformations
(active form, stabilized by phosphorylation, and inactive form), whose molecular surfaces
differ in both states, allowing their various regulatory effects. In response to different
environmental factors, symbiotic bacteria belonging to α Proteobacteria use various TCSs
composed of a particular sensor HK and dedicated RR, which enables them to adapt to
the changing habitat conditions. Examples of rhizobial TCSs and their function in various
cellular processes are presented in Table 1. With respect to individual rhizobial species,
genes encoding RRs from families REC, OmpR, NarL, NtrC, ActA, AmiR, GGDEF, HisK,
and CheB constitute from 0.81 to 1.15% of the total number of genes in their genomes
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Table 1 Role of TCSs in regulation of various cellular functions in representatives of rhizobial α-Proteobacteria (based on data from the KEGG and NCBI databases
(https://www.genome.jp/kegg-bin/show_pathway?rlg02020, https://www.ncbi.nlm.nih.gov/;GenomeNet, 2019a;GenomeNet, 2019b)).

Family Environmental
factors

Sensor
histidine
kinases

Response
regulators

Regulated
proteins

Function Bacteria Reference

PhoR PhoB, PhoP PhoA, PhoD Rhizobium
Mesorhizobium
Bradyrhizobium
Sinorhizobium
Agrobacterium

Santos-Beneit (2015)

Phosphate
limitation SenX3 RegX3 PhoA, PstS

Phosphate
assimilation Agrobacterium Xu et al. (2018)

Mg2+ Starvation PhoQ PhoP Unknown Mg2+
assimilation

Rhizobium
Mesorhizobium
Bradyrhizobium
Sinorhizobium
Agrobacterium

Prost et al. (2007)

Osmotic
up-shift (K+)

EnvZ OmpR Unknown Change in
outer membrane
(small and large holes)

Rhizobium
Mesorhizobium
Bradyrhizobium
Sinorhizobium
Agrobacterium

Yoshida, Cai &
Inouye (2002),
Yuan et al. (2011) and
Sablok et al. (2017)

Misfold protein CpxA CpxR Unknown Cell envelope
protein folding
and protein
degradation

Rhizobium
Sinorhizobium

Weatherspoon-Griffin et al.
(2014)

CusA Rhizobium

CusC, CusF, CusB Mesorhizobium

CusB, CusA Bradyrhizobium

CusF, CusB, CusA Sinorhizobium

Copper
ions CusS CusR

CusF, CusB, CusA

Copper
efflux

Agrobacterium

Gudipaty et al. (2012)

Hormone
like-molecules

QseC QseB MotA Flagellum
regulation

Rhizobium
Mesorhizobium
Bradyrhizobium
Sinorhizobium
Agrobacterium

Andres et al. (2013) and
Corsini, Walker & Santini
(2018)

K+ limitation KdpD KdpE KdpA, KdpB, KdpC Potassium
transport

Rhizobium
Mesorhizobium
Bradyrhizobium
Sinorhizobium
Agrobacterium

Prell et al. (2012) and
Sablok et al. (2017)
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Table 1 (continued)
Family Environmental

factors
Sensor
histidine
kinases

Response
regulators

Regulated
proteins

Function Bacteria Reference

TctE Rhizobium
Mesorhizobium
Sinorhizobium
AgrobacteriumCatabolite

repression Unknown
TctD

TctA,
TctB,
TctC

Tricarboxylates
transport Bradyrhizobium

Antoine et al. (2003)

Unknown ResD Rhizobium
Sinorhizobium

Oxygen
limitation ResE Unknown

CtaA Respiration
Bradyrhizobium

Svensson, Lübben &
Hederstedt (1993)

Temperature MtrB MtrA DnaA DNA replication,
Osmoprotection

Rhizobium
Mesorhizobium

Wu et al. (2019)

VirB, VirR, Rhizobium
Mesorhizobium
Bradyrhizobium
Agrobacterium

OmpR
family

Acid
condition ChvG ChvI

KatA, VirB, VirR

regulation of
acid-inducible genes
and virulence Sinorhizobium

Vanderlinde &
Yost (2012)

Citrate CitA CitB CitE, CitF,
CitG

Citrate
fermentation

Rhizobium
Mesorhizobium
Bradyrhizobium
Agrobacterium

Scheu et al. (2012)

C4- dicarboxyrate DctB Unknown DctP C4- dicarboxyrate
transport

Rhizobium
Mesorhizobium
Bradyrhizobium
Sinorhizobium
Agrobacterium

Yurgel & Kahn (2004)

Unknown Bradyrhizobium
Mesorhizobium

CitB
family

Malate MalK
MalR

Unknown Malate
utilization Rhizobium

Sinorhizobium
Agrobacterium

Kühnau et al. (1991)
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Table 1 (continued)
Family Environmental

factors
Sensor
histidine
kinases

Response
regulators

Regulated
proteins

Function Bacteria Reference

LytS LytR Rhizobium
Mesorhizobium
Sinorhizobium

LytTR
family Unknown LytR

LrgA,
LrgB

Mureine
hydrolase
activity Bradyrhizobium

Agrobacterium

Behr et al. (2017)

NarX NarL NarG, NarH,
NarI, NarJ

Nitrate reductase
(Nitrogen metabolism)

Rhizobium
Bradyrhizobium

Nohno et al. (1989)

FdnG, FdnH, FdnI Mesorhizobium

FdnG, FdnI Bradyrhizobium
Sinorhizobium

Nitrate/
Nitrite Unknown NarP

Unknown

Formate
dehydrogenase
(Nitrogen
metabolism) Agrobacterium

Nohno et al. (1989)NarL
family

Salt stress DegS DegU Unknown Degradative enzymes Rhizobium
Mesorhizobium
Bradyrhizobium
Agrobacterium

Msadek et al. (1990)

GlnL GlnG GlnA Nitrogen assimilation
(glutamate metabolism)

Rhizobium
Mesorhizobium
Bradyrhizobium
Sinorhizobium
Agrobacterium

Shatters, Somerville &
Kahn (1989)

NifA Rhizobium
Mesorhizobium
Bradyrhizobium
Sinorhizobium

Low
nitrogen
availability NtrY NtrX

Unknown
Nitrogen
assimilation Agrobacterium

Salazar et al. (2010)NtrC
family

C4- dicarboxyrate DctB DctD DctA C4- dicarboxyrate transport Rhizobium
Mesorhizobium
Bradyrhizobium
Sinorhizobium
Agrobacterium

Golby et al. (1999)

CheY
CheV
CheB

Rhizobium
Mesorhizobium
Bradyrhizobium

Chemotaxis
family

Attractant/
Repelent

MCP-
CheA CheY

CheB

Unknown
Flagellar motor
switch adaptation Sinorhizobium

Agrobacterium

Jahreis et al. (2004)

(continued on next page)
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Table 1 (continued)
Family Environmental

factors
Sensor
histidine
kinases

Response
regulators

Regulated
proteins

Function Bacteria Reference

NifA, FixK Rhizobium
Mesorhizobium
Bradyrhizobium
SinorhizobiumLuxR

family
Oxygen
limitation FixL FixJ

FixK

Respiration and
nitrogen fixation Agrobacterium

Monson, Ditta & Helinski
(1995)

RegB RegA PetA, PetB Electron transfer system Rhizobium
Mesorhizobium
Bradyrhizobium
Sinorhizobium
Agrobacterium

Bauer et al. (1998)

NifA Rhizobium
BradyrhizobiumOthers

Redox
signal RegS RegR

Unknown
Nitrogen
assimilation Agrobacterium

Lindemann et al. (2007)
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(e.g., B. japonicum, 1.15%; Rhizobium etli, 1.14%; R. leguminosarum, 0.98%; S. meliloti,
0.92%; Rhizobium sp. NGR234, 0.89%; andM. loti, 0.81%) (NCBI, 2007).

The availability of phosphate to bacteria in the soil varies, and ranges from 0.1 to 10 µM.
Changes in the concentration of this element in the environment trigger activation of
the TCS systems in soil bacteria and thus induce changes in the cell function. Phosphate
limitation, in addition to other environmental factors, such as osmolality, ammonium
availability, or the presence of flavonoids, affects the biosynthesis of extracellular surface
polysaccharide (EPS) in symbiotic bacteria. The TCS system PhoR-PhoB is involved in
the regulation of EPS synthesis in Rhizobiaceace. As indicated in S. meliloti, the PhoR
protein is a HK that acts as a sensor of phosphate limitation in the environment, while
the PhoB protein is a RR responsible for positive regulation of the expression of many
genes associated with phosphate deficiency (among others, wgaA, wggR, and wgeA). These
genes are involved in the synthesis of EPS II (also called galactoglucan), which, as shown
by numerous studies, is a signal molecule indispensable for biofilm formation, plant
colonization, and establishment of effective symbiosis of S. meliloti with alfalfa (Bahlawane
et al., 2008; Hagberg et al., 2016; Gao et al., 2012).

Other TCSs are also involved in the chemo-screening process in α-Proteobacteria.
These TCSs are composed of transmembrane proteins, which are chemoreceptors, called
methyl-accepting chemotaxis proteins (MCPs) (Fig. 3) (Meier, Muschler & Scharf, 2007;
Zatakia et al., 2018). These proteins consist of two domains: a periplasmic domain that is a
ligand and a signaling domain functioning as a cytoplasmic binding site, which is flanked
by methylation regions. The cytoplasmic domain also contains a binding site for the HK
CheA. This process is also mediated by adapter protein CheW. If a repellent compound
is bound to the periplasmic domain, the conformation of the MCP changes; this relays
the signal to the CheA protein and results in autophosphorylation. The phosphate group
is then transferred to the CheY protein, which is a respiration regulator. By interacting
with the FliM switch protein, it reverses the direction of the flagellum rotation, which
changes the direction of bacterial migration in the environment (Alexander et al., 2010;
Haslbeck, 2016). The phosphorylated CheY protein can spontaneously dephosphorylate,
and its inactivation is accelerated by the CheZ protein, which has a dephosphatase activity.
CheR and CheB are other Che proteins that are very important in bacterial chemotaxis.
They are responsible for the methylation and demethylation of MCPs (Baker, Wolanin &
Stock, 2006; Tambalo, Yost & Hynes, 2015). In the case of E. coli and Salmonella, five genes
encoding MCP chemoreceptors have been identified in their genomes. They include genes
for Tap protein, which traps dipeptides and pyrimidines; Tar, which reacts with maltose
and aspartate; Tsr, which traps serine; Trg, which reacts with galactose and ribose; and Aer,
which senses changes in the accessibility of oxygen. Four of these proteins are common
to both these bacterial species (Tar, Tsr, Trg, and Aer) (Parkinson, Hazelbauer & Falke,
2015a).

In representatives of α-Proteobacteria, the majority of genes associated with motility,
chemotaxis, and flagellum synthesis, as well as regulatory genes related with these
processes, are located on the chromosome, usually in one or two operons. This type
of organization provides coordinated expression of genes related to cell migration. In
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Figure 3 Mechanism of chemotaxis based on the TCS system in α-Proteobacteria (based on the KEGG
database).

Full-size DOI: 10.7717/peerj.8466/fig-3

R. leguminosarum, R. etli, and B. japonicum, two complete operons (Che1 and Che2)
encode proteins homologous to E. coli CheAWYRB (Aizawa, Harwood & Kadner, 2000;
Miller et al., 2007). In the case of S. meliloti, only one of the Che operons is fully functional
and encodes necessary chemotactic proteins. The second operon is located on plasmid
pSymA and contains an incomplete set of genes (Meier, Muschler & Scharf, 2007). Only one
complete Che operon is present in A. tumefaciens, while literature data indicate thatM. loti
harbors one but incomplete Che operon (Kaneko et al., 2000;Huang et al., 2018). Sequence
analysis of the genomes of all these bacteria allowed determining the number of MCP
chemoreceptors in different rhizobial species. The highest number of MCPs was identified
in B. japonicum (36 MCPs), followed by bacteria belonging to the genus Rhizobium (28
MCPs), A. tumefaciens (20 MCPs), Sinorhizobium (9 MCPs), and only one chemoreceptor
inM. loti (Tambalo, Yost & Hynes, 2015).

Other TCS systems are involved in atmospheric N2 fixation in rhizobia and are
responsible for controlling the permeability of the bacterial envelope to oxygen in root
nodules. One of the most common TCSs involved in these processes is FixL-FixJ, the
activation of which occurs under micro-aerobic conditions, i.e., when the concentration of
oxygen in the microbial cell is low (2%) (Monson, Ditta & Helinski, 1995; Bobik, Meilhoc
& Batut, 2006). HK FixL has the ability to autophosphorylate using ATP as a phosphate
donor. This is possible because of the presence of a heme group in the protein, to which the
oxygen molecule binds and thus regulates the autophosphorylation. The phosphate group
is then transferred to RR FixJ, which is a TF from the Crp-Fnr family. Phosphorylated
FixJ controls a number of genes that influence signal transduction and adaptation of
rhizobia to changing environmental conditions. According to literature data, FixJ controls
nearly 74% of genes related to cell respiration under microaerobic conditions in S. meliloti.
FixJ also acts as a positive regulator of the expression of the fixK gene, whose product is
responsible for the regulation of the entire FixL-FixJ TCS system (Bobik, Meilhoc & Batut,
2006). Furthermore, FixK also controls the expression of the fixT gene, which encodes a
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protein that facilitates the dephosphorylation of FixL. The FixK protein itself controls over
90 genes related to cellular respiration and TCS regulation, as well as the response to stress
factors, denitrification process, and cellular metabolism (e.g., transport of substances and
Arg metabolism). Interestingly, FixK not only regulates the expression of genes involved
in symbiotic processes but also affects the expression of genes related to the function
of free-living bacteria (Bobik, Meilhoc & Batut, 2006; Reyes-González et al., 2016). The
FixL-FixJ system also controls another transcription regulator involved in the expression
of N2-fixing genes, the NifA protein. In bacterial cells, NifA controls a small number
of genes (fixABCX, nifHDKEX, nifB, or nifN ) whose expression is only detected in the
bacteroid, but also genes involved in EPS production (syrA in S. meliloti) (Reyes-González
et al., 2016). The occurrence of the FixL, FixJ, FixK, and NifA proteins is conserved among
α-Proteobacteria; however, they differ with respect to the regulation mode and the set
of the controlled target genes in different rhizobial species. However, some differences
between various rhizobial species are observed, for example the expression of the nifA gene
in B. japonicum is not dependent on the FixL-FixJ system, but depends on a completely
different TCS system (RegS-RegR), which responds to redox potential changes in the
cell (Bobik, Meilhoc & Batut, 2006; Stacey, 2007; Zamorano-Sánchez et al., 2012; Terpolilli,
Hood & Poole, 2012).

PHOSPHENOLOPYRUVATE-DEPENDENT
PHOSPHOTRANSPHERASE SYSTEMS (PTSS)
The PTS system in bacteria was first described over 50 years ago by Kundig, Ghosh &
Roseman (1964), and is involved in the transport of carbohydrates in cell. This system
is based on the transport of sugar components and other soluble substances from the
environment to the bacterial cell, coupled with their simultaneous phosphorylation, which
involves the participation of PEP (Kundig, Ghosh & Roseman, 1964; Saier, 2015). PTS
systems are also involved in other physiological processes in bacteria, such as chemotaxis,
regulation of carbon and nitrogen metabolism, and signal transduction (Kotrba, Inui &
Yukawa, 2001; Pflüger-Grau & Görke, 2010; Saier, 2015).

Currently, two types of PTSs are distinguished; the first one is associated with transport
of most sugars and the second, PTSNtr, is involved in regulatory processes in the cell.
The classic PTS system is associated with transport of many different sugars, such as
ketohexoses, aldohexoses, sugar alcohols, di- and trisaccharides, and aminosugars, into the
cell. However, not all sugars can be transported through this system, for instance glycerol,
glucuronide, and arabinose, which are transported by permeases and ATP-binding cassette
(ABC) transporters. The PTS system is composed of four cytoplasmic proteins and one
membrane protein. The first protein, called enzyme I (EI), is phosphorylated by PEP in
the presence of Mg2+ ions on a His residue. Then, the phosphate group is transferred
from EI to the HPr protein (to another conserved His residue). Both these proteins are
involved in capturing the majority of PTS substrates and are subject to constitutive or
partially induced expression in the cell (Deutscher, Francke & Postma, 2006; Deutscher
et al., 2014; Choe et al., 2017). Another component of this system is the enzymatic complex
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Figure 4 Models of the PTS systems in Gram-negative bacteria. (A) Classic PTS system responsible for
the transport of carbohydrates into bacterial cells (example: E. coli); (B) PTS system involved in regulatory
functions in the bacterial cells (referred to as PTSNtr ) present in representatives of α-Proteobacteria (devel-
oped on the basis of S. meliloti species (Pflüger-Grau & Görke, 2010).

Full-size DOI: 10.7717/peerj.8466/fig-4

II (EII), which consists of three to four protein domains called EIIA, EIIB, EIIC, and
EIID. Phosphorylated HPr phosphorylates EII components. All these components have
different substrate specificity with respect to carbohydrate transport and species specificity.
Regulatory schemes within the PTS systems are not conserved among Gram-negative
microorganisms, and are subject to numerous structural and functional modifications
across species. Target proteins phosphorylated by PTSs are quite diverse and represent
not only sugar transport systems or catalytic enzymes, but also TFs and HKs belonging to
the TCSs. In most Gram-negative bacteria, the regulatory role of PTSs is reduced to the
regulation of carbohydrate catabolism, which allows these microorganisms to adapt quickly
to the changing and favorable carbon source, by phosphorylating PTS components. Based
on sequence analyses of numerous genomes of bacteria belonging to the α-Proteobacteria,
no fully functional PTS system, such as that in Gram-negative bacteria, has been found
(Fig. 4).

In rhizobial representatives (S. meliloti, M. loti, B. japonicum, R. leguminosarum bv.
viciae, and S. fredii), only proteins homologous to the basic components of PTS were
found, with the exception of EIIB and EIIC transport proteins (Li et al., 2016). Current
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Table 2 Effects of mutations in genes encoding PTSNtr system components in α-Proteobacteria representatives.

Bacterial strain Mutated gene Effects of the mutation Reference

S. meliloti 1021 HPr (ptsH ),
manX,
ptsO

Disorders in functioning of catabolic repression, inefficient
symbiosis (nodules formed on alfalfa roots are inefficient
in nitrogen fixation), decreased expression ofmelA, agp
and lac operons (needed for the utilization of α- and β-
galactosides), the enhanced production of high-molecular-
weight succinoglycan

Pinedo, Bringhurst & Gage (2008)

S. fredii ptsP,
ptsO

Disorders in symbiosis (ineffective nodules formed on
soybeans)

Li et al. (2016)

S. fredii ptsN No negative effects on the symbiosis with soybean Li et al. (2016)
R. etli ptsN Decreased growth on carboxylic compounds, reduced

production of melanin, and induction of nifH expression
Michiels et al. (1998)

R. leguminosarum bv.
viciae 3841

ptsP,
ptsN,
ptsO

Change in the colony morphology from mucous to rough,
reducing the range of ABC transporters

Prell et al. (2012),
Untiet et al. (2013)

B. japonicum I110 ptsP Reduction of oligopeptide uptake King & O’Brian (2001)

literature data suggest that the incomplete PTS system inα-Proteobacteria is not involved in
carbohydrate transport into the cell. Sugars and other soluble compounds are transported in
these bacteria by widely distributed ABC-type transporters, which together with permeases,
form up to 180 individual transport systems that are not yet fully characterized. The
extremely complex network of the ABC-type systems in α-Proteobacteria reflects the
requirements of these bacteria during their existence in the soil environment and symbiosis
with legumes.

The second type of PTS (PTSNtr) is present in all α-Proteobacteria representatives. This
system contains the following components: EINtr (PtsP), NPr (PtsO), and EIIANtr (PstN)
(Fig. 3) (Prell et al., 2012; Muriel-Millán et al., 2017). It has been intensively studied in
recent years; nevertheless, the main functions of this system are still not fully understood.
Based on the phenotypic effects of mutations present in genes encoding PTSNtr system
components in the representatives of α-Proteobacteria, the system is involved in metabolic
processes of rhizobia and their adaptation to stress conditions (Table 2).

It was experimentally determined that PTSNtr components also participate in the
regulation of ABC-type transporters in R. leguminosarum bv. viciae 3841, and the presence
of PtsP and PtsN proteins is required for their full activation. The PtsN protein also plays
an important role in the activation of K+ ion transporters because it interacts (most
likely in the non-phosphorylated state) with the KdpD sensor kinase. In addition to
its involvement in the regulation of K+ ion concentration, PtsN regulates, directly or
indirectly, many other cellular processes in various microorganisms, including rhizobia
(Fig. 5). These processes include regulation of phosphate starvation (in E. coli), expression
of nitrogen-fixing genes (nif genes in Klebsiella pneumoniae), and accumulation of
polyhydroxybutyrate (in Azotobacter vinelandii). The current data also suggest that the
presence of α-ketoglutarate glutamine can affect the phosphorylation status of the PTSNtr

system by binding to the GAF domain (named after some proteins in which it is found:
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Figure 5 Functions performed by the PTS system in Gram-negative bacteria (based on data presented
in Saier (2015).

Full-size DOI: 10.7717/peerj.8466/fig-5

cGMP-specific phosphodiesterases, Adenylyl cyclases, and FhlA) of the PtsP protein, as in
E. coli. These observations suggest that PTSNtr can ‘‘sense’’ the availability of nitrogen.

PHOSPHORYLATION OF TYR, SER, AND THR RESIDUES
Phosphoproteomic analyses performed for different bacterial species, including rhizobia,
revealed that, in contrast with eukaryotes, bacteria contain several enzymes that are able
to phosphorylate a wide range of amino acids (Mijakovic, Grangeasse & Turgay, 2016;
Janczarek et al., 2018). As indicated for S. meliloti cells in the stationary phase, 96 unique
phosphorylated sites in 77 proteins were identified; the ratio of detected phosphopeptides
in these proteins was 63:28:5 Ser/Thr/Tyr (Liu, Tian & Chen, 2015). A similar ratio was
also found in E. coli strain K12 (Ser 67.9%, Thr 23.5%, Tyr 8.6%), and is similar to those
in human proteins (Ser 86.4%, Thr 11.8%, and Tyr 1.8%). The phosphorylation of these
amino acids is dynamic and reversible, due to the action of appropriate phosphatases,
which are thus involved in signal transduction pathways in the cell (Macek et al., 2008;
Shi, 2009).

The process of phosphorylation and dephosphorylation of Tyr in bacteria is conducted by
protein tyrosine kinases (TKs) and two types of tyrosine phosphatases (TPs). The former
are conventional eukaryotic-type phosphatases, while the latter are acid phosphatases
characterized by low molecular weight (LMW-TPs) (Macek et al., 2008). Genes encoding
relevant pairs of TKs and TPs most often located in large operons, which are responsible
for regulating the synthesis of surface polysaccharides [such as EPS and capsular
polysaccharides (CPS)] or biofilm formation. These processes are involved in both the
virulence of pathogenic bacteria and symbiotic interactions (as in the case of rhizobia)
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(Janczarek, 2011; Medeot et al., 2016; Marczak et al., 2017). Bacterial TKs are characterized
as polysaccharide co-polymerases participating in the polymerization of EPS subunits
or recurring O-antigen subunits in LPS molecules (Marczak et al., 2017). This group
includes the following proteins: Wzc of E. coli, CpsD of Streptococcus pneumoniae, Ptk of
Acinetobacter johnsonii, and AmsA of Erwinia amylovora (Soulat et al., 2007; Grangeasse,
Nessler & Mijakovic, 2012; Nourikyan et al., 2015). Unfortunately, only a small number of
TKs (e.g., ExoP of S. meliloti and PssP of R. leguminosarum) and TPs have been described
in symbiotic bacteria (Mazur et al., 2002; Medeot et al., 2016). Additionally, there is no
knowledge of the mechanisms and role of these proteins in the signal transduction pathway
in rhizobia as well as target proteins that they regulate. The structure of TKs in symbiotic
bacteria does not greatly differ from that of classical TKs, which are present in the majority
of pathogenic bacteria. The catalytic domain is characterized by the presence of the Walker
A and Bmotifs, and the absence of motifs characteristic of typical eukaryotic kinases. These
enzymes also have the potential to autophosphorylate, which occurs in the Tyr-rich region
located in the C-terminal part of these proteins (Grangeasse, Nessler & Mijakovic, 2012).
As in the case of other kinases described herein, the donor of the phosphate group is ATP,
and the degree of phosphorylation of bacterial TK determines its ability to interact with
other proteins in the bacterial cell (Whitmore & Lamont, 2012). Among rhizobial TKs, the
most detailed description has been provided for ExoP in S. meliloti, which is involved in
the polymerization of EPS I (succinoglycan). This protein is encoded by the exoP gene,
which is located in a large gene cluster (30 kb) on pSymB plasmid responsible for EPS I
biosynthesis (this cluster includes 21 exo and exs genes) (Niemeyer & Becker, 2001). ExoP is
a membrane protein consisting of an N-terminal periplasmic domain located between two
transmembrane regions, and an additional cytoplasmic domain located at the C-terminus
and containing ATP-binding motifs (Walker A and B motifs) (Niemeyer & Becker, 2001;
Schmid, Sieber & Rehm, 2015;Medeot et al., 2016).

Numerous studies have shown that a mutation in the exoP gene in S. meliloti blocks the
polymerization of EPS I subunits and results in a significant reduction in the production
of this polysaccharide (increased LMW fraction of EPS I in relation to the HMW form).
This was caused by the fact that only the N-terminal part of the protein is expressed
in the exoP mutant. Despite the changes in the ratio between HMW and LMW EPS I
produced, as well as the adhesion ability of the exoP mutant, this bacterium can infect
the host plant. Homologs of S. meliloti ExoP are also present in other representatives of
α-Proteobacteria, including B. japonicum (Becker & Pühler, 1998), M. loti (Kaneko et al.,
2000), Rhizobium spp. (Staehelin et al., 2006), or A. tumefaciens, where these proteins serve
similar functions as that in S. meliloti. In spite of their functional similarity in different
bacteria, ExoP proteins in these microorganisms differ in biochemical properties and
sequence (i.e., molecular mass, length, amino acid composition, and isoelectric point)
(Table 3). Analysis of the amino acid sequences of ExoP proteins from rhizobial strains
described to date indicates a diverse degree of sequence similarity (from 24% to 99%
identity and from 45% to 99% sequence similarity, depending on the species) (Table 3,
Figs. 6A and 6B). These differences are also highlighted by the analysis of the secondary
structure of these proteins, revealing a variable number of α-helices and β-sheets in
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Table 3 Comparison of the biochemical and structural properties of ExoP proteins in selected rhizobial species.

Name of
protein

Bacteria Molecular
weight
(kDa)

Length
(aa)

Sequence
identity (%)/
Sequence
similarity (%)

Hydrophobic
amino acids (%)

Hydrophilic
amino acids
(%)

pI Secondary
structure of
the protein

Number of
α-helixes

Number of
β-sheets

ExoP S. meliloti 86.14 786 40/57 53.32% 46.68% 7.0 26 15
ExoP B. japonicum 81.65 756 28/46 53.18% 46.30% 6.1 24 13
ExoP M. loti 80.58 759 24/45 57.18% 42.82% 4.8 22 14
PssP R. leguminosarum bv. trifolii 84.05 758 99/99 52.11% 47.89% 5.2 25 13
ExoP A. tumefaciens 85.34 782 40/59 52.43% 47.57% 5.9 26 15
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Figure 6 Characteristics of ExoP proteins in selected rhizobial species. (A) Alignment of sequences of
ExoP proteins from S. meliloti, B. japonicum, M. loti, R. leguminosarum, and A. tumefaciens, developed in
the ClustalOmega program; (B–E) theoretical models of ExoP proteins from selected symbiotic bacteria
generated by the RaptorX program.

Full-size DOI: 10.7717/peerj.8466/fig-6

these proteins (Table 3) (based on NetSurfP-2.0, 2007 analysis), and are evident during
generation of theoretical three-dimensional protein models (Fig. 6) (based on the RaptorX,
2011 analysis).

The EPS copolymerase in R. leguminosarum is PssP (PCP2a), which is similar to the
S. meliloti ExoP protein. The pssP gene encoding TK is located in the terminal part of the
Pss-I region, in which genes responsible for the synthesis, polymerization, and export of
EPS are grouped (Mazur et al., 2002). PssP is 746-aa long protein (molecular mass of 82.39
kDa) located in the bacterial internal membrane. The structure of PssP is highly similar to
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that of ExoP proteins. In its structure, a hydrophilic N-terminal domain surrounded by
two transmembrane regions and a C-terminal domain containing Walker A and B motifs
have been identified. The only major difference is that the PssP protein does not contain
a Tyr-rich region present in ExoP (Ivashina & Ksenzenko, 2012). The mutation in the pssP
gene, similar to the mutation in the exoP of S. meliloti, affects the amount of EPS produced
by R. leguminosarum. A deletion of the entire pssP gene in R. leguminosarum strain TA1
results in a complete inhibition of EPS production, and alteration of colony morphology
(rough, non-fluid colonies are formed) in comparisonwith thewild type (mucoid colonies).
It also affects the ability of the mutant to interact with the host plant (no colonization
of clover roots) and fix atmospheric N2. Further, mutant strains synthesizing PssP that
lacks the C-terminal region produce a reduced amount of EPS, with a changed ratio of
the HMW fraction to the LMW fraction of this polymer (dominance of the LMW EPS
fraction) (Mazur et al., 2002;Marczak et al., 2017).

Currently, very little information is available for the TPs in Rhizobiaceae. To date, the
literature contains one example gene, the chromosomal gene SMc02309 in S. meliloti, which
encodes a potential TP. Bioinformatics analyses have shown that a protein encoded by
this gene shares a high (43%) sequence identity with the E. coli Wzb protein. Biochemical
analyses have confirmed that SMc02309 can hydrolyze an artificial substrate p-NPP, used in
in vitro assays, allowing determination of its phosphatase properties. Furthermore, studies
with S. meliloti SMc02309 have shown that this protein is able to dephosphorylate ExoN
(UDP-glycosyl pyrophosphorylase involved in UDP-glucose synthesis) on Tyr residues
(Medeot et al., 2016).

Another important issue in bacterial regulatory pathways is phosphorylation of Ser
and Thr. Although Ser and Thr are among the most frequently phosphorylated amino
acids in bacteria, the knowledge of kinases and phosphatases responsible for their
phosphorylation/dephosphorylation is insufficient. In bacteria, two types of Ser kinases can
be distinguished: Hanks-type (commonly referred to as eukaryotic-like Ser/Thr) kinases
(STKs) and atypical Ser kinases. The first type encompasses cytoplasmic and membrane
proteins whose location is variable, and depends on the enzyme structure and occurrence
of additional sub-domains that also affect its activity. This group of enzymes contains 12
specific motifs that were defined by the discoverer of the Hanks proteins. As in the case of
classical kinases, the catalytic domain participates in the binding of the phosphate group
from the donor molecule (ATP) in the N-terminal part of protein, while the C-terminal
part is responsible for the interaction of the protein with substrate molecules and is
involved in the transfer of this group. Thus far, a large number of STKs (approximately
60) has been described. They mainly originate from Gram-positive and Gram-negative
bacteria pathogenic to human, which emphasizes the importance of phosphorylation in all
microorganisms and how much research is still needed to fully understand this regulatory
process. The functional range of proteins regulated by STKs is extremely broad and is
related to many diverse cellular processes, such as cell division, central metabolism control,
envelope biogenesis, regulation of ABC transport systems, regulation of translation and
transcription, and stress responses (e.g., heat shock, sporulation, osmotic stress, etc.)
(Janczarek et al., 2018).
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Unfortunately, the knowledge of STKs and Ser/Thr phosphatases (STPs) in symbiotic
bacteria is still insufficient. At present, only one rhizobial STK has been described in
the literature (i.e., PrkA STK in Mesorhizobium alhagi, a bacterium able to infect Alhagi
sparsifolia naturally occurring in the Mediterranean area) (Chen et al., 2010; Liu et al.,
2016). PrkA is an extremely conservative STK with homology to STKs not only in E. coli,
but also in Bacillus subtilis andMycobacterium tuberculosis. This protein plays an important
role in the regulation of bacterial metabolism under stress conditions (such as osmotic or
acid stress). PrkA of M. alhagi consists of 649 amino acids (molecular mass of 74.73 kDa)
and is involved in the adaptation of rhizobial cell to stress conditions caused by increased
salinity in the environment (Liu et al., 2016).

Even less information can be found for rhizobial STPs. The currently available literature
data pertain to a small percentage of these enzymes, mainly focusing on human pathogenic
bacteria (in particular, Gram-positive bacteria; only 30% of STPs described in the
literature originate from Gram-negative bacteria). Bacterial STPs are classified into two
phosphatase families: classical bacterial phosphoprotein phosphatases (PPPs) or protein
metallophosphatases (PPMs). These enzymes play a variety of functions in the bacterial cell,
as do the corresponding STKs. STPs are involved in the following processes: cell growth
and division, cell signaling, sporulation, biofilm formation, motility, and regulation of
transcription and translation. Interestingly, the first and only STP described to date in
a symbiotic bacterium from the Rhizobiaceae family is PssZ from R. leguminosarum bv.
trifolii. This protein is encoded by the pssZ gene located in the Pss-I region, which is
responsible for the synthesis and export of EPS. PssZ is 263-amino acid-long protein
with a molecular mass of 29.28 kDa (isoelectric point of 8.62) (Table 4). The protein
shows a various degree of homology with proteins from other symbiotic bacteria (46–90%
for bacterial strains from the genus Rhizobium; 44–46% for the genus Sinorhizobium;
47–54% for the genus Agrobacterium; and 44–47% for the genera Bradyrhizobium and
Mesorhizobium). Bioinformatics analyses of the secondary structure of PssZ have shown
that this protein contains 11 α-helixes and 10 β-sheets, as well as three motifs characteristic
for and conserved in PPMs (-GDXHG-, -GDXVDRG-, and -GNHE-) (Fig. 7). Furthermore,
amino acids characteristic for STPs from the PPM family (His at positions: 45, 108,186,
and 225; and Asn107, Asp43, and Asp76), which are responsible for the binding of metal
ions magnesium and manganese have also been identified. To determine the role of the
PssZ protein in the functioning of rhizobial cells, a spontaneous mutant harboring a
Tn5 transposon insertion in the pssZ gene was evaluated. Comparative transcriptomic
analyses of the pssZ mutant and the wild-type strain showed that the lack of functional
PssZ protein affects multiple cellular processes, including transcription, translation, and
signal transduction, as well as cell division and motility. Furthermore, the mutation in pssZ
led to the inhibition of the synthesis of surface polysaccharides, such as EPS and CPS, and
substantially reduced the amount of produced gel-forming and neutral polysaccharides.
The lack of functional PssZ also significantly affects the growth of R. leguminosarum,
prolonging the generation time, and negatively influences cell motility. The lack of this
protein also dramatically affects the effectiveness of symbiosis of this bacterium with its
host plant, i.e., red clover (Trifolium pratense) (the pssZ mutant induces the formation

Lipa and Janczarek (2020), PeerJ, DOI 10.7717/peerj.8466 23/35

https://peerj.com
http://dx.doi.org/10.7717/peerj.8466


Table 4 Comparison of the biochemical and structural properties of PssZ proteins in selected rhizobial species.

Protein Bacteria Molecular
weight
(kDa)

Length
(aa)

Sequence
identity (%)/
Sequence
similarity (%)

Hydrophobic
amino acids
(%)

Hydrophilic
amino acids
(%)

pI Secondary structure
of the protein

Number of
α-helixes

Number of
β-sheets

PssZ
WP_026230739

R. leguminosarum bv.
trifolii Rt24.2

29.28 263 -/- 58.55 41.45 8.6 11 10

ABC92003 R. etli CFN 42 28.95 260 92/94 56.92 43.08 8.2 13 12
WP_085738086 Rhizobium sp. CIAT894 29.26 263 94/96 57.41 42.59 8.4 12 12
WP_063898332 M. loti 28.87 256 47/60 54.68 45.32 6.8 10 11
EKJ95978 B. lupiniHPC(L) 29.4 263 46/62 57.41 42.59 6.9 13 10
WP_012652475 A . tumefaciens 28.92 263 50/66 55.51 44.49 5.4 11 12
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Figure 7 Characteristics of the PssZ proteins in selected rhizobial species. (A) Alignment of sequences
of PssZ proteins from B. lupini, M. loti, R. leguminosarum, and A. tumefaciens developed in the
ClustalOmega program; (B–E) theoretical models of PssZ proteins from selected symbiotic bacteria
generated by the RaptorX program.

Full-size DOI: 10.7717/peerj.8466/fig-7

of deformed root nodules, which are unable to reduce atmospheric N2) (Lipa et al., 2018;
Lipa, Vinardell & Janczarek, 2019).

CONCLUSIONS
Phosphorylation is a key mechanism that enables microorganisms to exist in various
ecological niches, and to sense and respond to changing environmental conditions.
Sensing and transduction of different signals (both external and internal) allow bacteria
to adapt to different environments. These processes are conducted by various regulatory
systems, including TCSs, PTSs, and STKs/STPs. Several studies indicate that regulatory
pathways controlled by phosphorylation/dephosphorylation processes play an essential
role in the regulation of various cellular processes in symbiotic bacteria, such as growth and
cell division, cell wall biosynthesis, biofilm formation, stress response, metabolic processes,
symbiotic interaction with legumes, and nitrogen fixation. Reversible phosphorylation
of many protein targets involved in bacterial signaling and physiology is catalyzed by
enzymes belonging to different families of kinases and phosphatases. However, the current
knowledge of rhizobial enzymes involved in the phosphorylation/dephosphorylation
processes, environmental signals that trigger the signaling cascade, and the mechanisms
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that regulate the crosstalk between these enzymes is insufficient. Studies in this research field
will provide understanding of the function of prokaryotic regulatory networks and their
role in adaptation of rhizobia to different ecological niches, such as the soil, rhizosphere,
and legume root nodules. Thus, the most important aspects of the role of these regulatory
systems that should be addressed are understanding their molecular mechanisms of action,
as well as the relationships between them. These data will allow us to understand the
complexity of rhizobial sensing and response to various environmental stressors that may
ensure better application of these bacteria in sustainable agriculture in the future.
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