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ABSTRACT
The detection of candidate genes and mutations associated with phenotypic traits is
important for livestock animals. A previous RNA-Seq study revealed that SERPINA1
gene was a functional candidate that may affect milk protein concentration in dairy
cows. To further confirm the genetic effect of SERPINA1 on milk protein traits, genetic
polymorphisms were identified and genotype-phenotype associations were performed
in a large Chinese Holstein cattle population. The entire coding region and the 5′-
regulatory region (5′-UTR) of SERPINA1 was sequenced using pooled DNA of 17
unrelated sires. Association studies for fivemilk production traits were performed using
a mixed model with a population encompassing 1,027 Chinese Holstein cows. A total
of four SNPs were identified in SERPINA1, among which rs210222822 and rs41257068
presented in exons, rs207601878 presented in an intron, and rs208607693 was in the
5′-UTR.Analyses of pairwiseD′measures of linkage disequilibrium (LD) showed strong
linkage among these four SNPs (D′ = 0.99–1.00), and a 9 Kb haplotype block involving
threemain haplotypeswithGTGT,CCCCandCCGTwas inferred. An association study
revealed that all four single SNPs and their haplotypes had significant genetic effects
on milk protein percentage, milk protein yield and milk yield (P = 0.0458−< 0.0001).
The phenotypic variance ratio for all 11 significant SNP-trait pairs ranged from 1.01%
to 7.54%. The candidate gene of SERPINA1 revealed by our previous RNA-Seq study
was confirmed to have pronounced effect onmilk protein traits on a genome level. Two
SNPs (rs208607693 and rs210222822) presented phenotypic variances of approximately
7% andmay be used as key or potential markers to assist selection for new lines of cows
with high protein concentration.

Subjects Agricultural Science, Animal Behavior, Genetics, Molecular Biology, Zoology
Keywords Candidate gene, SERPINA1, Milk protein trait, Association analysis, Linkage
disequilibrium, Haplotype, Phenotypic variance, Molecular marker, Selective breeding, Dairy cows

INTRODUCTION
Bovine milk represents an essential source of nutrients for lactating calves and a key
raw material for human food preparations (D’Alessandro, Zolla & Scaloni, 2011). As one
of major nutrient components in milk, the concentration of bovine milk protein is

How to cite this article Li C, Cai W, Liu S, Zhou C, Yin H, Sun D, Zhang S. 2020. SERPINA1 gene identified in RNA-Seq showed strong
association with milk protein concentration in Chinese Holstein cows. PeerJ 8:e8460 http://doi.org/10.7717/peerj.8460

https://peerj.com
mailto:congl@nwafu.edu.cn
mailto:zhangslcau@cau.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.8460
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://oct2018.archive.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=21:59581789-59582789;v=rs210222822;vdb=variation;vf=11701534
http://oct2018.archive.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=21:59581651-59582651;v=rs41257068;vdb=variation;vf=20873
http://oct2018.archive.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=21:59579274-59580274;v=rs207601878;vdb=variation;vf=9125394
http://oct2018.archive.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=21:59588561-59589561;v=rs208607693;vdb=variation;vf=10114092
http://oct2018.archive.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=21:59588561-59589561;v=rs208607693;vdb=variation;vf=10114092
http://oct2018.archive.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=21:59581789-59582789;v=rs210222822;vdb=variation;vf=11701534
http://doi.org/10.7717/peerj.8460


closely related to the nutritive value of milk and milk selling price. In addition, bovine
milk proteins also present important biological functions, such as, providing external
nutrients and defense molecules against pathogens to suckling, directly stimulating the
growth of neonate tissues/organs, and assisting animals to develop a proper immune
system (D’Alessandro, Scaloni & Zolla, 2010). Studies have revealed that milk protein
synthesis is regulated by a remarkable number of molecular cascades (Bonfatti et al., 2011;
Gebreyesus et al., 2016; Sanchez et al., 2017; Schopen et al., 2009a; Schopen et al., 2009b).
Thus, identification of the genes that are responsible for phenotypic variation in milk
protein concentration is important to increase the understanding of milk protein synthesis
and to enhance opportunities to improve milk protein composition in cattle. Our previous
RNA-Seq study reported that SERPINA1 gene was one of the most promising candidates
to regulate milk protein concentration in dairy cattle (Li et al., 2016a). The direct evidence
was the bovine mammary tissues collected from cows with high milk protein percentage
had greater SERPINA1 (Serpin peptidase inhibitor, clade A (Alpha-1 Antiproteinase,
Antitrypsin), member 1) mRNA expression in comparison to the tissues collected from
cows with low milk protein percentage (q-value = 1.17E−09) (Li et al., 2016a). The
SERPINA1 gene is located in BTA21 with a total length of 9,370 bp, containing 5 exons
and 4 introns and encoding 416 amino acids (Khatib, 2005). Both bovine and human milk
contains α1-antitrypsin (SERPINA1) (Beatty, Bieth & Travis, 1980), known as a potent
serine protease inhibitor (Gettins, 2002), which inhibits several proteolytic enzymes, such
as leukocyte elastase, trypsin, pancreatic elastase, chymotrypsin, collagenase, and plasmin
(Dallas, Murray & Gan, 2015).

Therefore, the objectives of this study were to confirm the regulatory role of SERPINA1
identified in our previous RNA-Seq study on milk protein traits from a genome level
and further to uncover the genetic effects of SERPINA1 on milk protein traits in Chinese
Holstein population. We herein investigated polymorphisms of SERPINA1 and their
associations with five milk production traits, the linkage analyses among these identified
polymorphisms in SERPINA1 gene and the association analyses of haplotypes inferred with
five milk production traits were also conducted.

MATERIALS & METHODS
Animal ethics
All protocols for collection of the blood and frozen semen samples of experimental
individuals were approved by the Institutional Animal Care and Use Committee (IACUC)
at China Agricultural University (Permit Number: DK996). The procedures for sampling,
laboratory analysis, and data processing were following our previously published article
(Li et al., 2019).

Animal, phenotypes and traits
All samples and related data were collected from the cows from 17 farms of the Beijing
Sanyuan Lvhe Dairy Farm Center (Beijing, China). A total of 1,027 Chinese Holstein cows
from 17 sire families were involved in the present experiment with the family size ranging
from 25 to 187 daughters with an average of 60 daughters per sire. All cows enrolled in
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the experiment were regularly tested using standard performance testing (Dairy Herd
Improvement, DHI) and five milk production traits were recorded, including 305 d milk
yield, 305 d protein yield, 305 d fat yield, average 305 d protein percentage, and average
305 d fat percentage.

The tubule frozen semen samples were collected for all 17 sires and prepared by Beijing
Bull Station. Whole blood samples were collected from coccygeal vein of 1,027 Chinese
Holstein cows using a 20-gauge BD Vacutainer needle (Beckton Dickinson, Franklin Lakes,
NJ) and immediately stored at −20 ◦C prior to DNA extraction.

Genomic DNA extraction
Genomic DNA was isolated from semen samples using standard phenol-chloroform
procedures as described in previous study (Li et al., 2016b), whereas genomic DNA was
extracted from blood samples using a TIANamp Blood DNA kit (TIANGEN Biotech,
Beijing, China) following the manufacturer’s instructions. The quality and quantity
of genomic DNA were measured using the gel electrophoresis and a NanoDrop 2000
spectrophotometer (Thermo Scientific, Hudson, DE, USA).

Identification and genotyping of the SNPs
A total of 11 pairs of primers (Table S1) were designed using Primer3web Program
(v.0.4.0) to amplify all exons, partial adjacent introns and 2,500 bp upstream of 5′ flanking
sequences based on the genomic sequence of bovine SERPINA1 gene referring to the
UMD3.1 assembly (NCBI reference sequence accession no. AC_000178.1). A DNA pool
was generated with genomic DNA from the 17 sires’ semen with 50 ng/µL/bull and was
amplified with Polymerase Chain Reaction (PCR). Each PCR reaction consisted 50 ng
genomic DNA, 0.5 µL of forward primer, 0.5 µL of reverse primer, 2.5 µL 10× PCR
buffer, 2.5 mM dNTP, and 1 U of Taq DNA polymerase (Takara Biotechnology Co., Ltd.,
Dalian, China) with a total reaction volume of 25 µL. Thermal cycling conditions were:
94 ◦C for 5 min, followed by 35 cycles at 94 ◦C for 30 s, 56 ◦C for 30 s, and 72 ◦C for
30 s, a final extension at 72 ◦C for 7 min for all primers. PCR products were confirmed
by gel electrophoresis on 2% agarose gels and by photography under UV light, and were
bi-directionally sequenced by ABI 3730XL DNA analyzer (Applied Biosystems, Foster, CA,
USA). And the sequences were aligned to the bovine reference sequences (UMD3.1) using
BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify potential SNPs.

The matrix-assisted laser desorption/ionization time of flight mass spectrometry assay
(MALDI-TOF MS, Sequenom MassARRAY, Bioyong Technologies Inc. HK) was further
applied for individually genotyping of the identified SNPs in 1,027 Chinese Holstein cows.

Linkage disequilibrium (LD) analysis and haplotype construction
Based on the criterion of D′, the extent of linkage disequilibrium (LD) was measured
between each pair of SNPs that were genotyped within the SERPINA1 gene using
the software Haploview (Barrett et al., 2005). Briefly, genotypes were imputed for each
individual using the Beagle3.2 software program (Browning & Browning, 2007). After that,
haplotype blocks with high LD of SNPs (D′ > 0.90) were defined based on confidence
intervals methods (Gabriel et al., 2002). Haplotypes with frequencies >5% were considered
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distinguishable, whereas the haplotypes with relative frequencies <5% were pooled into
a single group (Wang et al., 2013). Detailed procedures were described in our previously
published research (Li et al., 2019).

Statistical analysis
The effects of single SNPs or haplotypes in SERPINA1 on five milk production traits were
analyzed by the Mixed Procedure of SAS (SAS Institute Inc., Cary, NC) with the following
model:

yijklmn=µ+Fi+YSj+Pk+b×M+Gl+αm+eijklmn

where, yijklmnwas the phenotypic value of each trait of cows (n= 1,027 for each trait); µwas
the overall mean; Fiwas the fixed effect of farm; YSjwas the fixed effect of year-season; Pkwas
the fixed effect of parity; M was the covariate effect of calving month; b was the regression
coefficient of M; Gl was the fixed effect corresponding to the genotype of polymorphisms
or haplotype; αmwas the random polygenic effect, distributed as N (0, A σ 2

a ), with the
additive genetic relationship matrix A and the additive genetic variance σ 2

a ; and eijklmn was
the random residual, distributed as N (0, I σ 2

e ), with identity matrix I and residual error
variance σ 2

e .
The Bonferroni adjustment was used for single SNP and haplotype analyses according

to the number of SNP loci or haplotype blocks. Associations were considered as significant
if a raw P value < 0.05/N, where N is the number of SNP loci or haplotype blocks tested
in analyses. Hardy-Weinberg equilibrium (HWE) tests were performed on each identified
SNP. The SNP allele frequencies were calculated and the expected genotype numbers were
estimated using the expected genotype frequencies under HWE. Chi-square analysis was
used to compare the number of expected genotypes and observed genotypes, using 0.05 as
the significance threshold value. The additive (a), dominance (d), and allele substitution
(α) effects were estimated according to the equation proposed by Falconer & Mackay
(1996), i.e., a= (AA−BB)/2, d =AB−(AA+BB)/2 and α= a+d

(
q−p

)
, where AA and

BB represent the two homozygous genotypes, AB is heterozygous genotype, and p and q
are the allele frequencies of corresponding loci.

Phenotypic variance
The effect of each individual SNP on a specific trait was measured as the proportion of
phenotypic variance of the trait explained by the SNP. The proportion of variance explained
by a SNP was calculated as follows,

Phenotypic variance ratio= 2p
(
1−p

)
α2/σ 2

p .

Where, p is the allele frequency of the analyzed SNP, α is the average effect of gene
substitution calculated using the linear mixed model, and σ 2

p isthe estimate of the
phenotypic variance using the complete DHI data of the Chinese dairy cattle population.
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Table 1 Descriptive statistics of five milk production traits.

Traits Number Average Standard
deviation

Coeff of
variation

Maximum Minimum

Milk yield (kg) 1027 10441.46 2184.85 20.92 16,040 404
Milk fat yield (kg) 1027 365.92 83.49 22.82 632.20 19
Milk protein yield (kg) 1027 329.11 67.30 20.45 484.70 19.70
Milk fat percentage (%) 1027 3.53 0.51 14.52 7.50 0.74
Milk protein percentage (%) 1027 3.17 0.22 6.94 5.27 0.63

Table 2 Information for the four identified SNPs in SERPINA1 gene.

CHR RefSNP SNP locus Alleles Location Position Gene

21 rs208607693 g.1164C> G C/G 5′-UTR 59589061 SERPINA1
21 rs210222822 g.5608C> T C/T Exon-2 59582289 SERPINA1
21 rs41257068 g.5746G> C G/C Exon-2 59582151 SERPINA1
21 rs207601878 g.8123T> C T/C Intron-3 59579774 SERPINA1

RESULTS
Phenotype data
Descriptive statistics of five milk production traits from 1,027 Chinese Holstein cows
were presented in Table 1. All phenotypic values of five milk production traits followed
approximately normal distributions and were able to be used for the following association
studies.

SNPs identification
Through resequencing the entire coding sequences, partial adjacent introns and 2,500 bp
upstream of 5′ flanking sequences, a total of four SNPs were identified for the SERPINA1
gene. One (rs208607693) was located in the 5′ -UTR, one (rs207601878) was intronic and
the other two (rs210222822 and rs41257068) were located in exonic regions (Table 2).
Both exonic SNPs were synonymous substitutions. All four SNPs were in Hardy-Weinberg
equilibrium (P > 0.05), and the locations and allele frequencies of the four SNPs were
summarized in Table 3.

Associations between SERPINA1 gene and milk production traits
Associations between the four SNPs of SERPINA1 and five milk production traits are
presented in Table 4. All four SNPs (rs208607693, rs207601878, rs210222822 and
rs41257068) had significant (P = 0.0458−< 0.0001) associations with fivemilk production
traits, with the exception that no significant associations were observed between two SNPs
(rs208607693 and rs210222822) and milk fat percentage. Phenotypic variances (>1%)
explained by the four SNPs in SERPINA1 gene were observed in 11 significant pairs of
SNP-trait, among which rs208607693 and rs210222822 presented phenotypic variances of
approximately 7% in milk fat yield and protein yield.

The additive, dominant and substitution effects of four SNPs of SERPINA1 on five
milk-production traits are shown in Table 5. There were significant (P < 0.05) additive
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Table 3 Genotypic and allelic frequencies and Hardy-Weinberg equilibrium test of four SNPs of SERPINA1 gene in Chinese Holstein cattle.

Position Locus Genotypes N Frequency Allele Frequency Hardy-Weinberg
equilibrium χ2
test

CG 461 0.463 C 0.631
CC 397 0.399 G 0.369

5′ flanking
region

rs208607693
g.1164C> G

GG 137 0.138
P > 0.05

CT 469 0.470 C 0.630
CC 394 0.395 T 0.370Exon-2

rs210222822
g.5608C> T

TT 135 0.135
P > 0.05

CG 432 0.427 C 0.306
CC 93 0.092 G 0.694Exon-2

rs41257068
g.5746G> C

GG 486 0.481
P > 0.05

CT 410 0.422 C 0.338
CC 124 0.128 T 0.662Intron-3

rs207601878
g.8123T> C

TT 438 0.451
P > 0.05

Table 4 Associations of four SNPs of SERPINA1 gene with milk production traits in Chinese Holstein cattle (LSM± SE).

Locus Genotype Milk yield Fat
yield

Fat
percentage

Protein
yield

Protein
percentage

CC(397) 10,556± 62.58A 373.61± 2.61A 3.570± 0.025 331.29± 1.90A 3.156± 0.009A

CG(461) 10,576± 63.64A 372.06± 2.65A 3.569± 0.026 333.85± 1.93A 3.181± 0.009B

GG(137) 10,185± 84.49B 354.09± 3.55B 3.597± 0.034 318.47± 2.59B 3.176± 0.012AB

P-value <.0001 <.0001 0.6728 <.0001 0.0061

rs208607693
g.1164C> G

Variance 5.10E−02 7.41E−02 1.58E−03 7.54E−02 1.47E−03
CC(394) 10,499± 62.99A 370.27± 2.64A 3.572± 0.025 328.96± 1.92A 3.159± 0.009a

CT(469) 10,525± 63.57A 368.33± 2.65A 3.563± 0.026 331.77± 1.93A 3.181± 0.009b

TT(135) 10,150± 84.85B 352.46± 3.57B 3.603± 0.034 316.79± 2.61B 3.175± 0.012ab

P-value <.0001 <.0001 0.4538 <.0001 0.0228

rs210222822
g.5608C> T

Variance 4.58E−02 6.00E−02 2.61E−03 6.93E−02 8.60E−04
CC(93) 10,299± 94.52A 373.66± 3.98A 3.686± 0.038A 325.64± 2.90AB 3.189± 0.013a

CG(432) 10,619± 62.09B 374.65± 2.58A 3.615± 0.025A 330.79± 1.88A 3.174± 0.009ab

GG(486) 10,424± 62.56AB 358.11± 2.61B 3.506± 0.025B 325.33± 1.90B 3.156± 0.009b

P-value 0.0055 <.0001 <.0001 0.0054 0.0100

rs41257068
g.5746G> C

Variance 2.15E−02 9.09E−03 3.43E−02 3.26E−03 9.95E−03
CC(124) 10,425± 86.17ab 375.68± 3.62A 3.686± 0.035A 326.82± 2.64AB 3.190± 0.012a

CT(410) 10,585± 63.38a 371.48± 2.65A 3.595± 0.025B 330.06± 1.93A 3.171± 0.009ab

TT(438) 10,325± 64.11b 358.64± 2.68B 3.525± 0.026C 326.08± 1.95B 3.161± 0.009b

P-value 0.0126 <.0001 <.0001 0.0029 0.0458

rs207601878
g.8123T> C

Variance 2.73E−04 2.55E−02 3.74E−02 5.98E−04 1.01E−02

Notes.
P-value refers to the results of association analysis between each SNP and milk production traits. Different letter (small letters: P < 0.05; capital letters: P < 0.01) superscripts
(adjusted value after correction for multiple testing) indicate significant differences among the genotypes.
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Table 5 Additive, dominant and allele substitution effects of the four SNPs associated with milk production traits of SERPINA1 in Chinese
Holstein.

Locus Genetic
effect

Milk
yield

Fat
yield

Fat
percentage

Protein
yield

Protein
percentage

Additive 185.77** 9.76** −0.0132 6.41** −0.0099
Dominant 205.38** 8.21** −0.0143 8.97** 0.0154*

rs208607693
g.1164C> G

Substitution 239.20** 11.91** −0.0169 8.75** −0.0058
Additive 174.94** 8.90** −0.0153 6.09** -0.0080*

Dominant 199.98** 6.97** −0.0249 8.90** 0.0137
rs210222822
g.5608C> T

Substitution 226.53** 10.71** −0.0218 8.39** -0.0044*

Additive −62.50 7.78** 0.0901** −0.15 0.0164*

Dominant 257.50* 8.77** 0.0194 5.30** 0.0016
rs41257068
g.5746G> C

Substitution −162.60 4.37** 0.0826** −1.91 0.0158*

Additive 50.00 8.52** 0.0805** 0.37 0.0142*

Dominant 210.00* 4.32 −0.0108 3.61* −0.0042
rs207601878
g.8123T> C

Substitution −17.84 7.12** 0.0840** −0.80 0.0156*

Notes.
The asterisk (*) means the additive, dominant or allele substitution effect of the locus indicate differ at P < 0.05 and the asterisk (**) means the additive, dominant or allele sub-
stitution effect of the locus indicate differ at P < 0.01.

and substitution effects of rs210222822 on milk protein percentage. Significant additive
and substitution effects were also observed (P < 0.05) in rs41257068 on protein and fat
percentages and observed (P < 0.05) in rs207601878 on fat yield, fat percentage and protein
percentage. Significant dominant effects of rs20860769 on protein percentage, rs41257068
and rs207601878 onmilk yield and protein yield were also observed (P < 0.05). In addition,
significant additive, dominant and substitution effects of rs208607693 and rs210222822 on
milk yield, fat yield and protein yield, rs41257068 on fat yield were observed (P < 0.05).

LD and haplotype analysis
A markedly strong linkage (D′ = 0.99–1.00) was observed between the four SNPs in
SERPINA1, as shown in Fig. 1. A 9 Kb haplotype block composed of four SNPs was
inferred (Fig. 1) and three main haplotypes were formed. The common haplotypes GTGT,
CCCC and CCGT occurred at the frequencies of 37.73%, 30.62% and 29.21% respectively
(Table 6). Haplotype association analysis showed that haplotypes were highly associated
with all five milk production traits (P = 0.0003−< 0.0001, Table 7).

DISCUSSION
In the present study, we explored the genetic variations of the SERPINA1 gene and evaluated
their associations with milk protein traits in Chinese Holstein cows, based on our previous
RNA-Seq findings (Li et al., 2016a). Our results demonstrated significant genetic effects of
the SERPINA1 gene on milk protein traits on a genome level. This observation provided
important SNP marker information that can be considered for genetic improvement in
dairy breeding schemes.

Four identified SNPs were located in three different regions, including 5′-UTR, exon
and intron. Of these, two SNPs (rs210222822 and rs41257068) in exonic regions are
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Figure 1 The haplotype blocks and pairwise linkage disequilibrium values (D′) for the four SNPs in
SERPINA1. The values within boxes are pair wise SNP correlation (D′), bright red boxes without num-
bers indicate complete LD (D′= 1). The brighter shade of red indicates higher linkage disequilibrium.

Full-size DOI: 10.7717/peerj.8460/fig-1

synonymous, which are not expected to change the function of affected proteins, as no
substitution occurs as the amino acid level. However, increasing evidence indicates that
synonymous SNPs could affectmRNA stability, therefore, impacting protein expression and
function (Capon et al., 2004; Nackley et al., 2006). The association analyses in the current
study suggest that these two synonymous SNPs are likely involved in the process of milk
production through transcriptional regulation of the SERPINA1 gene. Additionally, one
SNP (rs208607693) located in 5′-UTR is markedly associated with milk production traits,
because polymorphisms located in 5′-UTR of a genemay affect phenotypes through altering
the promoter activity or transcription (Huang et al., 2013), it suggested that the genetic
effects of SNP rs208607693 in 5′-UTR of SERPINA1 gene on milk production traits was
likely due to the impacts on its transcription. An intron does not hold a sequence for coding
protein, but it is also important to regulate gene expression, regulation, transcription and
mRNA splicing (Nott, Meislin & Moore, 2003). This is the likely reason that we observed the
intronic variant (rs207601878) is also highly related to milk production traits. In addition,
it is also probably that one of the four variants or another variant in the unsequenced
region is in fact causative, which lead to the remaining variants with minor genetic effects
showing highly significant associations with target phenotypes due to their strong LD with
causative variant.
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Table 6 Main haplotypes and their frequencies observed in SERPINA1 gene.

SERPINA1
haplotypes

rs208607693
C>G

rs210222822
C> T

rs41257068
G> C

rs207601878
T> C

Frequency
(%)

GTGT G T G T 37.73
CCCC C C C C 30.62
CCGT C C G T 29.21

Notes.
The Ref number of each SNP can be found in the haplotype Fig. 1.

Table 7 Haplotype associations of the four SNPs in SERPINA1with milk production traits in Chinese Holstein (LSM± SE).

SERPINA1
haplotypes

Milk
yield

Fat
yield

Fat
percentage

Protein
yield

Protein
percentage

H1H1(146) 10,197± 83.67A 352.47± 3.52A 3.582± 0.034AC 318.51± 2.56A 3.174± 0.012A

H2H1(241) 10,479± 73.87B 371.17± 3.09BC 3.604± 0.030C 331.09± 2.25B 3.189± 0.010A

H2H2(96) 10,459± 93.57AB 376.24± 3.93B 3.678± 0.038C 328.63± 2.87B 3.192± 0.013A

H2H3(166) 10,580± 78.33B 375.47± 3.29B 3.578± 0.031AC 332.20± 2.40B 3.154± 0.011AB

H3H1(236) 10,596± 74.78B 363.67± 3.13CD 3.493± 0.030AB 332.54± 2.28B 3.168± 0.011A

H3H3(92) 10,514± 102.14AB 353.30± 4.30AD 3.382± 0.041B 326.65± 3.13AB 3.110± 0.014B

P-value 0.0003 <.0001 <.0001 <.0001 <.0001

Notes.
P-value refers to the results of association analysis between each haplotype and milk production traits. Different letter (small letters: P < 0.05; capital letters: P < 0.01) super-
scripts (adjusted value after correction for multiple testing) indicate significant differences among the haplotypes. H1= GTGT, H2= CCCC, H3= CCGT.

Generally, multi-SNPs association analyses involving multiple SNPs were considered
more powerful than single SNP analysis (Akey, Jin & Xiong, 2001; Martin et al., 2000).
Therefore, single SNP-based and haplotype association analyses were implemented in this
study to determine the genetic effects of these variants on milk production traits. SNP-
based association analysis indicated that all four tested SNPs were significantly associated
with five milk production traits, except for rs208607693 and rs210222822 on milk fat
percentage. Haplotype-based association analysis confirmed the results of single SNP
analysis and provided further evidence for these associations. As SERPINA1 was identified
be a candidate for milk protein trait in our previous RNA-Seq study, the single SNP-based
or haplotype-based analyses confirmed the significant associations between SERPINA1 and
milk protein traits, and further revealed the remarkable associations between SERPINA1
and milk yield and milk fat traits. These results also supported that there is high genetic
correlation between milk protein traits and milk yield and fat traits. Further functional
studies are required to validate the functions of the SERPINA1 gene.

Alpha-1-antitrypsin, a protease inhibitor encoded by SERPINA1, presents in human
milk with relatively high concentration, as well as in bovine, porcine, and ovine
colostrum. The concentration of alpha-1-antitrypsin gradually declines during the lactation
period (Chowanadisai & Lonnerdal, 2002; Lonnerdal, 2010). Milk protease inhibitors play
significant role in maintaining the level of other milk proteins via the partial inhibition
of pancreatic proteases (Lonnerdal, 2003). Milk protease inhibitors present in human and
animal milk are important for milk quality, therefore, infant health and development
(Corley et al., 2017). For instance, alpha-1-antitrypsin in bovine milk may inhibit the
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hydrolysis of lactoferrin by trypsin (Khatib, 2005; Sinha, Bakhshi & Kirby, 1992). It has
been reported that alpha-1-antitrypsin could reduce the susceptibility of mastitis in
dairy cows by protecting lactoferrin from proteolytic degradation in mammary gland
(Heihavand-Kheiripour et al., 2014). In addition, it was also observed that the mRNA
expression of SERPINA1may affect milk composition and quality over the lactation curve
(Chowanadisai & Lonnerdal, 2002;Matamala et al., 2017).

The SNPs rs210222822 and rs41257068 identified in this study were also found in North
American Holstein population (at position 59307225 bp and 59307087 bp, GenBank
accession number: X63129) (Khatib, Heifetz & Dekkers, 2005), individuals from Holstein-
Friesian sires cohort (at position 59307225 bp and 59307087 bp, GenBank accession
number: X63129) (Beecher et al., 2010), and small Chinese Holstein population (at position
59582289 bp and 59582151 bp, NCBI reference sequence accession no. AC_000178.1) (Guo
et al., 2017; Li et al., 2010). Association analyses in this study revealed that SNP rs210222822
was significantly associated with three milk yield traits and milk protein percentage, which
were partly confirmed by association with milk protein yield (Khatib, Heifetz & Dekkers,
2005), milk fat yield (Beecher et al., 2010; Khatib, Heifetz & Dekkers, 2005) and milk yield
(Khatib, Heifetz & Dekkers, 2005; Li et al., 2010). A significant relationship between one
identified SNP in SERPINA1 gene and milk protein and fat percentage was reported in
408 Iranian Holstein cows (Heihavand-Kheiripour et al., 2014). However, this relationship
was not observed in the present study, probably due to the different genetic background
of animals. As is known, quantitative traits including milk protein traits are commonly
affected by several causative genes and a great number of genes with minor effects, which
are confirmed by aggregation the cow milk proteins reported in 20 recent proteomics
publications producing an atlas of 4,654 unique proteins (Delosiere et al., 2019). A total
of 59 proteins were exclusively detected in milk from early lactation, proposing six milk
proteins as putative biomarkers of negative energy balance for dairy ruminants (Delosiere
et al., 2019). Herein, SERPINA1 gene is one of the key candidate genes regulating milk
protein synthesis in dairy cows.

In our study, haplotypes were highly associated with all five milk production traits
and haplotype CCCC had genetic merit for milk protein percentage. These results were
consistent with previously published research, in which Khatib et al. (Khatib, Heifetz &
Dekkers, 2005) found a SERPINA1 haplotype, composed of five SNPs within exon regions,
was associated with milk yield, fat yield and protein yield. Similarly, Beecher et al. (Beecher
et al., 2010) reported a SERPINA1 haplotype GCGGC had superior genetic merit for milk
protein yield and milk fat percentage. Therefore, both previous studies and the present
experiment demonstrated that SERPINA1 gene is a promising candidate affecting milk
production traits.

CONCLUSIONS
In summary, we validated the significant associations of SERPINA1 variants with milk
protein traits. All SNPs that explained above 1% phenotypic variances could be used as
potential marker for target traits selection. Specially, rs208607693 and rs210222822 are
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considered as key markers to be implemented in genomic schemes for improving milk
protein concentration. However, further studies are needed to explore the function of
SERPINA1 on milk production and to confirm their importance to improve milk protein
concentration.
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