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ABSTRACT
Machine learning and weighted gene co-expression network analysis (WGCNA) have
been widely used due to its well-known accuracy in the biological field. However, due
to the nature of a gene’s multiple functions, it is challenging to locate the exact genes
involved in complex diseases such as asthma. In this study, we combined machine
learning andWGCNA in order to analyze the gene expression data of asthma for better
understanding of associated pathogenesis. Specifically, the role of machine learning
is assigned to screen out the key genes in the asthma development, while the role of
WGCNA is to set up gene co-expression network. Our results indicated that hormone
secretion regulation, airway remodeling, and negative immune regulation, were all
regulated by critical gene modules associated with pathogenesis of asthma progression.
Overall, the method employed in this study helped identify key genes in asthma and
their roles in the asthma pathogenesis.

Subjects Bioinformatics, Allergy and Clinical Immunology
Keywords Asthma, WGCNA, Machine learning, Pathology, Endocyte

INTRODUCTION
Asthma is a complex diseasewith diverse underlying pathologicalmechanismswith both the
young and the elderly (Hasegawa et al., 2017; Li et al., 2016; Lotvall et al., 2011). Bronchial
hyperresponsiveness, airway remodeling (Movassagh et al., 2016), abnormal hormone
secretion (Newton et al., 2017), and chronic airway inflammation (Parulekar, Diamant &
Hanania, 2017) are some of the major clinical features of asthma.

For most patients, bronchodilator or inhaled corticosteroids have been effective in
treating asthmatic symptoms. However, some patients did not respond to these therapies
(Swedin et al., 2017). Patients with high Th2 cytokines were not responsive to inhaled
corticosteroid (Parulekar, Diamant & Hanania, 2017). Interestingly, some individuals had
favorable responses to anti-IL-13 and anti-IL-5 treatments (Brightling et al., 2015; Corren
et al., 2011; Hanania et al., 2015). These studies suggested that it is worthwhile to research
the key genes and the pathogenic mechanisms of asthma. As such, one tool that can help
researchers with the analysis of the relationships between key genes and the pathogenic
mechanism is weight gene co-expression network analysis (WGCNA) (Li et al., 2016).
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The WGCNA method has been widely used in recent years (Abu-Jamous & Kelly, 2018;
Liu et al., 2017; Mack et al., 2018; Radulescu et al., 2018). Instead of linking thousands of
genes to the disease, this technology focuses on relationship between gene modules and
disease traits. ThroughWGCNA, hidden biological models of the disease can be discovered
(Giulietti et al., 2018; Vella et al., 2017).

Machine learning has shown great promise for mining linear or non-linear relationships
in high-dimensional data through supervised (Ahuja et al., 2019), unsupervised (Tshitoyan
et al., 2019) or semi-supervised methods (Tarbell & Liu, 2019). It can also reflect the
properties of high dimensional data. Because of such property, it can effectively reduce
data dimension and improve data understanding. Thus, it can be useful for the analysis of
transcriptomic datawith high dimension, large numbers of genes and complex relationships
(Bogard et al., 2019; Kachroo et al., 2019). Machine learning algorithms can also be useful
at classification tasks. Hirai et al. (2017) employed machine learning to group patients
with both asthma and chronic obstructive pulmonary disease (COPD) according to their
clinical features . The results revealed three clusters that belonged to the asthmatic patients
and one cluster that belonged to the COPD patients. Thus, it seems that the machine
learning algorithm can effectively distinguish asthma from COPD. Furthermore, there are
different phenotypes and properties associated with asthma. The selected feature gene set
lacks biological significance with unclear pathways of feature genes; thus, analysis of other
biological networks is needed to confirm.

This study aims to improve the assessment of pathogenic mechanisms by incorporating
merits of machine learning and WGCNA. In addition, the study is designed to discern key
genes in asthma and to understand their role in the asthma pathogenesis.

MATERIALS AND METHODS
Weighted gene co-expression networks analysis
WGCNA was used to identify gene co-expression networks associated with clinico-
pathological factors of asthma. For example, the GSE43696 dataset contains all clinical
information of asthma severity in the Gene Expression Omnibus database. In total, 108
samples identified the severity of asthma and 30,723 genes were included. As module
identification required intensive computation, the top 5,000 genes with highest expression
variance and closely connected were selected to construct the weighted gene co-expression
network. Then, a correlation matrix was constructed using calculated pairwise Pearson
Correlations among all genes. To achieve a scale-free network, β = 8 was used as the proper
soft-thresholding power to convert the pairwise correlation into an adjacency matrix of
connection strengths (connection strength = |correlation|β). To identify gene modules,
a dissimilarity matrix with via a dynamic tree-cutting algorithm was used based on the
topological overlap measure. All gene modules were allocated with appropriate colors. The
gene modules with similar expression profiles were also merged.

Annotation and enrichment analysis of gene modules
To explore the biological functions of genemodules, GeneOntology (GO) term enrichment
analyses were performed to describe module function and identify relationships between
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these gene modules using the Gostats package in R (Falcon & Gentleman, 2007). The
hypergeometric test was used to estimate the GO term association, while the P value was
adjusted by the Benjamini–Hochberg method. Gene modules were named according to
the most significant GO enrichment.

Calculation of module-trait correlations
An advantage of co-expression network analysis is the capacity to integrate external
information. The correlations between gene modules and asthma severity were determined
in this study. The significance of the module could be determined as the average absolute
gene significance index. After the aforementioned procedures, the color intensity was
identified to be proportional to the disease status.

Development of a random forest model and feature selection
A tenfold cross validation (CV) technique was used to build and verify the 108 samples.
The entire dataset was randomly divided into 10 subsets, with approximately 10% test data.
In each round of CV, 9 subsets were used to train the model and to predict the outcome of
tested subset. This process was performed 10 times until each subset was fully tested. The
statistical indicators, such as out of the bag (OOB) estimates of error rate between the CV
predictions and the observed values, were used to evaluate the prediction accuracy of the
model. Then, recursive feature elimination based on random forest analysis was used to
select the feature genes associated with asthma severity (Nguyen & Ohn, 2006). Recursive
feature elimination random forest algorithm is a built-in feature selector, which follows
the backward elimination method. The embedded learning algorithm is the random forest,
which identifies the most related genes for a disease by feature selection. In this study, all
undecided features were assumed to be irrelevant. The algorithm reinitialized feature genes
after every iteration.

Statistical analysis
Statistical significance was determined using the t -test and One Way ANOVA test with R
software. P < 0.05 was considered as a statistically significant difference.

RESULTS
Construction of weight gene co-expression network
The WGCNA was performed to identify the gene co-expression networks associated
with the clinicopathological factors for asthma. The asthma dataset, namely GSE43696,
was adopted from the GEO database (Voraphani et al., 2014). It worth noting that soft
threshold is a key parameter for WGCNA to measure gene relationship. Adjusting soft
threshold can convert simulated gene network into justified biological network. In this
regard, when soft thresholding is adjusted to value 8, the simulated gene network has the
optimal correlation to the real biological network (Fig. 1). After this soft threshold of 8 was
implemented, 18 significant gene modules were thus detected (Fig. 2). The relationships
between gene modules are shown in Fig. 3. The results indicated that some gene modules
strongly correlated with each other, such as red and black, midnight blue and tan, tan and
dark green, as well as midnight blue and purple.
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Figure 1 Determination of soft-thresholding power. (A) Analysis of the scale-free fit index for various
soft-thresholding powers (β). (B) Analysis of the mean connectivity for various soft-thresholding powers.

Full-size DOI: 10.7717/peerj.8456/fig-1

Figure 2 WGCNA correlation network results in asthma. Clustering dendrogram of species, with dis-
similarity determined by topological overlaps, along with assigned module colors. Weighted gene co-
expression network analysis (WGCNA) can be used to group genes into 18 different gene modules based
on their co-expression patterns.

Full-size DOI: 10.7717/peerj.8456/fig-2
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Figure 3 Module eigengene adjacency heatmap.Module-eigengenes (ME) are defined as the first princi-
pal component of a coexpression module matrix. The heatmap shows the relatedness of 18 co-expression
gene modules identified by WGCNA (red, positive correlation; blue, negative correlation). Color scale in-
dicates the range of correlation coefficients. The correlation coefficient is between−1 and+1, where±1
indicates the strongest possible correlation and 0 indicates the weakest possible correlation.

Full-size DOI: 10.7717/peerj.8456/fig-3

Gene ontology and pathway enrichment analysis of gene modules
associated with asthma severity
The biological functions of the gene modules associated with asthma severity were explored
by GO term enrichment analysis. For these module genes, the significant enriched terms
in the GO and pathway databases were the followings: ‘‘regulation of hormone secretion’’,
‘‘actin filament organization’’, ‘‘negative regulation of immune response’’, ‘‘regulation
of blood coagulation’’, ‘‘G-protein-coupled receptor signaling pathway’’, ‘‘epithelial-to-
mesenchymal transition’’, and ‘‘lipid homeostasis’’ (Table 1). Thus, the enriched terms in
the annotation systems were related to different pathological mechanisms.

Calculation of module-trait correlations in asthma severity
For eachmodule, correlations between gene expression and asthma severity were calculated.
Multiple genemoduleswere found to be associatedwith asthma severity afterWGCNA, each
named after their representative color: black, red, tan, dark red, dark green, light yellow, and
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Table 1 GO enrichment analysis of gene modules. Statistical signicance was determined by the GOstats
package with R software.

Color Pathological mechanism P-value

Black Actin filament organization 0.002908
Red Regulation of hormone secretion 0.005152
Lightyellow G-protein coupled receptor signaling pathway 0.005676
Midnightblue Regulation of blood coagulation 0.006019
Tan Negative regulation of immune response 0.008272
Darkgreen Lipid homeostasis 0.024375
Darkred Epithelial to mesenchymal transition 0.025982
Purple Regulation of angiogenesis 0.045193

midnight blue (Table 1). The significance of module-trait relationship is shown in Fig. 4.
The result showed that different pathological mechanisms had varying degrees of change
from mild to severe asthma. Some biological functions decreased, including hormone
release, airway remodeling, and activation of the G-protein–coupled receptor. Other
biological functions increased, including blood coagulation and angiogenesis, transition
from epithelial to mesenchymal, and negative regulation of immune response. These
findings suggested that it was difficult to choose the determinant pathological mechanisms
associated with asthma severity from a bunch of statistical pathological mechanisms.

Selection of feature gene associated with asthma severity
In Fig. 5, when all the genes were used to classify the samples, the clustering results were
dispersed, and justified division of the asthma severity could not be obtained. While
thousands of genes are involved, these could be just random noises. The feature gene
selection created by machine learning method can extract effective information from the
noise background. Thus, the optimal feature gene set can be readily formed. Accordingly,
feature gene selection that was based on random forest analysis (Oussar, 2003), can be used
to select the feature gene associated with asthma severity. Figure 6 illustrates that stable
results could be obtained when the number of tree models was 1,000 pre-training. 37 stable
genes were retained after three replicates random forest analysis, which were ranked as
an important factor in the division of asthma severity (Fig. 7). The study found that the
strong interaction between SEMA3E and WNK4 and between COMTD1 and DNAJC1 by
correlation analysis (Fig. 8). The cross-validation results show that the 37 feature genes
are apparently superior to whole genes pool in the parameter OOB estimate of error rate
(15.74% vs 51.85%) (Table 2). These 37 feature genes can accurately distinguish different
severity in asthma (Fig. 9), showing an essential role in asthma severity.

Combination of feature genes selection and WGCNA
The feature genes, which were screened out based on the random forest analysis, were
endowed with clinical significance using WGCNA. Then, the feature genes were clustered
according to the specific pathological process (Fig. 10). Most genes were classified in a
few pathogenese. Some feature genes were classified in the hormone secretion regulation,
including SEMA3E, PER2, WNK4 and SYT13; some in the airway remodeling, including
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Figure 4 Correlation matrix between eachmodule and severity levels of asthma. Each module is as-
signed to a color. Each module is tested for correlation with the severity levels of asthma (normal control,
mild-moderate asthmatic, and severe asthmatic). Cell colors encode correlation coefficients (red, positive
correlation; blue, negative correlation). Color scale indicates the range of correlation coefficients.

Full-size DOI: 10.7717/peerj.8456/fig-4

CPXM1, TLL1 and NAT8B; some in the blood coagulation and angiogenesis, including
DNAJC1, COMTD1, and SLC9B1; and some in the negative regulation of immune
response, including KCNK6, COPZ2, and SOD2. Overall, 22 of the 37 genes were not
classified in the WGCNA gene module or significant gene modules associated with asthma
severity. 15 feature genes from the aforementioned four categories accounted for the
vast majority. Nine of these were previously implicated in asthma or other respiratory
diseases. These results indicated that hormone secretion regulation, airway remodeling,
and negative regulation of immune response, can be playing a key role in asthma severity
in current settings. The feature genes are also an important factors to be considered in the
pathogenesis and classifications.
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Figure 5 Clustering of asthma samples. The clustering was based on the expression data of GSE43696,
which contained 38 SA, 50 MMA and 20 normal samples. The top 5,000 genes with the highest SD values
were used for WGCNA analysis. The color intensity was proportional to disease progressive status (normal
control, mild-moderate asthmatic, and severe asthmatic).

Full-size DOI: 10.7717/peerj.8456/fig-5

DISCUSSION
In this study, a comprehensive analysis of key genes and pathological processes associated
with asthma severity is carried out in expression profiling with 108 samples. The goal
of this study is to provide insights into the relationship between disease biology and
the development of asthma. The findings address the shortage of objectivity in disease
pathological diagnosis and in guiding the clinical treatment applications.

Machine learning feature selection has been widely used due to its objective assessment
and optimal accuracy in artificial intelligence (Li et al., 2017; Nidheesh, Abdul Nazeer &
Ameer, 2017). The feature genes for the development of asthma are screened out using
machine learning feature selection. 37 genes associated with asthma development are all
retained after feature selection of machine learning. These feature genes can accurately
distinguish different severity of asthma (Fig. 9), playing an essential role in asthma. In
previous analysis of this asthma dataset (GSE43696), thyroid peroxidase (TPO) plays
an important role in asthma (Voraphani et al., 2014). TPO and its metabolome drives
nitrative stress in severe asthma. Similarly, TPO is attributed to the feature gene set after
the screening of feature genes in our study. These gene sets can effectively distinguish
severe asthma patients from the control. However according to the classification, feature
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Figure 6 The number of trees grown for random forest (RF) models of asthma dataset before vari-
ables ranked by permutation accuracy importance.

Full-size DOI: 10.7717/peerj.8456/fig-6

gene contribution shows that TPO is low-ranked in the feature gene set. Thus, asthma, a
complex disease, is more likely to be the result of multi-gene interactions.

Due to the multiple functions of genes, it is challenging to locate the exact asthma
mechanism (Cao et al., 2015; Li et al., 2017; Singh & Sivabalakrishnan, 2015). Hence,
WGCNA, based on biological and medical background, is used to endow these genes
with clinical significance and cluster the feature genes according to the specific pathological
process. However, WGCNA, being considered as a correlation analysis, cannot solve all
problems, but needs to combine other appropriate methods. (Li et al., 2016).

This study combines machine learning andWGCNA for the improvement of assessment
regarding pathogenic mechanisms. After these processes, the feature genes that played a
role in asthma severity can be classified into three major pathological processes: hormone
secretion regulation, airway remodeling, and regulation of immune response. These
pathological processes and related feature genes can determine the development of asthma.
As a result, some genes screened out have been actually reported to be associated with
respiratory diseases, such as the gene of superoxide dismutase 2 (SOD2). Previous study
identifies production of H2O2 as a key driver of reactive oxygen species (ROS) that
leads to lung damage in asthma. SOD2 could promote the development of inflammation
since it is a generator of H2O2. On the contrary, in our study, superoxide dismutase
2 (SOD2), is identified as an inhibitor of immune responses, as validated by the latest
research (Seo et al., 2019). Codonopsis lanceolata extract (CLE) has anti-asthmatic and
anti-inflammatory effects. Treatment with CLE enhanced the expression of SOD2, which
is related to mitochondrial ROS (mROS) scavenge and Th2 cell regulation. It indicates that
CLE has a potential to enhance the immune-suppressive property by regulating mROS
scavenging through SOD2. Furthermore, previous studies have reported that SOD2 can
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Figure 7 Variable Importance plots obtained from Random Forest in R show the feature gene related
to severity levels in asthma ranked on the basis of (A) Mean Decrease in Accuracy and (B) Mean De-
crease in Gini coefficients. MeanDecreaseGini: Gini is defined as ‘‘inequity’’. Gini importance measures
the average gain of purity by a given feature gene. If the gene is useful, it tends to split mixed labeled nodes
into pure single class nodes. MeanDecreaseAccuracy: a mean decrease in classification accuracy measures
the average increase in misclassification in absence of the given feature gene from the gene set.

Full-size DOI: 10.7717/peerj.8456/fig-7
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Figure 8 Visualizing expression pattern gene network in asthma using a heatmap plot byWGCNA.
The heatmap depicts the TOM among differentially expressed genes in the analysis. Light color represents
low overlap and progressively darker red color represents higher overlap. Genes that could not be assigned
to a module are labeled gray.

Full-size DOI: 10.7717/peerj.8456/fig-8

be used as an anti-inflammatory agent due to its ROS scavenging capacity (Li & Zhou,
2011). The SOD2 expression level is decreased in multiple diseases, including cancer,
neurodegenerative diseases, and psoriasis. The reduction of SOD2 mRNA expression
was also observed in our study from mild to severe asthma. Therefore, SOD2 should be
identified as an inhibitor of immune response. In addition, the above results also prove the
effectiveness of our method.

In summary, our result identify that hormone secretion regulation, airway remodeling,
and negative regulation of immune response are all the key factors in the development
of asthma severity. Meanwhile, feature genes and their corresponding pathological
mechanisms associatedwith asthma severity are well defined. Overall, themethod presented
in this study would help narrow down areas where scientists need to concentrate and
understand better how key genes are involved in pathophysiological processes of asthma
severity. It can also be useful to serve as a basis for classifying asthma phenotypes.
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Table 2 The Confusionmatrix of estimated error rates with a 10-fold cross validation (CV) for fea-
ture genes. (A) Out-of-bag (OOB) estimate of 5000 dierential expression genes is 51.85%. (B) Out-of-bag
(OOB) estimate of 50 feature genes is 15.74%. Out-of-bag (OOB) estimate: also called out-of-bag (OOB)
error, is a method for calculating prediction error of random forests. It uses bootstrap aggregating (bag-
ging) to classify the sample data.

A. Out-of-bag (OOB) estimate of 5000 genes is 51.85%
NC MMA SA Error rate

NC 0 19 1 1
MMA 0 44 6 0.12
SA 0 30 8 0.79

B. Out-of-bag (OOB) estimate of 37 feature genes is 15.74%
NC MMA SA Error rate

NC 13 6 1 0.35
MMA 1 44 5 0.12
SA 0 4 34 0.11

Figure 9 Multi-dimensional scaling (MDS) plot shows differentiation among severity of asthma pa-
tients by random forest classifier constructed from 37 feature genes.

Full-size DOI: 10.7717/peerj.8456/fig-9
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Figure 10 Combination the result of feature selection andWGCNA. The feature genes were clustered
according to the specific pathological process.

Full-size DOI: 10.7717/peerj.8456/fig-10
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