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ABSTRACT
In this study we compared genotypes of zoantharian host-associating algal symbionts
among Palythoa species, which are among the dominant benthic reef organisms in the
RyukyuArchipelago, Japan, and evaluated Symbiodiniaceae diversities of closely related
congeneric Palythoa species. We targeted a species complex of the zoantharian genus
Palythoa (P. tuberculosa, P. sp. yoron, P. mutuki) living among different microhabitats
in a narrow reef area of Tokunoshima Island. For phylogenetic analyses, we used two
DNA marker regions; nuclear internal transcribed spacer (ITS) and plastid mini-circle
non-coding region (psbAncr), both of which have previously been used to determine
Symbiodiniaceae genotypes of zoantharian species. Our results showed that all Palythoa
species hosted symbionts of the genusCladocopium, with genotypic compositions of this
genus showing some variations among the three differentPalythoa species. Additionally,
we found that theCladocopium genotypic composition was statistically different among
Palythoa species, and among P. tuberculosa specimens in different microhabitats. Our
results suggest that ecological divergence among these three Palythoa species may be
related to differing Symbiodiniaceae diversities that may in turn contribute to eco-
physiological adaptation into different microhabitats on coral reefs.

Subjects Biodiversity, Marine Biology, Molecular Biology
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INTRODUCTION
Zoantharians (Anthozoa: Zoantharia) belong to the phylum Cnidaria and can be dominant
organisms in shallow coral reef areas (e.g., Burnett et al., 1994). In particular, the genus
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Palythoa is often among the most dominant benthos in coral reef areas (Irei, Nozawa &
Reimer, 2011; Santos et al., 2016; Reimer et al., 2017a).

We recently reported on four putative Palythoa species (P. tuberculosa, P. sp. yoron,
P. mutuki, and P. aff. mutuki) that form a species complex, and were observed to all occur
within a narrow range of coral reefs in southern Japan (Mizuyama, Masucci & Reimer,
2018). For example, P. tuberculosa tends to occur across a wide range of habitats from
shallow to deeper areas, from the intertidal zone to the mesophotic reef slope (Mizuyama,
Masucci & Reimer, 2018), and has been reported from tropical to temperate regions
(Reimer, Takishita & Maruyama, 2006). On the other hand, the other three Palythoa
species appear to more restricted compared to P. tuberculosa in terms of their distribution
and habitats within coral reefs. Palythoa mutuki is the secondmost dominant species in this
genus in Okinawa and is often dominant at the reef edge, in surge channels, and in small
bumps on reef flats (Irei, Nozawa & Reimer, 2011). Palythoa sp. yoron has yet to be formally
described, but tends to occur on reef flats and backreef moats where it is exposed to strong
water currents (Shiroma & Reimer, 2010). Although there is little published information
on P. aff. mutuki, it has been observed near P. mutuki colonies on the reef flat (Mizuyama,
Masucci & Reimer, 2018). Although molecular delineation of these Palythoa species groups
was unsuccessful with molecular data, likely due to incomplete lineage sorting, they can
be distinguished via morphological and reproductive data (Mizuyama, Masucci & Reimer,
2018). In addition, these Palythoa species display different microhabitat patterns within
the coral reef, but it is still unclear how these species would have diversified under almost
completely sympatric conditions.

Symbiodiniaceae endosymbiotic dinoflagellates are symbiotic with various metazoan
phyla including Cnidaria (LaJeunesse et al., 2018). Many zoantharians maintain
Symbiodiniaceae, similar to reef-building corals (Noda et al., 2017; Wee, Kurihara
& Reimer, 2019). In the case of scleractinian corals, symbiotic relationships with
Symbiodiniaceae are important for host survival in various environments (Baker, 2003),
and can contribute to ecological divergence of coral host species (Winters et al., 2009).
Previous molecular studies have reported that species composition of Symbiodiniaceae is
closely related to host genotypes in corals (e.g., Bongaerts et al., 2010; Pinzon & LaJeunesse,
2011). Thus, information on the composition Symbiodiniaceae of the four Palythoa species
above would also be helpful to understand their ecological divergence into different
microenvironments within a reef. In particular, genotypic composition of symbiotic algae
would be informative for understanding ecological divergence of these species because the
genetic and/or community changes of microbiomes are expected to be faster than that
of the hosts themselves (Torda et al., 2017), facilitating eco-physiological adaptation of
holobionts into different microenvironments (e.g., Reimer et al., 2017b; Wee, Kurihara &
Reimer, 2019). In this study, we aimed to (1) compare diversities of symbionts among the
closely related Palythoa species P. tuberculosa, P. sp. yoron, P. mutuki and P. aff. mutuki,
and (2) determine if diversities of symbionts explain eco-physiological adaptations to
microhabitats of each species that entailed divergences among them (P. tuberculosa, P. sp.
yoron and P. mutuki).
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Figure 1 Location of Tokunoshima Island and the sampling site (arrow in inset) for the Palythoa spec-
imens in this study. Map data: GeoLite2 data created by MaxMind using the Generic Mapping Tools
(GMT v5.4.5) software package. CC BY SA 4.0.

Full-size DOI: 10.7717/peerj.8449/fig-1

MATERIALS & METHODS
Specimens collection
Eighty-two colonies of three Palythoa species (P. tuberculosa, P. sp. yoron, and P. mutuki)
were collected from a shallow fringing reef of Tokunoshima Island, Kagoshima, Japan
(Figs. 1 and 2). Specimens of these three Palythoa species were collected in four different
areas (Table 1, Fig. 2A): reef edge (Fig. 2B, 27.76998333N, 129.03988611E) for P. tuberculosa
(Fig. 2C); reef flat 1 (Fig. 2D, 27.76997777N, 129.03925000E) for P. tuberculosa (Fig. 2E)
and P. mutuki; reef flat 2 (Fig. 2F, 27.77195277N, 129.03843611E) for P. mutuki (Fig. 2G);
and backreef moat (Fig. 2H, 27.76990833N, 129.03855833E) for P. tuberculosa and P. sp.
yoron (Fig. 2I). To avoid collecting clones, we collected individuals from clearly different
colonies while maintaining a set distance from each other of at least 1 m. In a previous
study, even when closer to each other (within approximately 50 × 50 cm), no clones were
observed in Zoanthus (Cnidaria: Anthozoa: Zoantharia) colonies (Albinsky et al., 2018). In
addition, eighteen previously collected specimens of Palythoa species including 10 P. aff.
mutuki specimens from Mizuyama, Masucci & Reimer (2018) were also examined in this
study (Table 1).

DNA extraction and PCR amplification
From each of these specimens, several polyps were cut with a surgical knife and DNA
was extracted using DNeasy Blood and Tissue Kit (QIAGEN). DNA concentrations
were checked by Qubit Fluorometer (ThermoFisher, Waltham, USA). Two molecular
markers for genotyping symbiotic algae of Palythoa species were examined: nuclear internal
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Figure 2 Landscape of the coral reef flat at the study site and in situ images of Palythoa species used in
this study. (A) Satellite image of the reef area obtained by Google Earth; (B) reef edge; (C) P. tubeculosa;
(D) reef flat 1; (E) P. tuberculosa; (F) reef flat 2; (G) P. mutuki; (H) backreef moat; (I) P. sp. yoron. Map
data: Google, Maxar Technologies. Scale bars in C, E, G, and I are 10 cm.

Full-size DOI: 10.7717/peerj.8449/fig-2

transcribed spacer ribosomal DNA (ITS-rDNA) region including partial 18S–ITS1–5.8S–
ITS2–partial 28S (primers zITSf: CCG GTG AAT TAT TCG GAC TGA CGC AGT and
ITS4: TCC TCC GCT TAT TGA TAT GC, (Baillie, Belda-Baillie & Maruyama, 2000; appx.
700–750 bp) and plastid mini-circle non-coding region DNA (psbAncr) (primers 7.4-Forw:
GCA TGA AAG AAA TGC ACA CAA CTT CCC and 7.8-Rev: GGT TCT CTT ATT
CCA TCA ATA TCT ACT G, (Moore et al., 2003; appx. 800–850 bp). These regions were
amplified according to the PCR thermal conditions in Wee, Kurihara & Reimer (2019).
Amplified PCR products of symbionts were directly sequenced, and sequence data were
manually checked based on the chromatogram files and low quality sites were removed at
the 5′ and 3′ ends by BioEdit v.7.0.5.3 (Hall, 1999). Obtained sequences were deposited in
the GenBank database (MN654128–MN654306, Table 1).
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Table 1 Specimen list.

Specimen ID Location/Region Spiecies ID Date (m/d/y) Environment Accession no.
of ITS

Accession no.
of psbA-F

Accession no.
of psbA-R

A01PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef edge MN654209 MN654185 –
A02PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef edge MN654210 MN654184 MN654134
A03PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef edge MN654211 – –
A04PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef edge MN654212 MN654186 MN654135
A05PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef edge MN654213 MN654187 MN654136
A06PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef edge MN654214 MN654188 –
A07PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef edge MN654215 MN654189 MN654137
A08PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef edge MN654216 MN654190 MN654138
A09PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef edge MN654217 – –
A11PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef flat MN654218 MN654191 MN654139
A12PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef flat MN654219 MN654192 MN654140
A13PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef flat MN654220 MN654193 –
A14PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef flat MN654221 – –
A15PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef flat MN654222 – –
A16PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef flat MN654223 MN654194 MN654141
A17PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef flat MN654224 – –
A18PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef flat MN654225 MN654195 MN654142
A19PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef flat MN654226 MN654198 –
A20PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Reef flat MN654227 – –
A21PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Backreef

moat
MN654228 MN654169 MN654159

A22PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Backreef
moat

MN654229 – –

A24PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Backreef
moat

MN654230 – MN654143

A25PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Backreef
moat

MN654231 – –

A26PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Backreef
moat

MN654232 – –

A27PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Backreef
moat

MN654233 – –

A28PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Backreef
moat

MN654234 – –

A29PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Backreef
moat

MN654235 – –

(continued on next page)
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Table 1 (continued)

Specimen ID Location/Region Spiecies ID Date (m/d/y) Environment Accession no.
of ITS

Accession no.
of psbA-F

Accession no.
of psbA-R

A30PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Jun 2, 2019 Backreef
moat

MN654236 – –

B01PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 2, 2019 Reef flat MN654237 – –
B02PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 2, 2019 Reef flat MN654238 MN654199 MN654144
B03PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 2, 2019 Reef flat MN654239 – –
B04PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 2, 2019 Reef flat MN654240 – –
B05PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 2, 2019 Reef flat MN654241 – MN654145
B06PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 2, 2019 Reef flat MN654242 MN654170 MN654160
B07PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 2, 2019 Reef flat MN654243 – MN654161
B08PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 2, 2019 Reef flat MN654244 MN654171 MN654162
B09PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 2, 2019 Reef flat MN654245 – –
B11PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 2, 2019 Reef flat MN654246 – –
B12PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat MN654247 MN654172 –
B13PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat MN654248 – –
B14PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat MN654249 MN654173 –
B15PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat MN654250 – –
B16PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat MN654251 – –
B17PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat MN654252 MN654174 MN654163
B18PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat MN654253 MN654200 –
B20PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat MN654254 – –
B21PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat MN654255 – –
B22PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat MN654256 – –
B23PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat MN654257 – –
B24PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat MN654258 MN654175 MN654164
B25PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat – MN654176 MN654165
B26PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat MN654259 – MN654166
B28PmToKa Kaminomine/Tokunoshima Palythoa mutuki Jun 3, 2019 Reef flat – MN654177 MN654167
C01PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef

moat
MN654260 – –

C02PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654261 – –

C03PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654262 – –

C04PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654263 – –

C05PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654264 – –

(continued on next page)
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Table 1 (continued)

Specimen ID Location/Region Spiecies ID Date (m/d/y) Environment Accession no.
of ITS

Accession no.
of psbA-F

Accession no.
of psbA-R

C06PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654265 – –

C07PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654266 – –

C08PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654267 – –

C09PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654268 – –

C10PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654269 – –

C11PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654270 – –

C12PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654271 MN654201 MN654146

C13PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654272 – –

C14PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654273 MN654179 MN654147

C15PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654274 MN654180 –

C16PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654275 MN654202 MN654148

C17PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654276 MN654203 MN654149

C18PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 2, 2019 Backreef
moat

MN654277 – MN654168

C19PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 3, 2019 Backreef
moat

MN654278 – –

C20PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 3, 2019 Backreef
moat

MN654279 MN654204 MN654150

C21PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 3, 2019 Backreef
moat

MN654280 MN654205 MN654151

C22PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 3, 2019 Backreef
moat

MN654281 MN654206 MN654152

C24PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 3, 2019 Backreef
moat

MN654282 MN654181 –

C25PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 3, 2019 Backreef
moat

MN654283 MN654196 MN654153

C26PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 3, 2019 Backreef
moat

MN654284 – MN654154

(continued on next page)
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Table 1 (continued)

Specimen ID Location/Region Spiecies ID Date (m/d/y) Environment Accession no.
of ITS

Accession no.
of psbA-F

Accession no.
of psbA-R

C27PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 3, 2019 Backreef
moat

MN654285 MN654207 MN654155

C28PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 3, 2019 Backreef
moat

MN654286 – –

C29PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 3, 2019 Backreef
moat

MN654287 MN654208 MN654156

C30PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Jun 3, 2019 Backreef
moat

MN654288 MN654182 MN654157

159PamToKa Kaminomine/Tokunoshima Palythoa aff.mutuki July 28, 2010 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654300 – –

233PamErYa Yakomo/Okinoerabu Palythoa aff.mutuki Jun 17, 2011 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654301 – –

237PamErSu Sumiyoshi/Okinoerabu Palythoa aff.mutuki Jun 18, 2011 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654302 – –

248PamToKa Kaminomine/Tokunoshima Palythoa aff.mutuki Jun 21, 2011 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654303 – –

250PamToKa Kaminomine/Tokunoshima Palythoa aff.mutuki Jun 21, 2011 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654304 MN654183 MN654131

328PamOkTe Teniya/Okinawa Palythoa aff.mutuki Apr 5, 2012 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654305 – –

364PamOkOk Oku/Okinawa Palythoa aff.mutuki Jun 25, 2012 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654306 – –
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Table 1 (continued)

Specimen ID Location/Region Spiecies ID Date (m/d/y) Environment Accession no.
of ITS

Accession no.
of psbA-F

Accession no.
of psbA-R

2PtOkOd Odo/Okinawa Palythoa tuberculosa Aug 18, 2009 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654289 – MN654158

39PtYoUk Ukachi/Yoron Palythoa tuberculosa Mar 4, 2010 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654290 – MN654132

63PtErYa Yakomo/Okinoerabu Palythoa tuberculosa Mar 5, 2010 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654291 – MN654133

100PtToKa Kaminomine/Tokunoshima Palythoa tuberculosa Mar 9, 2010 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654292 – MN654128

15PyOkOd Odo/Okinawa Palythoa sp. yoron Sep 5, 2009 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654297 – MN654130

51PyYoUk Ukachi(West)/Yoron Palythoa sp. yoron Mar 4, 2010 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654298 – –

85PyErYa Yakomo/Okinoerabu Palythoa sp. yoron Mar 5, 2010 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654296 MN654197 –

105PyToKa Kaminomine/Tokunoshima Palythoa sp. yoron Mar 9, 2010 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654299 MN654178 MN654129
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Table 1 (continued)

Specimen ID Location/Region Spiecies ID Date (m/d/y) Environment Accession no.
of ITS

Accession no.
of psbA-F

Accession no.
of psbA-R

218PmOkOd Odo/Okinawa Palythoa mutuki May 4, 2011 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654294 – –

77PmErYa Yakomo/Okinoerabu Palythoa mutuki Mar 5, 2010 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654293 – –

280PmToKa Kaminomine/Tokunoshima Palythoa mutuki Oct 5, 2011 In
Mizuyama,
Masucci
& Reimer
(2018)

MN654295 – –
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Haplotype network inference and phylogenetic estimation
Obtained sequences for ITS-rDNA, psbAncr forward and reverse regions were aligned,
respectively. In order to discriminate taxa of Symbiodiniaceae, we extracted the ITS2
region utilizing SymPortal (Hume et al., 2019; https://symportal.org/) and performed
BLASTN search against the nt database using the NCBI website (https://blast.ncbi.nlm.
nih.gov/Blast.cgi) for ITS-rDNA sequences. Haplotype network inference was performed
for ITS-rDNA sequences using the alignment with TCS networks method (Clement et
al., 2002) in PopART (Leigh & Bryant, 2015). Any columns in the alignment with gaps or
ambiguous sites were automatically masked in the inference. The phylogenetic analyses
were performed by MEGA version X (Kumar et al., 2018) and any loci with ambiguous
(double peaks) sites and gaps was automatically deleted completely for calculation in
order to avoid over/underestimation of genetic distance among each sequence. Molecular
phylogenetic trees of each marker were constructed by maximum likelihood (ML) and
neighbor joining (NJ) methods under the JC+G model for ITS-rDNA region and the JC
model for psbAncr regions adopted bymodeltest programwithinMEGAX. The significance
of each node was tested by bootstrap test with 1,000 replications. Bayesian inference was
performed using BEAST2 (Bouckaert et al., 2019) under default settings other than the clock
model being changed to the relaxed log normal model, which showed the highest likelihood
value according to the model comparison program compiled in BEAST2 (Drummond et
al., 2006). Posterior probability (PP) on each branch was calculated summarizing four
independent 10 million MCMC simulations.

Statistical analyses
To clarify the relationships between (1) symbiont lineages and host species, and (2)
symbiont lineages and host microhabitats, Fisher’s exact test was conducted for the
compositions of genotype for ITS-rDNA region and monophyletic clades for psbAncr

forward and reverse regions. It should be noted that host microhabitat was restricted by
host species for P. sp. yoron and P. mutuki, and thus we only targeted P. tuberculosa for
these analyses (aim 2 above)When significance was detected in Fisher’s exact test, Cramér’s
coefficient of association (V) was calculated to evaluate which factors (host species or host
microhabitat) were strongly associated with each other.

RESULTS
Sequence alignment
The total number of sequences of Symbiodiniaceae from specimens of the four Palythoa
species obtained in this study was 98 sequences for the ITS-rDNA region (513–773 bp), 40
sequences for the psbAncr forward region (330–547 bp), and 41 sequences for the psbAncr

reverse region (352–494 bp). As the primer set for psbAncr used in this study did not
make a congruent contig, obtained sequences of forward regions and reverse regions were
aligned separately (Noda et al., 2017). After alignment, a total of 449 sites with 5 parsimony
informative (=PI) sites for the ITS-rDNA region, 260 sites with 94 PI sites for the psbAncr

forward region, and 293 sites with 40 PI sites for the psbAncr reverse region were used for
each phylogenetic estimation.
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Figure 3 Haplotype network tree constructed with nuclear ITS-rDNA region alignment using TCS
networks method. Scale represents number of sequences with circle sizes proportional to haplotype fre-
quency. Colors represent Palythoa species: red, P. tuberculosa; yellow, P. sp. yoron; blue, P. mutuki; green,
P. aff.mutuki.

Full-size DOI: 10.7717/peerj.8449/fig-3

Barcoding, haplotype network and phylogenetic trees
As the result of BLAST searches, all query sequences of the ITS-rDNA region (n= 98) were
confirmed as belonging to the genus Cladocopium. Seventeen ITS-rDNA unique sequences
(=genotypes) were observed in TCS network, with most of the sequences belonging to one
of major three ITS-rDNA genotypes (Fig. 3, Table S1). No significant clade was detected
for the ITS-rDNA phylogenetic tree (Fig. S1). Summarizing these ITS-rDNA genotypes
from the viewpoint of host species, P. tuberculosa possessed mainly Genotype01 (n= 20)
followed byGenotype02 (n= 7), and P. sp. yoron also possessedmainlyGenotype01 (n= 20)
followed by Genotype03 (n= 8) (see details in Table S1). On the other hand, P. mutuki
possessed mainly Genotype02 (n= 13) with a few Genotype01 (n= 3) and Genotype03
(n= 2). Although the number of specimens examined was smaller (n= 6) than those the
other species, P. aff. mutuki also possessed mainly Genotype01 (n= 5).

In contrast, phylogenetic trees generated from psbAncr regions had a higher resolution.
Twomonophyletic clades were well supported by bootstrap values and posterior probability
in both forward (Fig. 4 clf1, ML= 100, NJ= 100, PP= 1 and clf2, ML= 100, NJ= 100, PP
= 1) and reverse trees (Fig. 5 clr1 and clr2, ML= 100, NJ= 100, PP= 1). Summarizing these
Symbiodiniaceae lineages from the viewpoint of host species, P. tuberculosa inhabiting the
reef edge possessed clf1/clr1 lineage (n= 7/5) and one specimen inhabiting at the backreef
moat possessed clf2/clr2 lineage. Palythoa sp. yoron inhabiting at the backreef moat
possessed mainly clf1/clr1 (n= 9/13), however, approximately one third of specimens
(n= 5) possessed other lineages. On the other hand, P. mutuki inhabiting the reef flat
possessed mainly clf2/clr2 (n= 8/8) other than two specimens that possessed clf1/clr1.
Unfortunately, as most of P. aff. mutuki specimens were not amplified by this primer set,
we could only obtain phylogenetic information on one specimen which possessed the
same lineage as P. sp. yoron (C24ToKa-PF) for the forward region and clr1 for the reverse
region.
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Figure 4 Molecular phylogenetic tree of Symbiodiniaceae of Palythoa species using mitochondrial
psbAncr forward region. Bootstrap values of maximum likelihood (ML) and neighbor joining (NJ) meth-
ods, and posterior probability (PP) are shown more than 70% for ML and NJ, and more than 0.95 for PP
at the nodes, respectively. Scale bars indicate substitutions per site. Colored letters and colored diagrams
represent Palythoa species and their habitats, respectively: red, P. tuberculosa; yellow, P. sp. yoron; blue, P.
mutuki; green, P. aff.mutuki; circle in pink, reef edge; triangle in purple, reef flat; square in orange, back-
reef moat.

Full-size DOI: 10.7717/peerj.8449/fig-4

Relationships among symbiont genotype/lineages, host species and
host microhabitats
From the results of Fisher’s Exact test, significant differences were detected in all
combinations, i.e., ITS-rDNA genotype and host species (p < 0.01), psbAncr forward
lineages and host species (p< 0.01), psbAncr reverse lineages and host species (p< 0.01),
and ITS-rDNA genotype and host microhabitats for P. tuberculosa (p< 0.05) (Table 2).
In other words, it was shown that Symbiodiniaceae lineages and host species were not
independent, nor were Symbiodiniaceae lineages and host microhabitats for P. tuberculosa.
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Figure 5 Molecular phylogenetic tree of Symbiodiniaceae of Palythoa species using mitochondrial
psbAncr reverse region. Bootstrap values of maximum likelihood (ML) and neighbor joining (NJ) meth-
ods, and posterior probability (PP) are shown more than 70% for ML and NJ, and more than 0.95 for PP
at the nodes, respectively. Scale bars indicate substitutions per site. Colored letters and colored diagrams
represent Palythoa species and their habitats, respectively: red, P. tuberculosa; yellow, P. sp. yoron; blue, P.
mutuki; green, P. aff.mutuki; circle in pink, reef edge; triangle in purple, reef flat; square in orange, back-
reef moat.

Full-size DOI: 10.7717/peerj.8449/fig-5

The effective dose calculated by Cramér’s coefficient of association (V) was largest between
host species and psbAncr forward/reverse lineages (V = 0.786,V = 0.682, respectively), and
moderate for the other combinations (host species and ITS-rDNA genotypes, V = 0.477;
host microhabitats and ITS-rDNA genotypes).
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Table 2 Composition of genotype for ITS-rDNA sequences andmonophyletic clades for psbAncr sequences of Symbiodiniaceae from Palythoa
species used in this study andmicroenvironments of host habitats. Significances were tested by Fisher’s Exact Test and V value represents
Cramer’s coefficient of association.

Symbiodiniaceae genotype (ITS-rDNA) Symbiodiniaceae lineage
(psbAncr forward region)

Symbiodiniaceae lineage
(psbAncr reverse region)

Genotype01 Genotype02 Genotype03 clf1 clf2 clr1 clr2

Host species P. tuberculosa 20 7 0 13 1 13 2
P. sp. yoron 20 1 8 10 0 14 1
P. mutuki 3 13 2 2 8 2 8
P. aff.mutuki 5 1 0 – – – –
Total 48 22 10 25 9 29 11

p< 0.01, V = 0.477 p< 0.01, V = 0.786 p< 0.01, V = 0.682
Reef edge 8 0
Reef flat 7 2
Backreef moat 2 4

Host habitats of
P. tuberculosa

Total 17 6
p< 0.05, V = 0.508

Notes.
P. aff.mutuki was removed from statistical analyses of psbAncr region due to low numbers of specimens.

DISCUSSION
Symbiodiniaceae genotype/lineage and host species
The development of molecular markers such as psbAncr that have higher resolution than
commonly used 18S or ITS ribosomal DNA markers has helped unveil a more detailed
picture of the genetic diversity of Symbiodiniaceae (Takishita et al., 2003; LaJeunesse
& Thornhill, 2011; LaJeunesse et al., 2018) (but see also Hume et al., 2019 who utilized
intragenomic variation of ITS2 to resolve genetic delineations). Accordingly, host
species biodiversity has been discovered from the initial observation of differences of
Symbiodiniaceae phylotypes in some cnidarian species (e.g., gorgonian Eunicea flexuosa,
Prada et al., 2014; scleractinian coral Seriatopora hystrix, Warner, Van Oppen & Willis,
2015).

From the results of Mizuyama, Masucci & Reimer (2018), none of the four molecular
markers utilized could clearly delineate four Palythoa species, although they could
delineate two closely related species groups composed of P. tuberculosa—P. sp. yoron
and P. mutuki—P. aff. mutuki. These previous results seem to be reflected in the results
in the current study of Symbiodiniaceae genotypes of ITS-rDNA and lineages of psbAncr

regions. Palythoa tuberculosa and P. sp. yoron mostly shared the same symbiont genotype
(Genotype01); nevertheless, they also partially shared the other genotypes with P. mutuki
(Genotype02 andGenotype03).With regard to psbAncr lineages, even though the delineation
of species groups between P. tuberculosa—P. sp. yoron and P. mutuki were shown more
clearly, they were not divided completely. The situation requires further investigation
via obtaining more P. aff. mutuki specimens’ psbAncr sequences. Unfortunately, in
the current study, despite much searching, we could not find large numbers of P. aff.
mutuki on the reef in Tokunoshima Island, even though they were previous sampled for
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Mizuyama, Masucci & Reimer (2018). We do not know what happened to P. aff. mutuki
colonies, but they may have been strongly affected by the bleaching events of 2016 and
2017 observed in southern Japan (Masucci et al., 2019).

Symbiodiniaceae genotype/lineage and microhabitat of host species
From the results of the phylogenetic analyses, three microhabitats were not exclusively
allocated in distinct Symbiodiniaceae genotypes or monophyletic clades, but the ratios of
different genotypes were significantly different for P. tuberculosa. Regarding P. tuberculosa,
Symbiodiniaceae Genotype01 was mostly detected on the reef edge and reef flat, while
Genotype02 was mainly observed in the backreef moat. Although there were not enough
samples to conduct statistical examinations of P. sp. yoron and P. mutuki due to their
habitat specificity, Genotype02 and clf2/clr2 were detected mainly on the reef flat, while
Genotype01 and clf1/clr1 were observed from all three environments.

It has been reported that zoantharian species with different symbiotic genotypes show
species-specific photosynthetic responses against seawater temperature and pCO2 (Graham
& Sanders, 2016; Reimer et al., 2017b; Wee, Kurihara & Reimer, 2019). Although the four
Palythoa species in this study occurred sympatrically on one reef, the environmental
conditions in a reef can be quite different according to small-scale geographical features.
Seawater temperatures on reef flats frequently reach near 40 ◦C (Achituv & Dubinsky,
1990). In enclosed reefs, seawater temperatures and p CO2 show higher variations than
those in exposed reefs (Suzuki, Nakamori & Kayanne, 1995; Fitt et al., 2001). Thus, the
relationship between Symbiodiniaceae and host Palythoa species may change among
different microhabitats in a reef area, facilitating ecological divergence of Palythoa species
within a narrow geographic range.

Although a previous molecular study could not distinguish the boundaries among
these Palythoa species (Mizuyama, Masucci & Reimer, 2018), it is suggested by our
results that these species are ecologically divergent, and physiological differences within
Symbiodiniaceae species may contribute to their ecological adaptation. In fact, Howells et
al. (2012) reported that Cladocopium C1 in Acropora tenuis showed different physiological
responses between northern and southern populations in the Great Barrier Reef.
Considering that Cladocopium contains various species distinguished by differences of
only a few bp in the ITS2 maker (Thornhill et al., 2014), meta-barcoding analyses via next-
generation sequencing would be necessary to further understand the detailed relationship
between Symbiodiniaceae and Palythoa species complex.

CONCLUSIONS
We succeeded in obtaining genotypic data of Symbiodiniaceae from four putative Palythoa
species and detected micro-scale geographic variations of the symbiotic algae among
these species within a single coral reef. Our results suggest that ecological divergence
among Palythoa species may be related to differences in Symbiodiniaceae diversities among
microhabitats, even within a narrow reef area. More powerful genetic data such as that
generated by next-generation sequencing could provide us with additional understanding
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on how neighboring Palythoa species have co-evolved with Symbiodiniaceae among the
different microhabitats in a reef.
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