
Submitted 12 October 2018
Accepted 18 December 2019
Published 24 March 2020

Corresponding authors
Brock A. Peters,
bpeters@completegenomics.com
Radoje Drmanac,
rade@completegenomics.com

Academic editor
Hossein Khiabanian

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj.8431

Copyright
2020 Weng et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

IterCluster: a barcode clustering
algorithm for long fragment read
analysis
Jiancong Weng1,2,*, Tian Chen2,*, Yinlong Xie2, Xun Xu3, Gengyun Zhang1,
Brock A. Peters3 and Radoje Drmanac3

1BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
2MGI, BGI-Shenzhen, Shenzhen, China
3BGI-Shenzhen, Shenzhen, China
*These authors contributed equally to this work.

ABSTRACT
Recent advances in long fragment read (LFR, also known as linked-read technologies
or read-cloud) technologies, such as single tube long fragment reads (stLFR), 10X
Genomics Chromium reads, and TruSeq synthetic long-reads, have enabled efficient
haplotyping and genome assembly. However, in the case of stLFR and 10X Genomics
Chromium reads, the long fragments of a genome are covered sparsely by reads in each
barcode and most barcodes are contained in multiple long fragments from different
regions, which results in inefficient assembly when using long-range information. Thus,
methods to address these shortcomings are vital for capitalizing on the additional
information obtained using these technologies. We therefore designed IterCluster, a
novel, alignment-free clustering algorithm that can cluster barcodes from the same
target region of a genome, using -mer frequency-based features and a Markov Cluster
(MCL) approach to identify enough reads in a target region of a genome to ensure
sufficient target genome sequence depth. The IterCluster method was validated using
BGI stLFR and 10X Genomics chromium reads datasets. IterCluster had a higher
precision and recall rate on BGI stLFR data compared to 10X Genomics Chromium
read data. In addition, we demonstrated how IterCluster improves the de novo
assembly results when using a divide-and-conquer strategy on a human genome data
set (scaffold/contig N50 = 13.2 kbp/7.1 kbp vs. 17.1 kbp/11.9 kbp before and after
IterCluster, respectively). IterCluster provides a new way for determining LFR barcode
enrichment and a novel approach for de novo assembly using LFR data. IterCluster is
OpenSource and available on https://github.com/JianCong-WENG/IterCluster.

Subjects Bioinformatics, Computational Biology
Keywords Next-generation sequencing, Long fragment read, De novo assembly, Barcode cluster,
kmer

INTRODUCTION
The short read length of next-generation sequencing (NGS) technology presents a challenge
for aligning programs in terms of how to handle the splicing of repeat sequences during the
de novo assembly process. To address this problem, in addition to long-read sequencing,
which provides reads that can often span across an entire repeat area, low-cost, low-input

How to cite this article Weng J, Chen T, Xie Y, Xu X, Zhang G, Peters BA, Drmanac R. 2020. IterCluster: a barcode clustering algorithm
for long fragment read analysis. PeerJ 8:e8431 http://doi.org/10.7717/peerj.8431

https://peerj.com
mailto:bpeters@completegenomics.com
mailto:rade@completegenomics.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.8431
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/JianCong-WENG/IterCluster
http://doi.org/10.7717/peerj.8431


DNA library preparation techniques based on co-barcoding methods have been recently
developed. These include technologies such as single tube long fragment reads (stLFR)
from BGI, 10× Genomics, or TruSeq synthetic long reads (TSLR) from Illumina (Wang et
al., 2018; Zheng et al., 2016; Voskoboynik et al., 2013). Using these techniques, a low-input
DNA library is first trimmed into a series of long fragments of 10–100 kb in length and
short reads from the same long fragment are created that all contain the same barcode.
Since each fragment comes from a small fraction of the genome, the probability of a
fragment containing identical repeat sequence is also low. Therefore, most of the repeat
regions in the genome are covered by fragments with unique signatures. Once these are
generated, the short reads are then sequenced using standard high-throughput sequencing
technologies. The LFRs generated by these techniques are inseparable from the short
read length features of NGS technology, but they provide more long-range information
about the same DNA fragment compared to standard NGS short reads, thus providing
more information for de novo genome assembly (Weisenfeld et al., 2017; Coombe et al.,
2018; Kuleshov, Snyder & Batzoglou, 2016). In addition, LFR techniques have been used
in haplotype phase determination and structural variation detection (Wang et al., 2018;
Zheng et al., 2016).

To better explain the data characteristics of LFRs, three distinct coverage types for
LFR data, similar to that proposed by Kuleshov, should be considered (Kuleshov, Snyder
& Batzoglou, 2016). Specifically, these are local coverage, fragment coverage, and global
coverage. Local coverage is the coverage of a long fragment with short reads in the same
barcode and global coverage is the coverage of the whole genome with the sum of short
reads from each fragment. The fragment coverage is the coverage of a whole genome
with long fragments, which is directly related to the nature of the input DNA. In the
case of BGI’s stLFR technology, the number of cells used to make a 1 ng human DNA
library equates to 300 haploid genomes, meaning the entire genome is covered at 300X
depth in this library. Due to the limitation of sequencing cost, the local coverage of each
fragment is very low (0.1–0.3) because it just needs to meet the experimental requirements
of standard second-generation sequencing. The local coverage of each fragment is too low
for each barcode’s reads to completely contain fragment information, with the long-range
information being sparse, and this low-sequencing depth cannot achieve the partial
assembly of each fragment.

BGI’s stLFR and 10× Genomics Chromium reads are similar technologies, but they
have several distinct characteristics. They are both low-input (about 1 ng) DNA library
preparation techniques, and each fragment from these two techniques generates the same
number of reads. Compared with 10× Genomics Chromium reads, stLFRs rely more
on a co-barcoding technique. stLFRs use the surface of microbeads to create millions of
miniaturized compartments in a single tube and enable co-barcoding in reactions with
50 million barcodes. 10× Genomics Chromium reads can only utilize 1 million barcodes,
so the number of fragments each barcode used with 10× Genomics Chromium reads are
larger than the stLFR methodology at the same DNA-input level. For example, in a human
genome library, the average fragments per barcodes is 1.18 using stLFR technology, but is

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 2/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.8431


8.3 using 10× Genomics Chromium reads. The drawback, however, of stLFRs is their high
duplicate rate at higher sequencing depths, which can impact downstream applications.

Unlike BGI’s stLFR and 10× Genomics Chromium reads, TSLR technology guarantees
the local coverage (10∼30 X) of each fragment in a barcode by over-sequencing each
barcode (Voskoboynik et al., 2013). Each barcode can be assembled separately using a
short-read assembler and the assembly complexity is reduced because most of repetitive
sequences become unique in a given long fragment. After this subassembly, the long
sequences that have been assembled above can then be assembled to generate a whole
genome using an overlap-layout-consensus (OLC) assembly strategy and this assembly
strategy has been refined using several genomes (Voskoboynik et al., 2013; McCoy et al.,
2014; Li et al., 2015). The low local coverage of BGI’s stLFR data and 10× Genomics
Chromium reads data make it impossible to achieve subassembly of each barcode and the
de novo assembly algorithms designed specifically for BGI’s stLFRs have not been made
publically available.

Given a seed barcode representing a target genomic region, barcode clustering is an
effective way to enhance the long-range information derived from LFR data and to enrich
all of the reads and barcodes belonging to the same fragment region in the genome. The
main purpose of barcode clustering is to capture all of the barcodes in a target genomic
region and to filter out all of the reads from the region. In this way, the target region can be
assembled independently. Barcode clustering separates the high complexity genome into
relatively simple partitions, which reduces the de novo assembly complexity. However, the
challenge for barcode clustering is that LFR technology groups reads from several fragment
into the same barcode. For example, the data generated by BGI’s stLFR technology contains
roughly 1∼3 long fragments per barcode, while data generated by 10× Genomics contains
more fragments for each barcode, with an average of six barcodes per fragment. This
complicates the problem of barcode clustering, as it causes clusters to generate a large
number of false positive barcodes (Fig. 1C). In addition, if a seed barcode is contained in
multiple fragments, the clustering eventually contains the barcodes frommultiple fragment
areas.

Recently, a novel algorithm, Minerva (Danko et al., 2019), provided a solution to these
challenges. Minerva focuses on the barcode deconvolution problem utilizing a bipartite
graph model. Minerva was designed to partition reads with a single barcode into clusters.
Those clusters of reads are labeled with an enhanced barcode. After barcode deconvolution,
the number of fragments containing an enhanced barcode can be reduced. Thus, the main
purpose of barcode clustering and barcode deconvolution are quite different. Barcode
deconvolution is aimed at polishing a single barcode, while barcode cluster focuses
on capturing all the reads from a target genome region for helping de novo assembly.
Unfortunately, Minerva is only available as a demo program and not very time-efficient.
For example, it took more than 10 days to deconvolve a 50-fold human chromosome
19 dataset (https://figshare.com/articles/chr19_read1_fq_gz/7812038), and it only output
80,000 pairs of enhanced barcode reads using BGI’s stLFR data. Thus, it is impossible
for Minerva to finish clustering of a 50-fold whole genome sequencing dataset within an
acceptable timeframe.

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 3/19

https://peerj.com
https://figshare.com/articles/chr19_read1_fq_gz/7812038
http://dx.doi.org/10.7717/peerj.8431


Figure 1 An outline of the IterCluster workflow. (A) If the seed barcode contains two fragments (red
bars), the cluster contains a sub-cluster from the two regions. The barcodes belonging to the same region
are strongly connected, while barcodes from different regions are poorly connected. Markov clustering can
achieve further division of the target barcode sub-cluster, so that each sub-cluster only contains barcodes
coming from one target region. (B) Using a sub-cluster to get a candidate target barcode. (C) A target bar-
code directly captured by the seed barcode overlaps with the target region, but barcodes carrying mul-
tiple fragments lead to the introduction of a false positive fragment. If these sequences are used as seeds
for the next capture, numerous barcodes (yellow bars) without overlap in the target region will be intro-
duced. Using the difference in k-mer frequency between the target region and non-target regions, the high
frequency unique k-mers is selected as the next captured feature value to control the false positive rate of
barcodes. IterCluster uses an iterative capture, and each sub-cluster is independently enriched using the
k-mer frequency diversity selection model to control the rate of false positive barcodes. High frequency
unique k -mers are selected as seed features for the next round of enrichment, where the number of itera-
tions k is set by the user. (D) After k iterations, each cluster can be obtained.

Full-size DOI: 10.7717/peerj.8431/fig-1

To address these limitations of using LFRs, we devised IterCluster, a novel reference- and
alignment-free clustering algorithm that can be used to explore the potential relationships
between barcodes and can cluster barcodes from the same target region of a genome. We
developed a k-mer frequency diversity select model to control the false positives generated
during barcode clustering, and have used a Markov clustering (MCL) model to ensure that

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 4/19

https://peerj.com
https://doi.org/10.7717/peerj.8431/fig-1
http://dx.doi.org/10.7717/peerj.8431


the clustering results only contain barcodes from one fragment area. IterCluster starts with
a randomly selected seed barcode and is able to capture other barcodes with overlapping
or nearby sequence identity to the seed barcode area. For each generated cluster we filter
the non-target region’s reads based on the reads depth difference, and we compared the
performance of each cluster de novo assembled independently to all of the reads de novo
assembled together in whole human genome data using stLFR technology. Also, we showed
that IterCluster had a high recall rate and a suitable accuracy rate for human whole genome
data. With IterCluster, we were able to achieve local assembly of a long fragment region,
making the subassembly strategy possible in a reasonable timeframe.

MATERIALS & METHODS
IterCluster algorithm
Given a set of long-fragment reads, IterCluster selects appropriate barcodes as the seed and
iteratively cluster target barcodes overlapping with the seed barcode. In order to minimize
the overlap between clusters in the final clustering result, the target barcode that has become
the seed barcode cannot be used as seed in future clusters. The size of each cluster depends
on the number of iterations (parameter -k, default 3). The IterCluster algorithm proceeds
in three steps: (1) constructing the adjacency matrix between barcodes; (2) generating
barcode clusters; (3) extracting the reads of the target regions from each barcode cluster.

In the first step, we first extract the unique kmer in the genomic data set. The distance
between the barcodes is measured by the number of common unique k-mers between the
barcodes. In terms of time efficiency, IterCluster uses the sparsity of the overlap relationship
between barcodes to generate the adjacency matrix.

In the second step, IterCluster evaluates the quality of the barcode by the unique kmer
number and unique k-mers proportion, than adds the high quality barcode to the candidate
seed list. IterCluster extracts the seed from the candidate seed list and clusters the seed
barcode according to the adjacency matrix and the k-mers frequency diversity selection
model to obtain the preliminary barcode cluster. Because most barcode carry fragments of
multiple regions, the preliminary barcode cluster will also carry barcodes from multiple
regions. IterCluster uses the Markov clustering model to disassemble each preliminary
barcode cluster and obtain a single barcode cluster.

Finally, IterCluster will count the kmer coverage depth of the reads in each barcode
cluster, identify the low coverage depth reads and filter out, and then get the reads in the
barcode clustering area.

Using unique k-mer as a similarity measurement
In the stLFR data, if there are overlaps between a long fragment contained in two barcodes,
the read overlap in the two barcodes can be found, as these signify the similarity between
barcodes. In measuring the similarity between barcodes, we did not use time-consuming
methods such as read alignment between barcodes. Instead, we built a k-mer set for each
barcode and measured the relation of barcodes based on the similarity of its k-mer set. Due
to the fact that repeats are widely distributed in the genome, the k-mer set generated from
a repeat would introduce a false-positive barcode. Therefore, we only select unique k-mers

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 5/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.8431


as the feature of a barcode based on the k-mer frequency distribution. Let K (b) denote the
unique k-mer set of barcode, the distance between barcodes can be described as:

Dist (b1,b2)=K (b1)∩K (b2).

A time-efficient way to generate adjacency matrix
IterCluster implements barcode data clustering based on an adjacency matrix between
barcodes. Many solutions to calculate the collective similarity exist, such as a local sensitive
hash (Charikar, 2002), which has been applied to the de novo assembly of single-molecule
sequencing data (Berlin et al., 2015) and the construction of phylogenetic trees (species
trees) (Ondov et al., 2016). Although these techniques can efficiently detect the overlap
between barcodes, a probabilistic method inevitably produces a certain error rate, and
an absolute common unique k-mer number between barcodes cannot be calculated. To
calculate the common unique k-mer number between barcodes, a simple, time-consuming
method is to compute the intersection independently between every two barcodes and the
computational complexity of this method is given as: O(n2).

IterCluster, however, utilizes an innovative algorithm to calculate the absolute common
unique k-mer number between barcodes. The core logic behind this approach was that
the adjacency matrix is sparse and each unique k-mer can determine which barcodes are
related to each other. IterCluster extracts the unique k-mer of a barcode and builds a hash
from the unique k-mer from each barcode. Barcodes that contain the same unique k-mer
mean that the number of co-unique k-mers between them increases by one. Since there
are few barcodes that simultaneously contain the same unique k-mer (theoretically less
than or equal to the sequencing depth), it takes a constant time to accumulate the number
of co-unique k-mers between the same unique k-mer numbers of supported barcodes. By
traversing all of the unique k-mers, the absolute value of the co-unique k-mers between all
of the barcodes can be calculated, and the time complexity of the program is given as: O
(n) (Fig. 2).

Barcode enrichment based on a k-mer frequency diversity selection
model
We developed an algorithm to iteratively cluster the barcodes from a target area in the
genome. The reasoning behind this approach was that the barcodes covering a target area
tend to contain unique k-mers derived from the target area while the content of unique
k-mers derived from other areas should be random (Fig. 1C), since these barcode cover
multiple long-fragment molecule. After each iteration of clustering, the unique k-mer
frequency of target and non-target areas are significantly different. Using this difference
to choose the unique k-mers belonging to a target area as a feature of the next round
of clustering effectively controls the false-positive rate. IterCluster uses common unique
k-mers tomeasure the similarity between barcodes. The number of commonunique k-mers
greater than the parameter -g between barcodes is considered to contain the overlapping
long fragment molecule. In each iterative clustering process, IterCluster first captures the

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 6/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.8431


Figure 2 Create a hash mapping from unique k-mer to barcode. Each row on the table above implies
that there is relationship between those barcodes supported by a unique k-mer. Because barcodes have
less probability of containing the same unique k-mer, the time complexity to calculate the relationship be-
tween each row of barcodes is O(1), and all row were traversed to calculate the relationship between all
barcodes. The time Complexity is O(n).

Full-size DOI: 10.7717/peerj.8431/fig-2

Table 1 Algorithm for barcode enrichment using a k-mer frequency selection model. a is the seed bar-
code. b represents all of the other barcodes. T is the target barcode set. F is a featured unique k-mer set
with high frequency in each iteration. Threshold is the relation threshold between barcodes, which is con-
trolled by the g parameter. k1 is the number of iterations.

Algorithm 1 IterCluster using k-mer frequency select
model

1. Generate seed barcode a
2. For each barcode(b):

3. if common unique k-mer (a, b) >Threshold :
4. add b to T

5. End for
6. Statistic unique k-mer frequency of reads in T , select the
unique k-mer with high frequency to F
7. For k1 iteration:

8. Get optional barcode set base on adjacency matrix
9. For each barcode(b) in optional barcode set

10. if common unique k-mer (b, F ) >Threshold :
11. add b to T

12. Statistic unique k-mer frequency of reads in T
13. Select unique k-mer with high frequency to F

14. End for
15. End for

target barcodes directly overlapping the seed barcode and obtains the target barcode set T .
Then it statistically determines the frequency of all of the unique k-mers of the barcode in
T . The high-frequency unique k-mer set is then selected as the seed unique k-mer set for
the next iteration and added to the feature k-mer set F (Table 1).

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 7/19

https://peerj.com
https://doi.org/10.7717/peerj.8431/fig-2
http://dx.doi.org/10.7717/peerj.8431


Table 2 Algorithm for divide cluster byMCL. s is the matrix expansion coefficient (default is 2). r is the
matrix inflation coefficient (default is 2). k is the column number of M. p is each matrix row index. q is
each matrix column index. k2 is the number of iterations.

Algorithm 2 Divide cluster byMCL

1. Given a target barcode set T , build adjacent matrixM
2. For k2 iteration:
3.M =M s

4.Mpq= (0rM )pq=
(Mpq)r∑k
i=1(Miq)r

5. End for
6. extract sub cluster fromM

MCL model
Since each barcode covers multiple long fragment molecules (Fig. 1A), using a seed
clustering strategy may result in a barcode set representing more than one target area in
the genome. IterCluster uses a Markov clustering model (Van Dongen, 2000) to ensure that
the result of seed clustering is a set of barcodes for individual areas (Fig. 1B). Specifically,
assuming that a seed contains two long fragment molecules from different areas, the target
barcode set will contain two clusters from different areas in the genome. However, the
barcodes generated from the same area are closely related and barcodes generated from
different area are distantly related. Therefore, IterCluster use a Markov clustering model
to detect and classify closely-coupled barcode groups after the first clustering iteration
(Table 2).

MCL algorithm has two main processes, expansion and inflation, which operate on the
state transition matrix. When a state transition matrix is M , the dimension of M is the
number of points in the graph. Each list inM represents the probability of starting from a
certain point at a certain time and arriving at the remaining points at the next time.

The extended process is to simulate the random walk process. Taking positive integer
e and multiply the current state transition matrix by e times to get a new state transition
matrix, which is equivalent to a random walk on the original state transition matrix. This
process can be described as:

M ′=M e .

The expansion process is a matrix regularization process, which regularizes the columns
of the state transition matrix. The processing formula is shown as follow:

(M∗)pq=
(Mpq)T∑K
i=1(Miq)T

.

Where M is a state transition matrix; M* is a regularized matrix; T is a relaxation
coefficient; K is the number of rows of M ; P is a row subscript; q is a column subscript.
The function above is to regularize the columns of the transfer matrix to get the regularized
matrixM*

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 8/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.8431


Table 3 Data set properties.

DataSet1 DataSet2

Technology BGI’s single tube LFR 10× Genomics
Chromium reads

Barcode number 1.3 * 106 3.6 * 107

Sequence depth 56× 50×
Fragment number of each 1.18 8.32

For the N target barcodes obtained after the seed barcode’s first clustering iteration,
the N *N adjacency matrix M was built and Markov clustering occurred. Finally, the
sub-cluster can be found after MCL process.

Data sources
We select 2 human genome data sets to evaluate IterCluster’s performance: BGI stLFR data
sets and 10× Genomics Chromium linked reads data sets (Table 3). BGI stLFR data were
obtained for sample NA12878 from the CNGB Nucleotide Sequence Archive (CNSA) with
accession ID: CNS0007594. The data were also available from the European Nucleotide
Archive with accession ID: PRJEB27414.

Human Chromium linked reads data from 10× Genomics was obtained for a
HGP sample, and were downloaded from the 10× Genomics company website
(https://support.10Xgenomics.com/de-novo-assembly/datasets/2.1.0/hgp).

Data analysis
Barcode quality control
In the stLFR dataset, there has 52872872 barcode, but only 13630103 barcode have more
than 10 pair reads, the small barcode can’t find relationship with other barcode because
of little unique k-mer. After filter small barcode which contain reads less than 10 pair, the
barcodes’ reads pair average count is 191. In the 10× Genomics dataset, there has 1394714
barcode, all of them are more than 10 reads pair; the average reads count is 490 for barcode.
So it is not necessary to filter small barcode in 10× Genomics dataset.

Split barcode and reads filter
We used our own pipeline to split the barcodes from reads and filtered the duplicate reads
and adapters with SOAPfilter (v2.2), using the following settings: -t 30 -q 33 -p -M 2
–y –F adpter1 –R adapter2 -f -1 -Q 10, obtaining a unique k-mer frequency range of
20∼80 by k-merfreq (in-house pipeline) with –k 17. The adapter sequence can be found
in Supplemental Information. Then, we built the barcode’s relation matrix, selecting an
initial seed with a unique k-mer of (–r 0.3) and a k-mer count larger than 3000 (-n 3000),
and then ran IterCluster with the following parameters: -c 10 -k 3 -g 200 -f 3 -t 80 -a 2 -h
12. Barcodes with read pair numbers less than 10 were deleted.

The barcodes from reads were extracted using Long Ranger (v2.1.2) and the duplicate
reads were filtered using SOAPfilter (v2.2) with the settings -t 30 -q 33 -p -M 2 -f -1 -Q
10. We obtained a unique k-mer frequency range 20∼60 by k-merfreq with –k 17. Then,

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 9/19

https://peerj.com
https://db.cngb.org/search/sample/CNS0007594/
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB27414
https://support.10Xgenomics.com/de-novo-assembly/datasets/2.1.0/hgp
http://dx.doi.org/10.7717/peerj.8431#supplemental-information
http://dx.doi.org/10.7717/peerj.8431


Figure 3 Reads number distribution of each barcodes in BGI’s stLFR and 10×Genomics dataset. (A)
stLRF barcode’s read count histogram. (B) 10× barcode’s read count histogram.

Full-size DOI: 10.7717/peerj.8431/fig-3

we built the barcode’s relation matrix and ran IterCluster with the parameters -c 60 -k 2
-n 20000 -r 0.3 -g 130 -f 3 -t 45 -a 2 -h 12.

Evaluation
In our IterCluster algorithm evaluation, we build actual positive dataset by aligning reads
to genome reference with bwa (Li & Durbin, 2009) to know each barcode’s position on the
genomes. According to the range of LFR length and reads count in each barcode (Fig. 3),
there are so many barcodes have little reads that haven’t enough unique kmer to find other
barcodes together. we defined initial seed barcodes that must cover areas where the reads
spanned larger than 500 bp in length and had more than 30 paired-ends to represent an
LFR fragment and the target barcodes that belong to an LFR fragment need to have more
than 5 paired-ends, which can ensure the aggregation ability of the barcode.

After getting the cluster set, compare the IterCluster results with actual positive
dataset, count the true positive barcode number that included by cluster set and actual
target region barcode set, false positive barcode number that included by cluster set but
actual target region barcode set in every random initial seeds’ cluster set target region. And
the span region for every initial seed may extend during IterCluster, we decided extend
80 kp∼400 kbp both left and right for the initial seed span region on reference as target
region to evaluate. Using a P-R curve to evaluate, determining the Precision and Recall as
follows:

Precision=
True Positive

True Positive+False Positive
.

Recall =
True Positive

True Positive+False Negative
.

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 10/19

https://peerj.com
https://doi.org/10.7717/peerj.8431/fig-3
http://dx.doi.org/10.7717/peerj.8431


Figure 4 The distribution of cluster’s barcodes number of BGI’s stLFR and 10×Genomics dataset.
(A) Generated by IterCluster with parameter -g 300, -k 2, -f 2 in BGI’s stLFR dataset. (B) Generated by
IterCluster with parameter -g 150, -k 5, -f 2 in BGI’s stLFR dataset.

Full-size DOI: 10.7717/peerj.8431/fig-4

IterCluster for de novo assembly
In the IterCluster result, there were enough reads data in an LFR cluster set to support
de novo assembly. To improve the effect of the assembly, cluster false positive reads were
removed using the FalseRemove module according to an average k-mer frequency for each
LFR, as we assumed that the non-target LFR k-mer frequency was lower than a targets
LFR. Then, we used SOAPdenovov2 (Luo et al., 2012) to assemble each IterCluster result
set. For each subassembly result, we filtered contigs less than 1 kb because these were most
likely sequences assembled by false positive reads. After that, we merged each assembly
result together, and evaluated the results with QUAST (Gurevich et al., 2013).

RESULTS
IterCluster performance
To evaluate the cluster size after IterCluster in two dataset. We show the barcodes number
distribution (Fig. 4) and reads number distribution (Fig. 5) of BGI stLFR datasets and 10×
Chromium reads datasets.

To evaluate the performance of IterCluster on BGI stLFR datasets and 10× Chromium
reads datasets, we plotted R-P to analyze the accuracy and recall of IterCluster. As can be
seen from Figs. 6A, 6B IterCluster’s accuracy and recall rate were high compared to baseline
(k = 1). IterCluster performed better on BGI stLFR data than on 10× Chromium reads
data. Figures 6C and 6E shows the performance of different parameters using the BGI stLFR
data, where the f parameter represents the lowest frequency threshold in the frequency
selection model and the g parameter represents the unique k-mer number threshold
between barcodes with overlap. Increasing the -f and -g values did not significantly

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 11/19

https://peerj.com
https://doi.org/10.7717/peerj.8431/fig-4
http://dx.doi.org/10.7717/peerj.8431


Figure 5 The distribution of cluster’s reads number of BGI’s stLFR and 10×Genomics dataset. (A)
Generated by IterCluster with parameter -g 300, -k 2, -f 2 in BGI’s stLFR dataset. (B) Generated by Iter-
Cluster with parameter -g 150, -k 5, -f 2 in BGI’s stLFR dataset.

Full-size DOI: 10.7717/peerj.8431/fig-5

improve the accuracy of IterCluster, but it greatly reduced the recall rate. However, from
Fig. 6F, we found that a slight increase in the -g value can improve the accuracy and recall
rate using 10× Genomics Chromium reads data.

An important factor affecting the precision of IterCluster was the repeat sequences in
genome. That is why we choose unique kmers as features. The K value (the base number
of each kmer) is an important parameter because it determines the specificity of a kmer.
We thus studied IterCluster’s performance with different K values using BGI’s stLFR data.
Figure 7 shows that IterCluster can achieve higher precision and recall with largerK values.

k-mer frequency diversity selection model improve clusting
IterCluster needs to deal with two key issues in clusting: (1) how to determine the overlap
between barcodes; (2) how to avoid false positives overlap caused by multiple fragments
contained in the same barcode. These two issues are described in detail below.

In regard to the first issue, because overlap between different barcodes means that these
barcodes will contain commonunique k-mer, we use the number of common unique k-mer
to measure the distance between barcodes. In the IterCluster, a user-specified common
unique k-mer threshold (-g parameter) is used to determine whether two barcodes contain
overlap. This threshold must be high enough that repeats and sequencing error do not
result in false overlaps yet low enough that slight overlaps overlaps between fragments can
be detected. This threshold can be estimated by the the distance distribution between all
barcodes (Fig. 8A).

Another issue is caused by multiple fragment contained in barcode. Most of target
barcodes carry a fragment from seed barcode area but carry fragments from other areas
of the genome randomly. Therefore, after each cluster iteration, the feature of the seed

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 12/19

https://peerj.com
https://doi.org/10.7717/peerj.8431/fig-5
http://dx.doi.org/10.7717/peerj.8431


Figure 6 The preference of IterCluster on stLFR and 10×Genomics Chromium read with different pa-
rameter. (A) Generated by IterCluster with different -k parameter in BGI’s stLFR dataset. (B) Generated
by IterCluster with different -k parameter in 10× Genomics Chromium read dataset. (C) Generated by
IterCluster with different -f parameter in BGI’s stLFR dataset. (D) Generated by IterCluster with different
-f parameter in 10× Genomics Chromium read dataset. (E) Generated by IterCluster with different -g pa-
rameter in BGI’s stLFR dataset. (F) Generated by IterCluster with different -g parameter in 10× Genomics
Chromium read dataset.

Full-size DOI: 10.7717/peerj.8431/fig-6

barcode area (unique k-mer) need to be updated to prevent non-target area’s unique k-mer
from being used as feature for the next iteration of clusting. When choosing feature unique
k-mer, IterCluster uses a unique k-mer selectionmodel based on k-mer frequency diversity.
The key idea is that after each iteration of the cluster, the unique k-mer frequency from
seed barcode area is higher than the unique k-mer frequency from non-seed barcode area,
because target barcode always has an overlapwith seed barcode. Base on frequency diversity,
IterCluster provides a user-specified minimum frequency threshold (-f parameter) to filter
the unique k-mer from non-seed barcode area. This threshold can be estimated from the
unique k-mer frequency distribution after each clusting iteration (Fig. 8B).

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 13/19

https://peerj.com
https://doi.org/10.7717/peerj.8431/fig-6
http://dx.doi.org/10.7717/peerj.8431


Figure 7 The preference of IterCluster using stLFR data with differentK values.
Full-size DOI: 10.7717/peerj.8431/fig-7

Figure 8 An illustration of common unique k-mer threshold estimation andminimum unique k-mer
frequency estimation. (A) A histogram of common unique k-mer number for 10,000 randomly selected
seeds with the user-specific threshold shown as a dashed line for BGI’s stLFR data. All connection which
common unique k-mer up to 100 was considered to be a true overlap between barcode. The connection
which common unique k-mer lower than 10 has been calculated but filtered. (B) A histogram of unique
k-mer frequency for 100 randomly selected clusters’ first iteration for BGI’s stLFR data. The user-specific
threshold was shown as a dashed line. All unique k-mer with frequency high than 3 within a cluster’s first
iteration was considered to be feature unique k-mer for next iteration. The unique k-mer which frequency
is too high (>100) has been filter on this histogram.

Full-size DOI: 10.7717/peerj.8431/fig-8

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 14/19

https://peerj.com
https://doi.org/10.7717/peerj.8431/fig-7
https://doi.org/10.7717/peerj.8431/fig-8
http://dx.doi.org/10.7717/peerj.8431


Figure 9 The comparison of IterCluster’s performance with and without k-mer frequency diversity se-
lection model for BGI’s stLFR data. (A) The iteration k was set to 2. (B) The iteration k was set to 3.

Full-size DOI: 10.7717/peerj.8431/fig-9

To evaluate the effect of the frequency diversity selection model in controlling false
positives, we compared the performance of IterCluster with or without this model (Fig. 9).
When iteration k= 2, the number of unique k-mers in non-seed fragment area is still very
small, and the frequency selection model has slight effect on IterCluster. However, when
the number of iteration increased (k = 3), the false positive rate of IterCluster without
frequency diversity selection model is significantly increased. This shows that the frequency
selection model can control false positive rate with the number of iteration increased.

Runtime and memory cost
IterCluster’s runtime and memory cost largely depends on the parameter K , the kmer size
used to calculate the adjacency matrix. The runtime and RAM usage for IterCluster with
different K values is shown in Table 4. The time and memory cost of IterCluster mainly
stem from the adjacency matrix construction step of this algorithm. The larger the K value,
the more kmer numbers, and the more time is needed to calculate the relation between
all kmers. However, changes in K do not greatly affect memory consumption. Although
a larger K value means a larger hash is needed to map all of the kmers, for each single
kmer, the number of barcodes containing the kmer decreases. Therefore, the consumption
of memory is stable and only decided by the amount of data. IterCluster is a highly
parallel tool, both in the matrix build step and in its clustering step. We demonstrated that
IterCluster can finish a 50-fold human whole genome dataset in 4 days with 50 threads.

IterCluster improves de novo assembly using a divide-and-conquer
strategy
We used IterCluster to improve the de novo assembly of human genome stLFR data
from BGI via a divide-and-conquer strategy. First, we ran IterCluster on whole human
genome stLFR data with default parameters. For each barcode cluster, we filtered the

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 15/19

https://peerj.com
https://doi.org/10.7717/peerj.8431/fig-9
http://dx.doi.org/10.7717/peerj.8431


Table 4 Runtime andmemory cost of IterCluster with differentK values. IterCluster run on BGIs
stLFR data with default parameters and different K values. The thread number was set to 50.

Memory Time

17-mer 327G 73 h
15-mer 333G 37 h
13-mer 326G 12 h

Table 5 Comparison of the performance of de novo assembly between divide-and-conquer strategy
and normal method.

Contigs Scaffolds

N50(bp) Cov.(%) Misass.(#/sum) N50(bp) Cov.(%) Misass.(#/sum)

Cluster 11,937 90.67 4,859/30M 17,188 91.00 6,236/58M
Uncluster 7 127 88.45 1,626/9M 13 216 89.49 2,819/ 27M

false positive reads with the FalseRemove module which was also added to our pipeline
and assembly tasks were performed independently using SOAPdenovo2 (Luo et al., 2012).
After the subassembly of each cluster, the assembly results from different clusters were
integrated together. We call this assembly strategy ‘‘divide-and-conquer’’ or subassembly.
In comparison to a baseline SOAPdenovo2 assembly using all reads (Table 5), assembly
with this divide-and-conquer strategy achieved a longer contig length, as measured by
the N50 length metric, of 11.9k, representing a 67% increase over the initial baseline
achieved using SOAPdenovo2 assembly from all of the reads. Assembly with our divide-
and-conquer strategy achieved a 30% increase in scaffold creation (N50 = 17.1K) and a
slight improvement in genome coverage. This suggests that IterCluster uses more of the
long-range information present in stLFR data to break down a complex chromosomal
genome into multiple simple sub-sections.

DISCUSSION
Supernova is an efficient and excellent assembly algorithm specifically designed for use with
10× Genomics Chromium reads data that capitalizes on a de Bruijn graph (DBG) strategy,
leading to assembly of contigs with N50 up to 100 kb (Weisenfeld et al., 2017). However,
stLFR data cannot be assembled using supernova, because supernova only accepts the
unique characteristics of 10× Genomics Chromium reads, such as the barcode number
and the amount of data for each barcode. The improvement of the contig N50 using a
divide-and-conquer assembly strategy suggests that IterCluster can reduce the complexity
of de novo assembly through local assembly, and thus provides a platform for de novo
assembly using stLFR data. In contrast to TSLR technology, IterCluster capture reads
from fragment overlap using a seed and achieves local assembly, so it does not actually
improve the local coverage of each fragment and the captured reads contain all of the same
haplotype, making it unsuitable for haplotype phasing.

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 16/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.8431


CONCLUSIONS
We have introduced IterCluster, a novel algorithm providing an optional solution to
the barcode cluster problem. IterCluster provides a conservative solution for exploring
the potential relationships between barcodes and realizes barcode clustering based on a
k-mer frequency selection model. Relying on IterCluster, the barcodes of a certain area in
the genome can be enriched, thus achieving de novo assembly by a divide-and-conquer
strategy.

The current version of IterCluster provides reasonable performance, but this jumps
up to 350 cpu-hours for clustering barcode from some large-scale datasets. Although
a time-efficient way to generate adjacency matrices have been developed, the size of an
intersection between optional barcodes and a seedmust be recalculated, because the feature
k-mers are updated after each clustering round. A large performance bottleneck is that the
recalculation method is naive and precise. Future versions of IterCluster will employ local
sensitive hashes (Charikar, 2002) to improve the performance.

In contrast, IterCluster uses the same relation threshold (-g ) to capture target barcodes,
but using the same relation threshold on each cluster round is unbefitting and future
versions will consider more appropriate criteria for capturing barcodes. Also, the same
relation threshold was used to measure the relation of each barcode. However, the number
of reads and fragments on each barcode are different, and amore appropriate mathematical
model is needed to measure the relation between barcodes.

Overall, we believe that IterCluster is a significant tool for taking advantage of LFR data.
LFR data has the potential to improve de novo assembly and to allow local assembly.

ACKNOWLEDGEMENTS
We would like to acknowledge the ongoing contributions and support of MGI’s algorithm
team, in particular Jingbo Tang and Weihua Huang for their suggestions towards LFR
data analysis and algorithm performance optimization. We would also like to thank
BGI-Shenzhen for providing the stLFR data and information about its characteristics. We
thank LetPub for its linguistic assistance during the preparation of this manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Shenzhen Peacock Plan (NO.KQTD20150330171505310).
There was no additional external funding received for this study. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Shenzhen Peacock Plan: KQTD20150330171505310.

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 17/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.8431


Competing Interests
JiancongWeng, Tian Chen and Yinlong Xie are employees ofMGI. XunXu is a group leader
of BGI-shenzhen. Brock A. Peters and Radoje Drmanac are scientists at BGI-shenzhen.

Author Contributions
• Jiancong Weng performed the experiments, prepared figures and/or tables, authored or
reviewed drafts of the paper, develop the software, and approved the final draft.
• Tian Chen analyzed the data, prepared figures and/or tables, and approved the final
draft.
• Yinlong Xie and Gengyun Zhang conceived and designed the experiments, authored or
reviewed drafts of the paper, and approved the final draft.
• Xun Xu, Brock A. Peters and Radoje Drmanac conceived and designed the experiments,
prepared figures and/or tables, coordinated the study, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Data is available at GitHub: https://github.com/JianCong-WENG/IterCluster.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.8431#supplemental-information.

REFERENCES
Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM. 2015. Assembling

large genomes with single-molecule sequencing and locality-sensitive hashing.
Nature Biotechnology 33:623–630 DOI 10.1038/nbt.3238.

Charikar MS. 2002. Similarity estimation techniques from rounding algorithms. In:
Thiry-fourth ACM symposium on theory of computing. ACM, 380–388.

Coombe L, Zhang J, Vandervalk BP, Chu J, Jackman SD, Birol I, Warren RL. 2018.
ARKS: chromosome-scale scaffolding of human genome drafts with linked read
kmers. BMC Bioinformatics 19(1):234 DOI 10.1186/s12859-018-2243-x.

Danko DC, Meleshko D, Bezdan D, Mason C, Hajirasouliha I. 2019.Minerva: an
alignment- and reference-free approach to deconvolve linked-reads for metage-
nomics. Genome Research 29:116–124 DOI 10.1101/gr.235499.118.

Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for
genome assemblies. Bioinformatics 29:1072–1075 DOI 10.1093/bioinformatics/btt086.

Kuleshov V, Snyder MP, Batzoglou S. 2016. Genome assembly from synthetic long read
clouds. Bioinformatics 32(12):i216–i224 DOI 10.1093/bioinformatics/btw267.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler
transform. Bioinformatics 25(14):1754–1760 DOI 10.1093/bioinformatics/btp324.

Li R, Hsieh C-L, Young A, Zhang Z, Ren X, Zhao Z. 2015. Illumina synthetic long read
sequencing allows recovery of missing sequences even in the finished C. elegans
genome. Scientific Reports 5:10814 DOI 10.1038/srep10814.

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 18/19

https://peerj.com
https://github.com/JianCong-WENG/IterCluster
http://dx.doi.org/10.7717/peerj.8431#supplemental-information
http://dx.doi.org/10.7717/peerj.8431#supplemental-information
http://dx.doi.org/10.1038/nbt.3238
http://dx.doi.org/10.1186/s12859-018-2243-x
http://dx.doi.org/10.1101/gr.235499.118
http://dx.doi.org/10.1093/bioinformatics/btt086
http://dx.doi.org/10.1093/bioinformatics/btw267
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1038/srep10814
http://dx.doi.org/10.7717/peerj.8431


Luo R, Liu B, Xie Y, Li Z, HuangW, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu
G, Zhang H, Shi Y, Liu Y, Yu C,Wang B, Lu Y, Han C, Cheung DW, Yiu S-M,
Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H,Wang J, Lam T-W,Wang J. 2012.
SOAPdenovo2: an empirically improved memory-efficient short-read de novo
assembler. GigaScience 1(1):18 DOI 10.1186/2047-217X-1-18.

McCoy RC, Taylor RW, Blauwkamp TA, Kelley JL, Kertesz M, Pushkarev D, Petrov DA,
Fiston-Lavier A-S. 2014. Illumina TruSeq synthetic long-reads empower de novo
assembly and resolve complex, highly-repetitive transposable elements. PLOS ONE
9:e106689 DOI 10.1371/journal.pone.0106689.

Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy
AM. 2016.Mash: fast genome and metagenome distance estimation using MinHash.
Genome Biology 17(1):132 DOI 10.1186/s13059-016-0997-x.

Van Dongen SM. 2000. Graph clustering by flow simulation. Ph.D. thesis, University of
Utrecht.

Voskoboynik A, Neff NF, Sahoo D, Newman AM, Pushkarev D, KohW, Passarelli B,
Fan HC, Mantalas GL, Palmeri KJ, Ishizuka KJ, Gissi C, Griggio F, Ben-Shlomo
R, Corey DM, Penland L,White RA,Weissman IL, Quake SR. 2013. The genome
sequence of the colonial chordate, Botryllus schlosseri. eLife 2(192):1953–1965.

Wang O, Chin R, Cheng X,WuM,Mao Q, Tang J, Sun Y, LamH, Chen D, Zhou Y,
Wang L, Fan F, Zou Y, Anderson E, Xie Y, Zhang R, Drmanac S, Nguyen D, Xu
C, Villarosa C, Gablenz S, Barua N, Nguyen S, TianW, Liu J, Wang J, Liu X, Qi X,
Chen A,Wang H, Dong Y, ZhangW, Alexeev A, Yang H,Wang J, Kristiansen K, Xu
X, Drmanac R, Peters B. 2018. Single tube bead-based DNA co-barcoding for cost
effective and accurate sequencing, haplotyping, and assembly. bioRxiv 324392.

Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. 2017. Direct determination of
diploid genome sequences. Genome Research 27:757–767 DOI 10.1101/gr.214874.116.

Zheng GXY, Lau BT, Schnall-LevinM, Jarosz M, Bell JM, Hindson CM, Kyriazopoulou-
Panagiotopoulou S, Masquelier DA, Merrill L, Terry JM, Mudivarti PA,Wyatt
PW, Bharadwaj R, Makarewicz AJ, Li Y, Belgrader P, Price AD, Lowe AJ, Marks
P, Vurens GM, Hardenbol P, Montesclaros L, LuoM, Greenfield L, Wong A, Birch
DE, Short SW, Bjornson KP, Patel P, Hopmans ES,Wood C, Kaur S, Lockwood
GK, Stafford D, Delaney JP, Wu I, Ordonez HS, Grimes SM, Greer S, Lee JY,
Belhocine K, Giorda KM, HeatonWH,McDermott GP, Bent ZW,Meschi F,
Kondov NO,Wilson R, Bernate JA, Gauby S, Kindwall A, Bermejo C, Fehr AN,
Chan A, Saxonov S, Ness KD, Hindson BJ, Ji HP. 2016.Haplotyping germline and
cancer genomes with high-throughput linked-read sequencing. Nature Biotechnology
34:303–311 DOI 10.1038/nbt.3432.

Weng et al. (2020), PeerJ, DOI 10.7717/peerj.8431 19/19

https://peerj.com
http://dx.doi.org/10.1186/2047-217X-1-18
http://dx.doi.org/10.1371/journal.pone.0106689
http://dx.doi.org/10.1186/s13059-016-0997-x
http://dx.doi.org/10.1101/gr.214874.116
http://dx.doi.org/10.1038/nbt.3432
http://dx.doi.org/10.7717/peerj.8431

